JP2017006813A - Denitration apparatus and treatment method of nitrogen oxide - Google Patents

Denitration apparatus and treatment method of nitrogen oxide Download PDF

Info

Publication number
JP2017006813A
JP2017006813A JP2015121758A JP2015121758A JP2017006813A JP 2017006813 A JP2017006813 A JP 2017006813A JP 2015121758 A JP2015121758 A JP 2015121758A JP 2015121758 A JP2015121758 A JP 2015121758A JP 2017006813 A JP2017006813 A JP 2017006813A
Authority
JP
Japan
Prior art keywords
denitration
nitrogen
catalyst
temperature
ammonia
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015121758A
Other languages
Japanese (ja)
Inventor
基茂 柳生
Motoshige Yagyu
基茂 柳生
雅人 岡村
Masahito Okamura
雅人 岡村
浩志 松宮
Koji Matsumiya
浩志 松宮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2015121758A priority Critical patent/JP2017006813A/en
Publication of JP2017006813A publication Critical patent/JP2017006813A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a treatment technology of nitrogen oxides capable of efficiently performing the denitration treatment of the nitrogen oxides in a combustion exhaust gas over a wide temperature range by using a plurality of kinds of denitration catalysts having high denitration activity at different operation temperatures using ammonia as a reducer.SOLUTION: A denitration apparatus 10 for a thermal power station using ammonia as a reducer, disposes: a high temperature denitration catalyst A for accelerating a rection between ammonia and nitrogen oxides at a high temperature of 250°C or higher in the upstream side to the inlet of a combustion exhaust gas in the denitration apparatus 10 and having a decomposing function to nitrogen and water; and a low temperature denitration catalyst B for accelerating a rection between ammonia and nitrogen oxides at a low temperature of less than 250°C in the downstream side of the high temperature denitration catalyst A and having a decomposing function to nitrogen and water.SELECTED DRAWING: Figure 1

Description

本発明の実施形態は、火力発電所等から排出される窒素酸化物(NOx)の処理方法および脱硝装置に関する。   Embodiments described herein relate generally to a method for treating nitrogen oxide (NOx) discharged from a thermal power plant or the like and a denitration apparatus.

火力発電所は、燃料の燃焼に伴い発生する窒素酸化物(NOx)の処理技術として、窒素酸化物を窒素および水に分解する脱硝技術がある。一般的な脱硝技術には、アンモニアや尿素を還元剤として用いて、窒素酸化物を窒素と水に分解するアンモニア接触還元法(NH−SCR)、炭化水素を還元剤として用いる炭化水素接触還元法(HC−SCR)、窒素酸化物の分解に必要なエネルギをコロナ放電等により供給する放電法、および窒素酸化物用吸着剤を用いた吸着法などがある。このうち、火力発電所向け脱硝技術にはアンモニア接触還元法が多く用いられている。 Thermal power plants include a denitration technology for decomposing nitrogen oxides into nitrogen and water as a processing technology for nitrogen oxides (NOx) generated with fuel combustion. Common denitration technologies include ammonia and urea as reducing agents, ammonia catalytic reduction method (NH 3 -SCR) that decomposes nitrogen oxides into nitrogen and water, and hydrocarbon catalytic reduction using hydrocarbons as reducing agents. Method (HC-SCR), a discharge method for supplying energy necessary for decomposition of nitrogen oxides by corona discharge or the like, and an adsorption method using an adsorbent for nitrogen oxides. Of these, the ammonia reduction method is often used for denitration technology for thermal power plants.

再生可能エネルギの普及に伴い電力系統の不安定化が懸念され、電力系統の負荷調整のために、火力発電所の運転方法の多様化が想定される。火力発電所の運転方法が多様化した場合、窒素酸化物(NOx)の組成変化や燃焼器から排出される燃焼排ガスの排出ガス温度が変化することが予想される。排出ガス温度が変化すると、窒素酸化物の反応性が大きく変化することが懸念される。   With the spread of renewable energy, there is a concern about the instability of the electric power system, and the operation method of the thermal power plant is expected to be diversified to adjust the load of the electric power system. When the operation method of a thermal power plant is diversified, it is expected that the composition change of nitrogen oxides (NOx) and the exhaust gas temperature of the combustion exhaust gas discharged from the combustor will change. When the exhaust gas temperature changes, there is a concern that the reactivity of nitrogen oxides changes greatly.

ところで、アンモニア接触還元法では、反応温度および窒素酸化物の組成が、その反応性に大きく影響を与えることが知られている。一般的に、窒素酸化物は低温での反応性が乏しく、ある最適な温度域で最も反応性が高くなり、さらに、より高温になった場合は再び反応性が低下する挙動が示されている。   By the way, in the ammonia catalytic reduction method, it is known that the reaction temperature and the composition of nitrogen oxides greatly affect the reactivity. Nitrogen oxides generally have low reactivity at low temperatures, exhibiting the highest reactivity at a certain optimum temperature range, and the behavior that the reactivity decreases again at higher temperatures. .

また、窒素酸化物(NOx)中の一酸化窒素(NO)と二酸化窒素(NO)の割合が変化した場合、アンモニアを用いた接触還元法の反応性も大きく変化する。一酸化窒素および二酸化窒素は1:1の割合のときに、還元効率が高く、窒素酸化物は最も優れた処理性能を示す。 Further, when the ratio of nitrogen monoxide (NO) and nitrogen dioxide (NO 2 ) in nitrogen oxide (NOx) changes, the reactivity of the catalytic reduction method using ammonia also changes greatly. When nitric oxide and nitrogen dioxide are in a ratio of 1: 1, the reduction efficiency is high, and nitrogen oxides exhibit the best processing performance.

現状では火力発電所の負荷変動運転に対応するためには、最適な触媒温度で運転できるように低温動作用触媒と高温使用触媒とを組み合せた脱硝触媒を脱硝装置が備えたものや、触媒層の温度変化に対応して排ガス流路を切り替える脱硝装置が提案されている。   At present, in order to cope with load fluctuation operation of thermal power plants, a denitration device equipped with a denitration catalyst that combines a low-temperature operation catalyst and a high-temperature use catalyst so that it can be operated at an optimum catalyst temperature, or a catalyst layer There has been proposed a denitration device that switches an exhaust gas flow path in response to a change in temperature.

また、脱硝触媒の前段に酸化触媒などを配置することで、一酸化窒素やアンモニア、硝酸を酸化し、窒素酸化物の組成を調整する脱硝装置、窒素酸化物(NOx)の組成に応じて異なる還元剤を供給する脱硝装置および低温で窒素酸化物(NOx)を吸着する層とアンモニアSCR触媒を組み合せた脱硝装置が提案されている。   In addition, by arranging an oxidation catalyst or the like in front of the denitration catalyst, it varies depending on the denitration device that oxidizes nitrogen monoxide, ammonia, nitric acid and adjusts the composition of nitrogen oxide, and the composition of nitrogen oxide (NOx) A denitration apparatus that supplies a reducing agent and a denitration apparatus that combines an ammonia SCR catalyst with a layer that adsorbs nitrogen oxide (NOx) at a low temperature have been proposed.

特表2009−538735号公報Special table 2009-538735 gazette 特開平10−15355号公報Japanese Patent Laid-Open No. 10-15355 特開2013−221466号公報JP 2013-221466 A 特開平6−319951号公報JP-A-6-319951 特開平8−103636号公報JP-A-8-103636 特開平8−266868号公報JP-A-8-266868 特開平9−94437号公報JP-A-9-94437 特開平5−245338号公報JP-A-5-245338 特表2006−519332号公報JP-T-2006-519332

火力発電所では、負荷変動運転に伴い、燃焼排ガス温度や排ガス中の窒素酸化物(NOx)組成が変化する。特に燃焼排ガス温度や排ガス中の窒素酸化物組成が一酸化窒素(NO)に較べ二酸化窒素(NO)が多くなるように変化した場合、脱硝装置内の脱硝触媒におけるNOとNOの還元効率が低いため、燃焼排ガス中の窒素酸化物を充分有効的に脱硝処理を行なうことが困難となる。 In a thermal power plant, the combustion exhaust gas temperature and the nitrogen oxide (NOx) composition in the exhaust gas change with load fluctuation operation. In particular, when the exhaust gas temperature and the nitrogen oxide composition in the exhaust gas change so that nitrogen dioxide (NO 2 ) increases compared to nitrogen monoxide (NO), the reduction efficiency of NO and NO 2 in the denitration catalyst in the denitration device Therefore, it is difficult to sufficiently effectively remove nitrogen oxides in the combustion exhaust gas.

また、従来の特許文献記載の脱硝技術の中には、脱硝装置内の活性温度域が異なる2種類の脱硝触媒の触媒層を設けたものがある。しかし、この脱硝装置は還元剤として炭化水素やアルコール等を使用し、燃焼排ガスの流れに対して上流側に低温用の脱硝触媒を配置し、その下流側の後段に高温用の脱硝触媒を配置した脱硝技術である。   In addition, among the conventional denitration techniques described in patent documents, there is one in which catalyst layers of two types of denitration catalysts having different activation temperature ranges in the denitration apparatus are provided. However, this denitration equipment uses hydrocarbons, alcohol, etc. as a reducing agent, arranges a low-temperature denitration catalyst upstream of the flow of combustion exhaust gas, and arranges a high-temperature denitration catalyst downstream of the downstream Denitration technology.

特許文献記載の脱硝技術は、燃焼排ガス中の窒素酸化物濃度や還元剤濃度が高い場合には有効であるが、火力発電所向け脱硝装置のように、燃焼器からの燃焼ガスでガスタービンを駆動したり、ボイラで仕事をしたり、積極的な熱交換により燃焼排ガス温度が低下する排ガス系では、燃焼排ガス中の窒素酸化物の脱硝処理を効率よく行なうことが困難で、充分な脱硝機能が得られない。   The denitration technology described in the patent literature is effective when the concentration of nitrogen oxides and reducing agent in the combustion exhaust gas is high. However, as with a denitration system for thermal power plants, a gas turbine is used with combustion gas from a combustor. In exhaust gas systems where the temperature of combustion exhaust gas decreases due to driving, working in a boiler, or active heat exchange, it is difficult to efficiently perform denitration treatment of nitrogen oxides in combustion exhaust gas, and sufficient denitration function Cannot be obtained.

本発明の実施形態は、上述した事情を考慮してなされたもので、還元剤にアンモニアを用いて、異なる動作温度で脱硝活性の高い複数種類の脱硝触媒により、燃焼排ガス中の窒素酸化物の脱硝処理を広い温度範囲で効率的に行なうことができる脱硝装置および窒素酸化物の処理方法を提供することを目的とする。   Embodiments of the present invention have been made in consideration of the above-described circumstances. Ammonia is used as a reducing agent, and a plurality of types of denitration catalysts having high denitration activity at different operating temperatures can be used to reduce nitrogen oxides in combustion exhaust gas. An object of the present invention is to provide a denitration apparatus and a nitrogen oxide treatment method that can efficiently perform a denitration treatment in a wide temperature range.

本発明の実施形態の他の目的は、還元剤に用いるアンモニアのロスが少なく、窒素酸化物の脱硝処理を広い温度範囲で還元効率よく実施でき、窒素酸化物の組成如何に関わらず、窒素酸化物の脱硝処理を効率的に行なうことができる火力発電所向け脱硝装置および窒素酸化物の処理方法を提供するものである。   Another object of the embodiment of the present invention is that there is little loss of ammonia used as the reducing agent, nitrogen oxide denitration treatment can be carried out efficiently over a wide temperature range, and nitrogen oxidation is performed regardless of the composition of the nitrogen oxide. The present invention provides a denitration apparatus and a nitrogen oxide treatment method for a thermal power plant that can efficiently perform denitration treatment of an object.

本発明の実施形態は、上述した課題を解決するために、還元剤にアンモニアを用いた脱硝装置において、前記脱硝装置の燃焼排ガス入口に対して上流側に、250℃以上の高温でアンモニアと窒素酸化物との反応を促進し、窒素と水に分解する機能を有する高温脱硝触媒を配置し、この高温脱硝触媒の下流側に250℃未満の低温からアンモニアと窒素酸化物の反応を促進し、窒素と水に分解する機能を有する低温脱硝触媒を配置したことを特徴とする脱硝装置である。   In order to solve the above-described problems, an embodiment of the present invention is a denitration apparatus using ammonia as a reducing agent. In the denitration apparatus, ammonia and nitrogen are heated at a high temperature of 250 ° C. or more upstream of the combustion exhaust gas inlet of the denitration apparatus. A high-temperature denitration catalyst having a function of accelerating the reaction with oxides and decomposing into nitrogen and water is disposed, and the reaction between ammonia and nitrogen oxides is promoted from a low temperature of less than 250 ° C. downstream of the high-temperature denitration catalyst, The denitration apparatus is characterized in that a low temperature denitration catalyst having a function of decomposing into nitrogen and water is arranged.

また、本発明の実施形態は、上述した課題を解決するために、還元剤にアンモニアを用いた脱硝装置において、前記脱硝装置の内部に、250℃以上の高温でアンモニアと窒素酸化物との反応を促進し、窒素と水に分解する機能を有する高温脱硝触媒と、250℃未満からアンモニアと二酸化窒素との反応を促進し、二酸化窒素を一酸化窒素に部分還元する機能を有する二酸化窒素部分還元触媒と、250℃未満からアンモニアと窒素酸化物の反応を促進し、窒素と水に分解する機能を有する低温脱硝触媒と、を配置したことを特徴とする脱硝装置である。   In order to solve the above-described problem, an embodiment of the present invention is a denitration apparatus using ammonia as a reducing agent. In the denitration apparatus, a reaction between ammonia and nitrogen oxides is performed at a high temperature of 250 ° C. or higher. High-temperature denitration catalyst that has the function of promoting nitrogen and decomposing into nitrogen and water, and the partial reduction of nitrogen dioxide that promotes the reaction between ammonia and nitrogen dioxide from less than 250 ° C. and that partially reduces nitrogen dioxide to nitrogen monoxide A denitration apparatus comprising: a catalyst; and a low-temperature denitration catalyst having a function of accelerating a reaction between ammonia and nitrogen oxide from below 250 ° C. and decomposing into nitrogen and water.

さらに、本発明の実施形態は、上述した課題を解決するために、還元剤にアンモニアを用いた脱硝装置において、前記脱硝装置の燃焼排ガス入口に対して上流側に250℃以上でアンモニアと窒素酸化物との反応を促進し、窒素と水に分解する機能を有する高温脱硝触媒を設置し、前記高温脱硝触媒の下流側に、250℃未満でアンモニアと二酸化窒素との反応を促進し、二酸化窒素を一酸化窒素に部分還元する機能を有する二酸化窒素部分還元触媒と、250℃未満でアンモニアと窒素酸化物の反応を促進し、窒素と水に分解する機能を有する低温脱硝触媒との触媒混合層を設置したことを特徴とする脱硝装置である。   Furthermore, in order to solve the above-described problem, an embodiment of the present invention provides a denitration apparatus using ammonia as a reducing agent, and oxidizes ammonia and nitrogen at 250 ° C. or higher upstream of the combustion exhaust gas inlet of the denitration apparatus. A high-temperature denitration catalyst having a function of promoting the reaction with the product and decomposing into nitrogen and water is installed, and the reaction between ammonia and nitrogen dioxide is promoted at a temperature lower than 250 ° C. downstream of the high-temperature denitration catalyst. Catalyst mixing layer of a nitrogen dioxide partial reduction catalyst having a function of partially reducing nitrogen monoxide to nitrogen monoxide, and a low-temperature denitration catalyst having a function of promoting the reaction of ammonia and nitrogen oxide at a temperature lower than 250 ° C. This is a denitration device characterized in that it is installed.

さらにまた、本発明の実施形態は、上述した課題を解決するために、還元剤にアンモニアを用いた脱硝装置において、前記脱硝装置の内部に、燃焼排ガス入口に対して最下流に配置される触媒層は、上流側の触媒層で未反応のアンモニア分解反応を促進させる脱硝触媒層であることを特徴とする脱硝装置である。   Furthermore, in order to solve the above-described problems, an embodiment of the present invention is a denitration apparatus using ammonia as a reducing agent, and a catalyst disposed in the most downstream with respect to the combustion exhaust gas inlet inside the denitration apparatus. The layer is a denitration catalyst layer that is a denitration catalyst layer that promotes an unreacted ammonia decomposition reaction in the upstream catalyst layer.

一方、本発明の実施形態は、上述した課題を解決するために、脱硝装置内で還元剤にアンモニアを用いて燃焼排ガス中の窒素酸化物を選択的還元処理する方法において、250℃以上の高温で脱硝活性の高い高温脱硝触媒を用いてアンモニアと窒素酸化物との反応を促進させて窒素と水に分解し、前記高温脱硝触媒層の下流側で、250℃未満で脱硝活性の高い低温脱硝触媒を用いてアンモニアと窒素酸化物の反応を促進させて窒素と水に分解することを特徴とする窒素酸化物の処理方法である。   On the other hand, in order to solve the above-described problem, an embodiment of the present invention is a method of selectively reducing nitrogen oxides in combustion exhaust gas using ammonia as a reducing agent in a denitration apparatus, and a high temperature of 250 ° C. or higher. The high temperature denitration catalyst having high denitration activity promotes the reaction between ammonia and nitrogen oxides and decomposes into nitrogen and water, and low temperature denitration with high denitration activity at less than 250 ° C. downstream of the high temperature denitration catalyst layer. It is a nitrogen oxide treatment method characterized in that the reaction between ammonia and nitrogen oxide is promoted using a catalyst to decompose into nitrogen and water.

さらに、本発明の実施形態は、上述した課題を解決するために、脱硝装置内で還元剤にアンモニアを用いて燃焼排ガス中の窒素酸化物を選択的還元処理する方法において、250℃以上の高温で脱硝活性の高い高温脱硝触媒を用いてアンモニアと窒素酸化物の反応を促進させて窒素と水に分解し、前記高温脱硝触媒の下流側で、250℃未満で活性が高く、二酸化窒素を一酸化窒素に部分還元させる二酸化窒素部分還元触媒と250℃未満で脱硝活性の高い低温脱硝触媒との触媒混合層により、前記二酸化窒素部分還元触媒で生成される一酸化窒素を前記低温脱硝触媒で迅速に脱硝反応処理し、窒素と水に分解することを特徴とする窒素酸化物の処理方法である。   Furthermore, in order to solve the above-described problem, an embodiment of the present invention is a method of selectively reducing nitrogen oxides in combustion exhaust gas using ammonia as a reducing agent in a denitration apparatus, and a high temperature of 250 ° C. or higher. The high temperature denitration catalyst having high denitration activity promotes the reaction between ammonia and nitrogen oxides and decomposes into nitrogen and water. At the downstream side of the high temperature denitration catalyst, the activity is high at less than 250 ° C. Nitrogen monoxide generated by the nitrogen dioxide partial reduction catalyst can be quickly produced by the low temperature denitration catalyst by the catalyst mixed layer of the nitrogen dioxide partial reduction catalyst to be partially reduced to nitrogen oxide and the low temperature denitration catalyst having high denitration activity at less than 250 ° C. A nitrogen oxide treatment method characterized in that it is denitrified and decomposed into nitrogen and water.

本発明の実施形態に係る脱硝装置は、還元剤にアンモニアを用いて異なる動作温度で脱硝活性の高い複数種類の脱硝触媒(少なくとも上流側の高温脱硝触媒と下流側の低温脱硝触媒)により、燃焼排ガス中の窒素酸化物を広い温度範囲に亘って脱硝処理を効率的に行ない、窒素と水に分解処理することができる。   The denitration apparatus according to the embodiment of the present invention uses ammonia as a reducing agent and burns by a plurality of types of denitration catalysts (at least upstream high temperature denitration catalyst and downstream low temperature denitration catalyst) having high denitration activity at different operating temperatures. Nitrogen oxides in exhaust gas can be efficiently denitrated over a wide temperature range and decomposed into nitrogen and water.

また、脱硝装置の内部に高温脱硝触媒と二酸化窒素部分還元触媒と低温脱硝触媒を設置することで、還元剤に用いるアンモニアのロスが少なく、窒素酸化物の組成如何に関わらず、窒素酸化物の脱硝処理を効率的に行なうことができる。   In addition, by installing a high-temperature denitration catalyst, a nitrogen dioxide partial reduction catalyst, and a low-temperature denitration catalyst inside the denitration device, there is little loss of ammonia used as a reducing agent, and regardless of the composition of nitrogen oxides, Denitration treatment can be performed efficiently.

本発明に係る第1実施形態を示す脱硝装置の構成図。The block diagram of the denitration apparatus which shows 1st Embodiment which concerns on this invention. 本発明に係る第2実施形態を示す脱硝装置の構成図。The block diagram of the denitration apparatus which shows 2nd Embodiment concerning this invention. 本発明に係る第3実施形態を示す脱硝装置の構成図。The block diagram of the denitration apparatus which shows 3rd Embodiment which concerns on this invention.

以下、本発明に係る実施の形態について、添付図面を参照して説明する。   Hereinafter, embodiments according to the present invention will be described with reference to the accompanying drawings.

火力発電所では、液化天然ガス、シェールガス、石炭ガス等を燃料とするガスタービン燃焼器から排出される燃焼排ガスをガスタービンに案内して仕事をしており、仕事をした燃焼排ガスは燃焼排ガス系の煙道を通って脱硝装置に導かれる。火力発電所向け脱硝装置には、還元剤としてアンモニア(NH)を用いるアンモニア接触還元法が多く用いられる。 In a thermal power plant, the flue gas discharged from a gas turbine combustor that uses liquefied natural gas, shale gas, coal gas, etc. as fuel is guided to the gas turbine, and the flue gas that has worked is the flue gas. It is led to the denitration device through the system flue. In a denitration apparatus for a thermal power plant, an ammonia catalytic reduction method using ammonia (NH 3 ) as a reducing agent is often used.

脱硝触媒として、Al,SiO,ZrO,TiOおよびゼオライトからなる群より選ばれる1種以上の担体、例えばハニカム担体に、Pt,Cu,Fe,Ag,Mn,Ni,Ti,Ni,ZiおよびInからなる群から選ばれた1種以上の金属を含有させたものが知られている。 As a denitration catalyst, one or more supports selected from the group consisting of Al 2 O 3 , SiO 2 , ZrO 2 , TiO 2 and zeolite, for example, a honeycomb support, Pt, Cu, Fe, Ag, Mn, Ni, Ti, One containing at least one metal selected from the group consisting of Ni, Zi and In is known.

脱硝触媒は、燃焼排ガス中の窒素酸化物(NOx)および還元剤としてのアンモニア(NH)との反応を加速し、以下に代表される脱硝反応を促進させ、窒素(N)と水(HO)に分解される。
[化1]
4NO+4NH+O → 4N+6HO ……反応式(1)
NO+NO+2NH → 2N+3HO ……反応式(2)
6NO+8NH → 7N+12HO ……反応式(3)
The denitration catalyst accelerates a reaction with nitrogen oxide (NOx) in combustion exhaust gas and ammonia (NH 3 ) as a reducing agent, promotes a denitration reaction represented by the following, and nitrogen (N 2 ) and water ( To H 2 O).
[Chemical 1]
4NO + 4NH 3 + O 2 → 4N 2 + 6H 2 O ... Reaction formula (1)
NO + NO 2 + 2NH 3 → 2N 2 + 3H 2 O... (2)
6NO 2 + 8NH 3 → 7N 2 + 12H 2 O (reaction formula (3))

また、脱硝反応は若干の温度上昇を伴い、副反応としてアンモニア分解反応を促進する可能性がある。アンモニア分解反応は一般的に脱硝反応に適した温度域より高温で進行する。
[化2]
4NH+3O → 2N+6HO ……反応式(4)
4NH+5O → 4NO+6HO ……反応式(5)
2NH+2O → NO+3HO ……反応式(6)
Further, the denitration reaction is accompanied by a slight increase in temperature and may promote the ammonia decomposition reaction as a side reaction. The ammonia decomposition reaction generally proceeds at a temperature higher than the temperature range suitable for the denitration reaction.
[Chemical formula 2]
4NH 3 + 3O 2 → 2N 2 + 6H 2 O ... Reaction formula (4)
4NH 3 + 5O 2 → 4NO + 6H 2 O (5)
2NH 3 + 2O 2 → N 2 O + 3H 2 O ... Reaction formula (6)

火力発電所では、燃料の燃焼に伴い発生するNOxの処理技術として、窒素酸化物(NOx)を窒素と水に分解する脱硝技術が、脱硝装置により行なわれる。   In a thermal power plant, a denitration technique for decomposing nitrogen oxides (NOx) into nitrogen and water is performed by a denitration apparatus as a technique for treating NOx generated by the combustion of fuel.

[第1の実施形態]
図1は、脱硝装置の第1の実施形態を示す構成図である。この火力発電所向け脱硝装置は、脱硝装置10内部に高温脱硝触媒Aと低温脱硝触媒Bとを組み合せた構成例を示す。火力発電所では、ガスタービン燃焼器等の燃焼器11からの燃焼排ガスは、図示しないガスタービンで仕事をした後、煙道12を通って脱硝装置10に案内される。脱硝装置10に至る煙道12もしくは脱硝装置10、すなわち、脱硝装置10の燃焼排ガス入口側には、NOxの還元剤を供給する還元剤供給手段13が設けられる。還元剤供給手段13はNOxの還元剤として、例えばアンモニア(NH)を供給するようになっている。還元剤供給手段13は還元剤であるアンモニアの発生源として尿素、水酸化アンモニウム、蟻酸アンモニウムおよび他の窒素含有物質を用いることができる。
[First Embodiment]
FIG. 1 is a configuration diagram showing a first embodiment of a denitration apparatus. This denitration device for a thermal power plant shows a configuration example in which a high-temperature denitration catalyst A and a low-temperature denitration catalyst B are combined in the denitration device 10. In a thermal power plant, combustion exhaust gas from a combustor 11 such as a gas turbine combustor is guided to a denitration device 10 through a flue 12 after working with a gas turbine (not shown). On the flue 12 leading to the denitration device 10 or the denitration device 10, that is, on the combustion exhaust gas inlet side of the denitration device 10, a reducing agent supply means 13 for supplying a NOx reducing agent is provided. The reducing agent supply means 13 supplies, for example, ammonia (NH 3 ) as a NOx reducing agent. The reducing agent supply means 13 can use urea, ammonium hydroxide, ammonium formate and other nitrogen-containing substances as a generation source of ammonia as a reducing agent.

脱硝装置10で燃焼排ガス中のNOxを脱硝処理した排ガスは煙道15を通り排ガス設備または煙突16に案内される。排ガス設備で脱硫作用や集塵等の排ガス処理を行ない、煙突から大気中に放出される。20万kWクラスの火力発電所では燃焼器11から排出される燃焼排ガス量は、例えば約26,000m/min程度の多量である。 The exhaust gas obtained by removing NOx in the combustion exhaust gas by the denitration device 10 passes through the flue 15 and is guided to the exhaust gas facility or chimney 16. The exhaust gas equipment performs exhaust gas treatment such as desulfurization and dust collection, and it is released from the chimney into the atmosphere. In a 200,000 kW class thermal power plant, the amount of flue gas discharged from the combustor 11 is a large amount of about 26,000 m 3 / min, for example.

ところで、脱硝装置10には、NOxとの脱硝反応の活性温度域が異なる少なくとも2種類の脱硝触媒層、例えば高温脱硝触媒層17と低温脱硝触媒層18とが配置される。高温脱硝触媒層17は燃焼排ガス流れに対して上流側に配置され、その下流側に低温脱硝触媒層18が配置される。高温脱硝触媒Aは、250℃以上の高温で燃焼排ガス中の窒素酸化物(NOx)と還元剤のNHの反応を促進させて窒素と水に分解する機能を有する。低温脱硝触媒Bは250℃未満の低温で窒素酸化物とアンモニアの反応を促進し、窒素と水に分解する機能を有する。 By the way, the denitration apparatus 10 is provided with at least two types of denitration catalyst layers, for example, a high temperature denitration catalyst layer 17 and a low temperature denitration catalyst layer 18, which are different in the activation temperature range of the denitration reaction with NOx. The high temperature denitration catalyst layer 17 is disposed upstream of the combustion exhaust gas flow, and the low temperature denitration catalyst layer 18 is disposed downstream thereof. The high-temperature denitration catalyst A has a function of promoting the reaction of nitrogen oxide (NOx) in the combustion exhaust gas and NH 3 as the reducing agent to decompose into nitrogen and water at a high temperature of 250 ° C. or higher. The low-temperature denitration catalyst B has a function of promoting the reaction between nitrogen oxides and ammonia at a low temperature of less than 250 ° C. and decomposing into nitrogen and water.

高温脱硝触媒層17は250℃以上の高温で脱硝活性の高いアンモニア接触還元触媒の高温脱硝触媒Aが用いられ、低温脱硝触媒層18には、250℃未満の低温で脱硝活性が高いアンモニア接触還元触媒の低温脱硝触媒Bが用いられる。   The high temperature denitration catalyst layer 17 is a high temperature denitration catalyst A which is an ammonia catalytic reduction catalyst having a high denitration activity at a high temperature of 250 ° C. or higher, and the low temperature denitration catalyst layer 18 is an ammonia catalytic reduction having a high denitration activity at a low temperature of less than 250 ° C. A low-temperature denitration catalyst B of the catalyst is used.

高温脱硝触媒層17に用いられる250℃以上の高温域で脱硝活性が高い高温脱硝触媒Aには、例えばAl,SiO,V,ZrO,TiOおよびゼオライトからなる群より選ばれた複数種の担体、例えばハニカム担体に、Cu,Mo,Mn,Fe,TiおよびVからなる群より選ばれた金属を含有させたものが用いられる。 The high temperature denitration catalyst A used for the high temperature denitration catalyst layer 17 and having high denitration activity in a high temperature range of 250 ° C. or higher includes, for example, a group consisting of Al 2 O 3 , SiO 2 , V 2 O 5 , ZrO 2 , TiO 2 and zeolite. A plurality of types of carriers selected, for example, a honeycomb carrier containing a metal selected from the group consisting of Cu, Mo, Mn, Fe, Ti, and V is used.

また、250℃未満の低温域で脱硝活性が高い低温脱硝触媒Bには、例えばAl,SiO,V,ZrO,TiOおよびゼオライトからなる群より選ばれた複数種の担体(例えばハニカム担体)に、Ag,Ti,Vから選ばれた1つ以上の金属を含有させたものが用いられる。例えば、Agを担持したゼオライト、Vが用いられる。 In addition, the low temperature denitration catalyst B having high denitration activity in a low temperature region of less than 250 ° C. includes, for example, a plurality of types selected from the group consisting of Al 2 O 3 , SiO 2 , V 2 O 5 , ZrO 2 , TiO 2 and zeolite. A support (for example, a honeycomb support) containing one or more metals selected from Ag, Ti, and V is used. For example, Ag-supported zeolite, V 2 O 5 is used.

一方、火力発電所の負荷変動運転に伴い、煙道12出口側または脱硝装置10の燃焼排ガス入口側での燃焼排ガス温度は130℃〜400℃の温度範囲で変動し、通常運転時では排ガス温度は例えば400℃程度となって、脱硝装置10に送られ、脱硝装置10で排ガス中のNOxは脱硝処理される。脱硝装置10では、高温脱硝触媒層17および低温脱硝触媒層18を通る間に排ガス中のNOxは、還元剤のNHとの選択的接触還元(SCR)が行なわれて、反応式(1),(2)および(3)に代表される脱硝反応が促進される。脱硝装置10内の高温脱硝触媒層17および低温脱硝触媒層18には、燃焼排ガス中の窒素酸化物(NOx)からNOとNOを除去する高温および低温脱硝触媒A,Bの触媒層が用いられる。 On the other hand, with the load fluctuation operation of the thermal power plant, the flue gas temperature at the flue 12 outlet side or the flue gas inlet side of the denitration apparatus 10 fluctuates in a temperature range of 130 ° C. to 400 ° C., and during normal operation, the exhaust gas temperature Is, for example, about 400 ° C., and is sent to the denitration apparatus 10, where NOx in the exhaust gas is denitrated. In the denitration apparatus 10, the NOx in the exhaust gas undergoes selective catalytic reduction (SCR) with the reducing agent NH 3 while passing through the high temperature denitration catalyst layer 17 and the low temperature denitration catalyst layer 18, and the reaction formula (1) , (2) and (3), the denitration reaction is promoted. As the high temperature denitration catalyst layer 17 and the low temperature denitration catalyst layer 18 in the denitration apparatus 10, catalyst layers of high temperature and low temperature denitration catalysts A and B that remove NO and NO 2 from nitrogen oxide (NOx) in combustion exhaust gas are used. It is done.

このうち、250℃以上の燃焼排ガス中のNOxは、高温脱硝触媒層17を通る間に250℃以上の高温域で脱硝活性の高い高温脱硝触媒Aにより、90%以上のNOxは反応式(1)〜(3)で示す脱硝反応が行なわれ、アンモニアと窒素酸化物との反応が促進されて窒素と水に分解される。また、副反応としての反応式(4)で示されるアンモニア分解反応が生じて、窒素と水等に分解される。高温脱硝触媒層17を通った残りの排ガス中のNOxは、低温脱硝触媒層18に導かれ、ここで250℃未満の低温域で脱硝活性の高い低温脱硝触媒Bにより、再び脱硝反応が実施され、アンモニアと窒素酸化物との反応が促進されて窒素と水に分解される。   Of these, NOx in the combustion exhaust gas at 250 ° C. or higher passes through the high temperature denitration catalyst layer 17, and 90% or more of NOx is expressed by the reaction formula (1) by the high temperature denitration catalyst A having high denitration activity in a high temperature range of 250 ° C. or higher. ) To (3) are performed, and the reaction between ammonia and nitrogen oxides is promoted and decomposed into nitrogen and water. In addition, an ammonia decomposition reaction represented by the reaction formula (4) as a side reaction occurs and is decomposed into nitrogen and water. The NOx in the remaining exhaust gas that has passed through the high-temperature denitration catalyst layer 17 is guided to the low-temperature denitration catalyst layer 18, where the denitration reaction is again performed by the low-temperature denitration catalyst B having high denitration activity in a low-temperature region of less than 250 ° C. The reaction between ammonia and nitrogen oxides is accelerated and decomposed into nitrogen and water.

脱硝装置10でNOxが処理された排ガスは、100℃程度の温度となって煙道15に導かれ、煙道15を通って排ガス設備または煙突16に排出される。排ガス設備では脱硫や集塵、白煙発生防止等の排ガス処理が行なわれ、煙突から大気中に放出される。   The exhaust gas that has been treated with NOx in the denitration apparatus 10 reaches a temperature of about 100 ° C., is led to the flue 15, passes through the flue 15, and is discharged to the exhaust gas facility or chimney 16. In the exhaust gas facility, exhaust gas treatment such as desulfurization, dust collection, and white smoke prevention is performed, and the exhaust gas is discharged into the atmosphere from the chimney.

脱硝装置10の内部には、高温脱硝触媒層17と低温脱硝触媒層18とが燃焼排ガス流れに対して上流側および下流側にそれぞれ配置される。高温脱硝触媒層17と低温脱硝触媒層18とをこの順序で配置することで、燃焼排ガス温度および触媒層温度が250℃未満、例えば200℃の低い状態では、燃焼排ガス中の窒素酸化物(NOx)およびアンモニアが大部分高温脱硝触媒層17を未反応のまま通過し、下流側にある低温脱硝触媒層18に送られ、ここで脱硝反応が進められる。燃焼排ガス温度および触媒層温度が例えば250℃以上の高温状態では、高温脱硝触媒層17で燃焼排ガス中のNOxおよびアンモニアが反応し、窒素と水に分解する脱硝反応が進行し、副反応でアンモニア分解反応が生じている。   Inside the denitration apparatus 10, a high-temperature denitration catalyst layer 17 and a low-temperature denitration catalyst layer 18 are disposed upstream and downstream of the combustion exhaust gas flow, respectively. By disposing the high-temperature denitration catalyst layer 17 and the low-temperature denitration catalyst layer 18 in this order, when the combustion exhaust gas temperature and the catalyst layer temperature are lower than 250 ° C., for example, 200 ° C., nitrogen oxide (NOx) in the combustion exhaust gas. ) And ammonia mostly pass through the high-temperature denitration catalyst layer 17 unreacted and are sent to the low-temperature denitration catalyst layer 18 on the downstream side, where the denitration reaction proceeds. In a high temperature state where the combustion exhaust gas temperature and the catalyst layer temperature are, for example, 250 ° C. or higher, NOx and ammonia in the combustion exhaust gas react with each other in the high temperature denitration catalyst layer 17 and a denitration reaction that decomposes into nitrogen and water proceeds. Decomposition reaction has occurred.

脱硝装置10は、上流側に高温脱硝触媒層17を、下流側に低温脱硝触媒層18をそれぞれ配置することで、燃焼排ガス中の窒素酸化物の脱硝反応を促進して窒素と水に分解処理することができる。このため、反応式(5),(6)の反応進行による窒素酸化物(NO,NO)の増加を抑制することができる。 The denitration apparatus 10 has a high temperature denitration catalyst layer 17 on the upstream side and a low temperature denitration catalyst layer 18 on the downstream side, thereby promoting the denitration reaction of nitrogen oxides in the combustion exhaust gas and decomposing it into nitrogen and water. can do. For this reason, the increase in nitrogen oxides (NO, N 2 O) due to the progress of the reactions in the reaction formulas (5) and (6) can be suppressed.

脱硝装置10の内部を高温脱硝触媒層単独で用いた場合には、燃焼排ガス等が200℃以下の低温では脱硝反応が生じない未反応状態が生じたり、低温脱硝触媒層単独で用いた場合には、300℃以上の高温ではアンモニア分解反応が加速し、供給した還元剤であるアンモニアが脱硝反応に充分寄与できなくなることに加え、反応式(5),(6)の反応進行により窒素酸化物(一酸化窒素(NO)や亜酸化窒素(NO))の増加が生じる虞がある。 When the inside of the denitration device 10 is used with a high temperature denitration catalyst layer alone, when the combustion exhaust gas or the like is in a non-reacted state where the denitration reaction does not occur at a low temperature of 200 ° C. or less, or when the low temperature denitration catalyst layer is used alone. In addition to the fact that the ammonia decomposition reaction accelerates at a high temperature of 300 ° C. or higher and the supplied reducing agent, ammonia, cannot sufficiently contribute to the denitration reaction, the reaction of the reaction formulas (5) and (6) advances the nitrogen oxides. There is a risk of an increase in (nitrogen monoxide (NO) or nitrous oxide (N 2 O)).

ところで、燃焼排ガス温度が200℃以下の低温では高温脱硝触媒層17は脱硝反応は殆ど生じず、200℃〜250℃未満の排ガス温度ではNOxの脱硝反応は10%弱程度しか生じない。この場合、窒素酸化物の脱硝処理は、下流側の低温脱硝触媒層18で行なわれる。   By the way, the denitration reaction hardly occurs in the high temperature denitration catalyst layer 17 at a low temperature of the combustion exhaust gas temperature of 200 ° C. or less, and the NOx denitration reaction occurs only about less than 10% at the exhaust gas temperature of 200 ° C. to less than 250 ° C. In this case, the denitration treatment of nitrogen oxide is performed in the low temperature denitration catalyst layer 18 on the downstream side.

また、脱硝装置10内で高温脱硝触媒層17と低温脱硝触媒層18の配置順序と逆転させた場合には、低温脱硝触媒B層単独で用いた場合とほぼ同様となり、後流側に配置した高温脱硝触媒Aで脱硝反応を機能させるためには、高温脱硝触媒Aの直前にアンモニア供給機構を追加するなどの処理が必要となる。   Further, when the arrangement order of the high-temperature denitration catalyst layer 17 and the low-temperature denitration catalyst layer 18 is reversed in the denitration apparatus 10, it is almost the same as the case where the low-temperature denitration catalyst B layer is used alone, and is arranged on the downstream side. In order for the high-temperature denitration catalyst A to function in the denitration reaction, a process such as adding an ammonia supply mechanism immediately before the high-temperature denitration catalyst A is required.

また、火力発電所は、燃料にLNGを使用した場合には、燃焼器11からの燃焼排ガスは、比較的清浄な排ガスであるために、脱硝装置10の下流側に設けられる排ガス設備に電気集塵機や脱硫装置を必ずしも備える必要はなく、脱硝装置10から排出される燃焼排ガス温度は煙道15を通る間に100℃以下に温度降下し、凝縮して生じた水(水蒸気)が白煙化するため、排ガス温度を例えば120℃程度に加熱する加熱装置が設けられる。この加熱装置により燃焼排ガスの白煙化を防止することができる。   Further, when the thermal power plant uses LNG as the fuel, the combustion exhaust gas from the combustor 11 is a relatively clean exhaust gas, and therefore, an electrostatic precipitator is installed in the exhaust gas facility provided on the downstream side of the denitration apparatus 10. It is not always necessary to provide a desulfurization device, and the temperature of the flue gas discharged from the denitration device 10 drops to 100 ° C. or less while passing through the flue 15, and the water (steam) generated by condensation turns into white smoke. Therefore, a heating device for heating the exhaust gas temperature to about 120 ° C. is provided. This heating device can prevent the combustion exhaust gas from becoming white smoke.

燃料に石炭ガスや石炭、あるいはシェールガスを用いる場合には、燃焼排ガス中に硫黄(S)分やスス等が含まれるために、排ガス設備には、電気集塵機等の集塵装置や硫黄分を除去する脱硫装置、加熱装置による白煙防止装置が備えられる。   When coal gas, coal, or shale gas is used as fuel, the exhaust gas equipment contains sulfur (S), soot, etc., so the exhaust gas equipment must be equipped with a dust collector such as an electric dust collector or sulfur. A desulfurization device for removal and a white smoke prevention device by a heating device are provided.

さらに、例えば20万kWクラスの火力発電所向け脱硝装置10では、運転時に、例えば約26,000m/minの燃焼排ガス量を処理するため、脱硝装置10の高温脱硝触媒層17や低温脱硝触媒層18には、多量の排ガス流量を通過させる偏平なハニカム構造の脱硝触媒層17,18が用いられる。脱硝触媒層17,18は、例えば、排ガス流の流れ方向に1m以下、例えば数10cmの厚さで、表面積(縦、横方向長さ)が数m×10数m程度の偏平立体構造に構成される。 Further, for example, in the denitration apparatus 10 for a thermal power plant of 200,000 kW class, a high temperature denitration catalyst layer 17 or a low temperature denitration catalyst of the denitration apparatus 10 is processed in order to process a combustion exhaust gas amount of about 26,000 m 3 / min during operation. As the layer 18, denitration catalyst layers 17 and 18 having a flat honeycomb structure that allows a large amount of exhaust gas flow to pass therethrough are used. The denitration catalyst layers 17 and 18 are configured in a flat three-dimensional structure having a thickness of, for example, 1 m or less in the exhaust gas flow direction, for example, several tens of centimeters, and a surface area (length in the vertical and horizontal directions) of about several m × 10 several m. Is done.

[第1の実施形態の効果]
第1の実施形態では、脱硝装置10内の上流側に250℃以上の高温で燃焼排ガス中の窒素酸化物とアンモニアとの反応を促進し、無害の窒素と水とに分解する機能を有する高温脱硝触媒Aと、下流側に250℃未満の低温で排ガス中の窒素酸化物と還元剤のアンモニアとの反応を促進し、無害の窒素と水とに分解する機能を有する低温脱硝触媒Bとを設置したので、広い温度範囲に亘り排ガス中の窒素酸化物を脱硝装置10内で脱硝反応を効果的に行ない、無害の窒素と水とを分解する環境浄化機能を果すことができる。
[Effect of the first embodiment]
In the first embodiment, the upstream side in the denitration apparatus 10 promotes the reaction between nitrogen oxides and ammonia in the combustion exhaust gas at a high temperature of 250 ° C. or higher, and has a function of decomposing into harmless nitrogen and water. A denitration catalyst A and a low-temperature denitration catalyst B having a function of promoting the reaction between nitrogen oxides in exhaust gas and ammonia as a reducing agent at a low temperature of less than 250 ° C. and decomposing into harmless nitrogen and water on the downstream side Since it is installed, it is possible to effectively perform a denitration reaction of nitrogen oxides in exhaust gas over a wide temperature range in the denitration apparatus 10 and to perform an environment purification function of decomposing harmless nitrogen and water.

また、脱硝装置10内の上流側で250℃以上の脱硝活性の高い高温脱硝触媒Aと、下流側で250℃未満で脱硝活性の高い低温脱硝触媒Bとを配置したので、低温から高温に至る燃焼排ガスの幅広い温度範囲で、排ガス中の窒素酸化物(NOx)と還元剤のアンモニアとの反応を促進し、無害の窒素と水とに分解して環境を浄化させる一方、排ガス温度が200℃以上の温度でアンモニア分解反応を加速し、無害の窒素と水とに分解させることができる。   In addition, since the high temperature denitration catalyst A having a high denitration activity of 250 ° C. or higher and the low temperature denitration catalyst B having a high denitration activity of less than 250 ° C. are arranged on the downstream side in the denitration apparatus 10, the temperature ranges from low to high. In a wide temperature range of combustion exhaust gas, it promotes the reaction of nitrogen oxide (NOx) in the exhaust gas with ammonia as the reducing agent, decomposes it into harmless nitrogen and water and purifies the environment, while the exhaust gas temperature is 200 ° C The ammonia decomposition reaction can be accelerated at the above temperature and decomposed into harmless nitrogen and water.

さらに、脱硝装置10の下流側の煙道に接続される排ガス設備に集塵装置や燃焼排ガス温度を100℃以上、例えば120℃程度に加熱する加熱装置を設けたので、燃焼排ガス処理で発生した水が凝縮して白煙が発生するのを防止することができる。   Furthermore, the exhaust gas equipment connected to the flue downstream of the denitration device 10 is provided with a dust collector and a heating device that heats the combustion exhaust gas temperature to 100 ° C. or higher, for example, about 120 ° C. It is possible to prevent water from condensing and generating white smoke.

[第2の実施形態]
図2は、脱硝装置の第2の実施形態を示すものである。
第2の実施形態に係る火力発電所向け脱硝装置は、第1の実施形態と比較して脱硝装置10A内部に配置される触媒層が増加した構成が異なり、他の構成は第1の実施形態に示された火力発電所向け脱硝装置10と異ならないので、同じ構成には同一符号を付して重複する説明は省略ないし簡素化する。
[Second Embodiment]
FIG. 2 shows a second embodiment of the denitration apparatus.
The denitration device for a thermal power plant according to the second embodiment is different from the first embodiment in the configuration in which the number of catalyst layers disposed inside the denitration device 10A is increased, and other configurations are the same as those in the first embodiment. Therefore, the same components are denoted by the same reference numerals and redundant description is omitted or simplified.

第2の実施形態の火力発電所向け脱硝装置は、脱硝装置10Aの内部に高温脱硝触媒層17と二酸化窒素部分還元触媒層20と低温脱硝触媒層18との3つの触媒層を組み合せた構成例としたものである。脱硝装置10Aの内部には上流側から高温脱硝触媒層17、二酸化窒素部分還元触媒層20、低温脱硝触媒層18の順で順次配置される。各触媒層17,20および18は、偏平な立体構造に構成されている。   The denitration apparatus for a thermal power plant of the second embodiment is a configuration example in which three catalyst layers of a high-temperature denitration catalyst layer 17, a nitrogen dioxide partial reduction catalyst layer 20, and a low-temperature denitration catalyst layer 18 are combined inside the denitration apparatus 10A. It is what. Inside the denitration apparatus 10A, a high temperature denitration catalyst layer 17, a nitrogen dioxide partial reduction catalyst layer 20, and a low temperature denitration catalyst layer 18 are sequentially arranged from the upstream side. Each of the catalyst layers 17, 20, and 18 has a flat three-dimensional structure.

高温脱硝触媒層17と低温脱硝触媒層18には、第1の実施形態に示された脱硝装置10の高温および低温脱硝触媒層17,18と同じ高温および低温の脱硝触媒A,Bが用いられる。二酸化窒素部分還元触媒層20には、例えばCu,Mn,Feから選択された金属を担持したゼオライトからなる二酸化窒素部分還元触媒Cが用いられる。   The high-temperature denitration catalyst layer 17 and the low-temperature denitration catalyst layer 18 use the same high-temperature and low-temperature denitration catalysts A and B as the high-temperature and low-temperature denitration catalyst layers 17 and 18 of the denitration apparatus 10 shown in the first embodiment. . For the nitrogen dioxide partial reduction catalyst layer 20, for example, a nitrogen dioxide partial reduction catalyst C made of zeolite carrying a metal selected from Cu, Mn, and Fe is used.

図2に示された脱硝装置10Aは、脱硝装置10Aへの燃焼排ガス入口に対して上流側の第1層目に250℃以上の高温で燃焼排ガス中のNOxとアンモニア(NH)の反応を促進し、窒素と水に分解する機能を有する高温脱硝触媒Aと、第2層目に配置された二酸化窒素部分還元触媒Cと最終層に配置され、250℃未満の低温で排ガス中のNOxとアンモニアの脱硝反応を促進し、窒素と水に分解する機能を有する低温脱硝触媒Bとを有する。 The denitration apparatus 10A shown in FIG. 2 reacts NOx and ammonia (NH 3 ) in the flue gas at a high temperature of 250 ° C. or higher in the first layer upstream of the flue gas inlet to the denitration apparatus 10A. A high-temperature denitration catalyst A having a function of promoting and decomposing into nitrogen and water, a nitrogen dioxide partial reduction catalyst C arranged in the second layer, and a NOx in the exhaust gas at a low temperature of less than 250 ° C. It has a low-temperature denitration catalyst B that promotes the denitration reaction of ammonia and decomposes into nitrogen and water.

第2層目に配置された二酸化窒素部分還元触媒層22は、250℃未満の温度でアンモニアと水酸化窒素の部分還元反応を促進し、二酸化窒素(NO)を一酸化窒素(NO)に部分還元する機能を有する。 The nitrogen dioxide partial reduction catalyst layer 22 disposed in the second layer promotes the partial reduction reaction of ammonia and nitrogen hydroxide at a temperature of less than 250 ° C., and converts nitrogen dioxide (NO 2 ) into nitrogen monoxide (NO). Has the function of partial reduction.

二酸化窒素部分還元触媒Cは、燃焼排ガス中の二酸化窒素および還元剤として供給されるアンモニアとの反応を加速し、反応式(7)で示される部分還元反応の促進により一酸化窒素を生成する。
[化3]
3NO+2NH → 3NO+N+3HO ……反応式(7)
The nitrogen dioxide partial reduction catalyst C accelerates the reaction between nitrogen dioxide in the combustion exhaust gas and ammonia supplied as a reducing agent, and generates nitrogen monoxide by promoting the partial reduction reaction represented by the reaction formula (7).
[Chemical formula 3]
3NO 2 + 2NH 3 → 3NO + N 2 + 3H 2 O (7)

第2の実施形態で示されたように、脱硝装置10Aに各触媒層17,20,18をこの順に配置することにより、第1の実施形態に記載された脱硝効果に加え、一酸化窒素(NO)に対して二酸化窒素(NO)の割合が高い状態において、窒素酸化物(NOx)組成であるNOとNOの割合を1:1に近い環境に整えることが可能となる。NOとNOの割合を1:1に整合させることにより、NOとNOの還元効率を向上させ、脱硝反応を効率よく行なうことができる。 As shown in the second embodiment, by arranging the catalyst layers 17, 20, and 18 in this order in the denitration apparatus 10A, in addition to the denitration effect described in the first embodiment, nitric oxide ( In a state in which the ratio of nitrogen dioxide (NO 2 ) to NO) is high, the ratio of NO and NO 2 , which is a nitrogen oxide (NOx) composition, can be adjusted to an environment close to 1: 1. By matching the ratio of NO and NO 2 to 1: 1, the reduction efficiency of NO and NO 2 can be improved and the denitration reaction can be performed efficiently.

ところで、二酸化窒素部分還元触媒Cは、200℃を超えて高温になった場合に、NHの分解反応を加速する可能性がある。このため、二酸化窒素部分還元触媒Cを高温脱硝触媒A前段に設置すると脱硝反応に寄与するアンモニア量の低下および反応式(5),(6)の反応進行により窒素酸化物であるNOとNOとが増加することが生じる。しかし、二酸化窒素部分還元触媒Cを高温脱硝触媒層17の後段(下流)側に設置することにより、脱硝反応が促進されるので、反応式(5),(6)によるアンモニア分解反応しても、窒素酸化物(NO,NO)の増加を抑制することができる。 By the way, the nitrogen dioxide partial reduction catalyst C has a possibility of accelerating the decomposition reaction of NH 3 when the temperature becomes higher than 200 ° C. For this reason, when the nitrogen dioxide partial reduction catalyst C is installed in the front stage of the high-temperature denitration catalyst A, NO and NO 2 that are nitrogen oxides are reduced due to a decrease in the amount of ammonia that contributes to the denitration reaction and reaction progress of the reaction equations (5) and (6) And increase. However, by installing the nitrogen dioxide partial reduction catalyst C on the downstream (downstream) side of the high-temperature denitration catalyst layer 17, the denitration reaction is promoted, so that the ammonia decomposition reaction according to the reaction formulas (5) and (6) can be performed. In addition, an increase in nitrogen oxides (NO, NO 2 ) can be suppressed.

また、低温脱硝触媒Bより後段に二酸化窒素部分還元触媒Cを配置した場合には、二酸化窒素部分還元触媒Cで二酸化窒素酸化物のNOとNOの割合を整えた後に、脱硝反応を促進させる触媒層(低温脱硝触媒層)が存在せず、脱硝反応が充分に進行しなくなる虞がある。 Further, when the nitrogen dioxide partial reduction catalyst C is arranged downstream from the low-temperature denitration catalyst B, the nitrogen dioxide partial reduction catalyst C adjusts the ratio of nitrogen dioxide oxide NO and NO 2 and then promotes the denitration reaction. There is a possibility that the catalyst layer (low-temperature denitration catalyst layer) does not exist and the denitration reaction does not proceed sufficiently.

したがって、脱硝装置10A内部で上流側の高温脱硝触媒層17と下流側の低温脱硝触媒層18との間に、中間層として二酸化窒素部分還元触媒層20を設置する配置とすることで、NOに対してNOの割合が高い状態においても、NOとNOとの割合を1:1の環境に整えることができる。このNOとNOの割合整合化により、低温脱硝触媒層18での脱硝反応を充分に効率よく進行させ、脱硝反応を良好にすることができる。 Therefore, by arranging the nitrogen dioxide partial reduction catalyst layer 20 as an intermediate layer between the upstream high-temperature denitration catalyst layer 17 and the downstream low-temperature denitration catalyst layer 18 inside the denitration apparatus 10A, NO is disposed. Even in a state where the ratio of NO 2 is high, the ratio of NO and NO 2 can be adjusted to a 1: 1 environment. By matching the proportions of NO and NO 2 , the denitration reaction in the low-temperature denitration catalyst layer 18 can proceed sufficiently efficiently, and the denitration reaction can be improved.

[第2の実施形態の効果]
第2の実施形態の脱硝装置10Aは、第1の実施形態で示された脱硝装置10の効果に加えて、脱硝装置10Aの内部に二酸化窒素部分還元触媒層20を中間層として配置したので、二酸化窒素の割合が一酸化窒素に較べて多い場合にも、NO部分還元反応によりNOとNOとの割合を1:1の環境に整合化させて、NOとNOの還元効率を向上させることができ、後流側での低温脱硝触媒層18での脱硝反応が良好となる。
[Effects of Second Embodiment]
In addition to the effects of the denitration apparatus 10 shown in the first embodiment, the denitration apparatus 10A of the second embodiment has the nitrogen dioxide partial reduction catalyst layer 20 disposed as an intermediate layer inside the denitration apparatus 10A. even when the proportion of nitrogen dioxide is often compared to nitric oxide, the ratio of NO and NO 2 by NO 2 partial reduction 1: in alignment into one environment, improving the reduction efficiency of NO and NO 2 Therefore, the denitration reaction at the low-temperature denitration catalyst layer 18 on the downstream side becomes good.

また、脱硝装置10A内に燃焼排ガスの上流側から下流側に高温脱硝触媒層17、二酸化窒素部分還元触媒層20、低温脱硝触媒層18を順次配設し、3つの触媒層17,20,18を組み合せて構成したので、各触媒層17,20,18は独立して設置されており、個々の触媒層17,20,18のメンテナンスが容易となる。   Further, a high temperature denitration catalyst layer 17, a nitrogen dioxide partial reduction catalyst layer 20, and a low temperature denitration catalyst layer 18 are sequentially disposed in the denitration apparatus 10A from the upstream side to the downstream side of the combustion exhaust gas, and three catalyst layers 17, 20, 18 are arranged. Since the catalyst layers 17, 20, and 18 are installed independently, maintenance of the individual catalyst layers 17, 20, and 18 is facilitated.

[第3の実施形態]
脱硝装置の第3の実施形態を、図3を参照して説明する。
第3の実施形態に示される火力発電所向け脱硝装置は、脱硝装置10Bの内部に、高温脱硝触媒Aと二酸化窒素部分還元触媒Cと低温脱硝触媒Bとを組み合せた混合触媒Dとを備える。第1の実施形態に示された脱硝装置10と比較して、脱硝装置10Bの内部に配置される触媒層が変化している。第1の実施形態の火力発電所向け脱硝装置10と同じ構成には、同一符号を付して重複説明を省略ないしは簡素化する。
[Third Embodiment]
A third embodiment of the denitration apparatus will be described with reference to FIG.
The denitration apparatus for a thermal power plant shown in the third embodiment includes a mixed catalyst D in which a high temperature denitration catalyst A, a nitrogen dioxide partial reduction catalyst C, and a low temperature denitration catalyst B are combined inside a denitration apparatus 10B. Compared to the denitration apparatus 10 shown in the first embodiment, the catalyst layer disposed inside the denitration apparatus 10B is changed. The same components as those of the denitration apparatus 10 for a thermal power plant according to the first embodiment are denoted by the same reference numerals, and redundant description is omitted or simplified.

第3の実施形態に示される火力発電所向け脱硝装置は、脱硝装置10Bの内部に、燃焼排ガス流れに対して、上流側から高温脱硝触媒Aおよび二酸化窒素部分還元触媒と低温脱硝触媒とを組み合せた混合脱硝触媒Dの順に配置される。混合触媒Dの二酸化窒素部分還元触媒と低温脱硝触媒の触媒混合層21は、二酸化窒素部分還元触媒と低温脱硝触媒とを交互に配置しても、ミックスさせて混合配置してもよく、配置の組合せは自由である。二酸化窒素部分還元触媒は、第2の実施形態に配置された二酸化窒素部分還元触媒層20に備えられるNO部分還元触媒と同じであり、低温脱硝触媒Bは第2の実施形態に配置された低温脱硝触媒層18の脱硝触媒と異ならない。 The denitration device for a thermal power plant shown in the third embodiment is a combination of a high temperature denitration catalyst A, a nitrogen dioxide partial reduction catalyst, and a low temperature denitration catalyst from the upstream side with respect to the combustion exhaust gas flow inside the denitration device 10B. The mixed denitration catalyst D is arranged in this order. The catalyst mixing layer 21 of the nitrogen dioxide partial reduction catalyst of the mixed catalyst D and the low-temperature denitration catalyst may be arranged alternately with the nitrogen dioxide partial reduction catalyst and the low-temperature denitration catalyst, or may be mixed and arranged. Combination is free. The nitrogen dioxide partial reduction catalyst is the same as the N 2 O partial reduction catalyst provided in the nitrogen dioxide partial reduction catalyst layer 20 arranged in the second embodiment, and the low-temperature denitration catalyst B is arranged in the second embodiment. It is not different from the denitration catalyst of the low temperature denitration catalyst layer 18.

第3の実施形態に示された火力発電所向け脱硝装置10Bは、第1および第2の実施形態で示された脱硝装置10,10Aで得られる脱硝作用とほぼ同じ脱硝効果が得られる他、混合触媒Dの二酸化窒素部分還元触媒上で生成される(反応式(7)の)一酸化窒素を隣接する低温脱硝触媒で迅速に消費し、脱硝反応処理される。   The denitration apparatus 10B for a thermal power plant shown in the third embodiment can obtain substantially the same denitration effect as the denitration action obtained by the denitration apparatuses 10 and 10A shown in the first and second embodiments. Nitrogen monoxide (of the reaction formula (7)) generated on the nitrogen dioxide partial reduction catalyst of the mixed catalyst D is quickly consumed by the adjacent low-temperature denitration catalyst and subjected to denitration reaction treatment.

また、混合触媒Dの二酸化窒素部分還元触媒C上で燃焼排ガス中の一酸化窒素増加時に一酸化窒素および脱硝触媒上に吸着している窒素種(窒素の吸着種N−ab)との反応が進行し、反応式(8)に代表される部分還元反応が促進し、一酸化二窒素(亜酸化窒素)NOが発生する虞がある。
[化4]
NO+(N−ab) → NO ……反応式(8)
Further, the reaction with the nitrogen species adsorbed on the nitrogen monoxide and the denitration catalyst (nitrogen adsorbing species N-ab) when nitrogen monoxide increases in the combustion exhaust gas on the nitrogen dioxide partial reduction catalyst C of the mixed catalyst D As it proceeds, the partial reduction reaction represented by the reaction formula (8) is promoted, and there is a possibility that dinitrogen monoxide (nitrous oxide) N 2 O is generated.
[Chemical formula 4]
NO + (N−ab) → N 2 O... Reaction formula (8)

しかし、第3の実施形態では、二酸化窒素部分還元触媒と低温脱硝触媒の触媒混合層23は、二酸化窒素部分還元触媒の直近に低温脱硝触媒がミックスあるいは混合された混合触媒Dが配置されているので、部分還元反応の促進により反応式(7)で生成された一酸化窒素は、直近の低温脱硝触媒で迅速に消費され、脱硝反応が促進されるので、二酸化窒素部分還元触媒上で一酸化窒素増加時に起こり得る可能性のある一酸化二窒素(亜酸化窒素)NOの発生を抑制することができる。 However, in the third embodiment, in the catalyst mixed layer 23 of the nitrogen dioxide partial reduction catalyst and the low-temperature denitration catalyst, the mixed catalyst D in which the low-temperature denitration catalyst is mixed or mixed is arranged in the immediate vicinity of the nitrogen dioxide partial reduction catalyst. Therefore, the nitric oxide produced in the reaction formula (7) by the promotion of the partial reduction reaction is quickly consumed by the latest low-temperature denitration catalyst, and the denitration reaction is promoted, so that the monoxide is oxidized on the nitrogen dioxide partial reduction catalyst. Generation of dinitrogen monoxide (nitrous oxide) N 2 O which may occur when nitrogen is increased can be suppressed.

一酸化二窒素の抑制により、COの300倍の程度もの温室効果を有するガスの発生を抑制することができる。水溶性がなく、化学的に安定な物質であるNOの抑制は、温暖化を防止する環境対策上優れた技術となる。 By suppressing dinitrogen monoxide, it is possible to suppress the generation of a gas having a greenhouse effect that is about 300 times that of CO 2 . Suppression of N 2 O, which is a water-insoluble and chemically stable substance, is an excellent technology for environmental measures to prevent global warming.

[第3の実施形態の効果]
第3の実施形態は、第1および第2の実施形態で示された脱硝装置10,10Aと同等の脱硝効果が得られ、燃焼排ガス中の窒素酸化物が有害な一酸化窒素や二酸化窒素を取り除く脱硝処理を効果的に行なうことができる。
[Effect of the third embodiment]
In the third embodiment, a denitration effect equivalent to that of the denitration apparatuses 10 and 10A shown in the first and second embodiments is obtained, and nitrogen monoxide and nitrogen dioxide, which are harmful to nitrogen oxides in combustion exhaust gas, are obtained. The removing denitration process can be performed effectively.

また、脱硝装置10Bの内部に、高温脱硝触媒層17の下流側で二酸化窒素部分還元触媒Cと低温脱硝触媒とを組み合せたり、混合した触媒混合層23を配置し、この触媒混合層23により二酸化窒素部分還元触媒上で一酸化窒素増加時に起こり得る一酸化二窒素(NO)の生成を抑制することができ、温暖化ガスの発生抑制を図ることができ、環境対策上優れたものとなる。 In addition, a nitrogen-dioxide partial reduction catalyst C and a low-temperature denitration catalyst are combined or mixed in the denitration apparatus 10B on the downstream side of the high-temperature denitration catalyst layer 17, and a mixed catalyst mixed layer 23 is disposed. It is possible to suppress the generation of dinitrogen monoxide (N 2 O) that can occur when nitrogen monoxide increases on the partial nitrogen reduction catalyst, and to suppress the generation of greenhouse gases. Become.

[第4の実施形態]
脱硝装置の第4の実施形態を説明する。
第4の実施形態に示された火力発電所向け脱硝装置は、図1ないし図3に示した脱硝装置10Cの配置構成例を備える。この脱硝装置10Cは、その内部が燃焼排ガス流れに対して、最下流に、低温脱硝触媒層18(図1,2参照)または二酸化窒素部分還元触媒と低温脱硝触媒の触媒混合層21(図3参照)が配置される。脱硝装置10Cの内部には、燃焼排ガス流れに対して最下流に低温脱硝触媒Bまたは、低温脱硝触媒と二酸化窒素部分還元触媒の混合触媒Dが配置される。その他の火力発電所向け脱硝装置の構成は、第1ないし第3の実施形態と構成を同じくするので、同じ構成に同一符号を付して重複説明を省略する。
[Fourth Embodiment]
A fourth embodiment of the denitration apparatus will be described.
The denitration apparatus for a thermal power plant shown in the fourth embodiment includes an arrangement configuration example of the denitration apparatus 10C shown in FIGS. The denitration device 10C has a low temperature denitration catalyst layer 18 (see FIGS. 1 and 2) or a catalyst mixed layer 21 of a nitrogen dioxide partial reduction catalyst and a low temperature denitration catalyst (see FIG. Reference) is arranged. Inside the denitration apparatus 10C, a low temperature denitration catalyst B or a mixed catalyst D of a low temperature denitration catalyst and a nitrogen dioxide partial reduction catalyst is disposed on the most downstream side with respect to the combustion exhaust gas flow. Since the structure of the denitration apparatus for other thermal power plants is the same as that of the first to third embodiments, the same reference numerals are given to the same structures, and the duplicate description is omitted.

第4の実施形態では、火力発電所が起動して運転状態が安定し、脱硝装置10(10A,10B)が充分に暖まり、高温脱硝触媒層17が脱硝機能を発揮する250℃以上の温度範囲になると、燃焼排ガス中の窒素酸化物および還元剤として供給されるアンモニアの大部分、例えば窒素酸化物の90%程度あるいはそれ以上が(高温脱硝触媒層17において反応式(1)〜(3)で示される)脱硝処理され、窒素酸化物(NOx)は無害の窒素(N)および水(HO)に分解処理される。 In the fourth embodiment, the thermal power plant is started and the operating state is stabilized, the denitration device 10 (10A, 10B) is sufficiently warmed, and the high temperature denitration catalyst layer 17 exhibits a denitration function at a temperature range of 250 ° C. or higher. Then, most of the nitrogen oxides in the combustion exhaust gas and ammonia supplied as a reducing agent, for example, about 90% or more of the nitrogen oxides (reaction formulas (1) to (3) in the high temperature denitration catalyst layer 17). The nitrogen oxide (NOx) is decomposed into harmless nitrogen (N 2 ) and water (H 2 O).

その際、低温脱硝触媒層18または二酸化窒素部分還元触媒と低温脱硝触媒の触媒混合層21は、還元剤のアンモニア分解に対して触媒活性を有し、高温脱硝触媒層17で反応しなかったアンモニアが、アンモニア分解反応で分解される。   At that time, the low-temperature denitration catalyst layer 18 or the catalyst mixed layer 21 of the nitrogen dioxide partial reduction catalyst and the low-temperature denitration catalyst has catalytic activity for ammonia decomposition of the reducing agent, and has not reacted in the high-temperature denitration catalyst layer 17. Is decomposed by ammonia decomposition reaction.

燃焼排ガスは窒素酸化物組成において、一酸化窒素(NO)と二酸化窒素(NO)の割合が1:1の際に脱硝率が高まることが知られている。実際の火力発電所では温度が低い燃焼排ガスが発生する際は二酸化窒素(NO)の濃度が高まる。ただ、130℃〜140℃の間で燃焼排ガス組成、例えばNOとNOとの割合に有意な差があることは確認されていない。しかし、通常運転時(燃焼器11の出口が1000℃程度で触媒層温度300℃程度の場合)に較べ、排ガスの温度が低いと二酸化窒素(NO)が高くなる。 It is known that combustion exhaust gas has a higher NOx removal rate when the ratio of nitrogen monoxide (NO) and nitrogen dioxide (NO 2 ) is 1: 1 in the nitrogen oxide composition. In an actual thermal power plant, when flue gas having a low temperature is generated, the concentration of nitrogen dioxide (NO 2 ) increases. However, it has not been confirmed that there is a significant difference in the proportion of the combustion exhaust gas composition, such as NO and NO 2 between 130 ° C. to 140 ° C.. However, compared with the normal operation (when the outlet of the combustor 11 is about 1000 ° C. and the catalyst layer temperature is about 300 ° C.), the temperature of exhaust gas is low, the nitrogen dioxide (NO 2 ) becomes high.

一般的に、燃焼排ガス中の窒素酸化物(NOx)を充分に処理する為にアンモニアはNOx処理に最低限必要な量より多く供給する事が多い。そのため、未反応のアンモニアが残留する可能性がある。アンモニアは規制対象となるので、NOxが残っている間にアンモニアが無くなることは避けたいが、NOxが無くなればアンモニアを処理することが望まれる。第4の実施形態の脱硝装置は、高温脱硝触媒層17で未反応のアンモニアをアンモニア分解反応によって処理を実現するための構成としている。   In general, in order to sufficiently treat nitrogen oxide (NOx) in combustion exhaust gas, ammonia is often supplied in a larger amount than the minimum amount necessary for NOx treatment. Therefore, unreacted ammonia may remain. Since ammonia is subject to regulation, it is desirable to avoid losing ammonia while NOx remains, but it is desirable to treat ammonia when NOx is exhausted. The denitration apparatus of the fourth embodiment is configured to realize treatment of unreacted ammonia by an ammonia decomposition reaction in the high temperature denitration catalyst layer 17.

[第4の実施形態の効果]
第4の実施形態では、脱硝装置10C内において、燃焼排ガス流れに対して最下流に低温脱硝触媒Bまたは二酸化窒素部分還元触媒と低温脱硝触媒の混合触媒Dを配置したので、高温脱硝触媒層17が脱硝活性を有する温度範囲では、燃焼排ガス中の窒素酸化物および供給したアンモニアの大部分は高温脱硝触媒層17で脱硝処理される。その際、低温脱硝触媒Bまたは二酸化窒素部分還元触媒と低温脱硝触媒の混合触媒Dは、アンモニア分解に対して触媒活性を有し、高温脱硝触媒層17で反応しなかったアンモニアを積極的に分解し、アンモニア分解反応で窒素(N)と水(HO)を生成することができる。
[Effect of the fourth embodiment]
In the fourth embodiment, in the denitration apparatus 10C, the low temperature denitration catalyst B or the mixed catalyst D of the nitrogen dioxide partial reduction catalyst and the low temperature denitration catalyst is disposed on the most downstream side with respect to the combustion exhaust gas flow. In the temperature range in which the NOx removal activity is present, most of the nitrogen oxides and supplied ammonia in the combustion exhaust gas are denitrated by the high temperature denitration catalyst layer 17. At that time, the low-temperature denitration catalyst B or the mixed catalyst D of the nitrogen dioxide partial reduction catalyst and the low-temperature denitration catalyst has catalytic activity for ammonia decomposition, and actively decomposes ammonia that has not reacted in the high-temperature denitration catalyst layer 17. Then, nitrogen (N 2 ) and water (H 2 O) can be generated by an ammonia decomposition reaction.

以上、本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これらの実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で種々の省略、置き換え、変更を行なうことができる。これらの実施形態やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。   As mentioned above, although some embodiment of this invention was described, these embodiment is shown as an example and is not intending limiting the range of invention. These embodiments can be implemented in various other forms, and various omissions, replacements, and changes can be made without departing from the scope of the invention. These embodiments and modifications thereof are included in the scope and gist of the invention, and are included in the invention described in the claims and the equivalents thereof.

10,10A,10B,10C…脱硝装置、11…燃焼器、12,15…煙道、13…還元剤供給手段、16…排ガス設備または煙突、17…高温脱硝触媒層、18…低温脱硝触媒層、20…二酸化窒素部分還元触媒層、21…二酸化窒素部分還元触媒と低温脱硝触媒の触媒混合層、A…高温脱硝触媒、B…低温脱硝触媒、C…二酸化窒素部分還元触媒、D…二酸化窒素部分還元触媒と低温脱硝触媒の混合触媒。   DESCRIPTION OF SYMBOLS 10,10A, 10B, 10C ... Denitration device, 11 ... Combustor, 12, 15 ... Flue, 13 ... Reducing agent supply means, 16 ... Exhaust gas facility or chimney, 17 ... High temperature denitration catalyst layer, 18 ... Low temperature denitration catalyst layer 20 ... Nitrogen dioxide partial reduction catalyst layer, 21 ... Nitrogen dioxide partial reduction catalyst and low temperature denitration catalyst mixed layer, A ... High temperature denitration catalyst, B ... Low temperature denitration catalyst, C ... Nitrogen dioxide partial reduction catalyst, D ... Nitrogen dioxide Mixed catalyst of partial reduction catalyst and low-temperature denitration catalyst.

Claims (8)

還元剤にアンモニアを用いた脱硝装置において、
前記脱硝装置の燃焼排ガス入口に対して上流側に、250℃以上の高温でアンモニアと窒素酸化物との反応を促進し、窒素と水に分解する機能を有する高温脱硝触媒を配置し、
この高温脱硝触媒の下流側に250℃未満の低温からアンモニアと窒素酸化物の反応を促進し、窒素と水に分解する機能を有する低温脱硝触媒を配置したことを特徴とする脱硝装置。
In denitration equipment using ammonia as the reducing agent,
A high temperature denitration catalyst having a function of accelerating the reaction between ammonia and nitrogen oxide at a high temperature of 250 ° C. or higher and decomposing into nitrogen and water is disposed upstream of the combustion exhaust gas inlet of the denitration device,
A denitration apparatus comprising a low-temperature denitration catalyst having a function of accelerating a reaction between ammonia and nitrogen oxides from a low temperature of less than 250 ° C and decomposing into nitrogen and water downstream of the high-temperature denitration catalyst.
還元剤にアンモニアを用いた脱硝装置において、
前記脱硝装置の内部に、250℃以上の高温でアンモニアと窒素酸化物との反応を促進し、窒素と水に分解する機能を有する高温脱硝触媒と、
250℃未満からアンモニアと二酸化窒素との反応を促進し、二酸化窒素を一酸化窒素に部分還元する機能を有する二酸化窒素部分還元触媒と、
250℃未満からアンモニアと窒素酸化物の反応を促進し、窒素と水に分解する機能を有する低温脱硝触媒と、を配置したことを特徴とする脱硝装置。
In denitration equipment using ammonia as the reducing agent,
A high-temperature denitration catalyst having a function of accelerating the reaction between ammonia and nitrogen oxides at a high temperature of 250 ° C. or higher and decomposing it into nitrogen and water;
A nitrogen dioxide partial reduction catalyst having a function of promoting the reaction between ammonia and nitrogen dioxide from below 250 ° C. and partially reducing nitrogen dioxide to nitrogen monoxide,
A denitration apparatus comprising: a low-temperature denitration catalyst having a function of accelerating a reaction between ammonia and nitrogen oxide from less than 250 ° C. and decomposing into nitrogen and water.
前記高温脱硝触媒は、前記脱硝装置の燃焼排ガス入口に対して上流側の第1層目に配置し、
前記高温脱硝触媒の下流側の第2層目に前記二酸化窒素部分還元触媒を配置し、
前記二酸化窒素部分還元触媒の下流側の最終層に前記低温脱硝触媒を配置した請求項2に記載の脱硝装置。
The high-temperature denitration catalyst is disposed in the first layer upstream of the combustion exhaust gas inlet of the denitration device,
The nitrogen dioxide partial reduction catalyst is disposed in the second layer downstream of the high temperature denitration catalyst,
The denitration apparatus according to claim 2, wherein the low-temperature denitration catalyst is arranged in a final layer downstream of the nitrogen dioxide partial reduction catalyst.
還元剤にアンモニアを用いた脱硝装置において、
前記脱硝装置の燃焼排ガス入口に対して上流側に250℃以上でアンモニアと窒素酸化物との反応を促進し、窒素と水に分解する機能を有する高温脱硝触媒を設置し、
前記高温脱硝触媒の下流側に、250℃未満でアンモニアと二酸化窒素との反応を促進し、二酸化窒素を一酸化窒素に部分還元する機能を有する二酸化窒素部分還元触媒と、250℃未満でアンモニアと窒素酸化物の反応を促進し、窒素と水に分解する機能を有する低温脱硝触媒との触媒混合層を設置したことを特徴とする脱硝装置。
In denitration equipment using ammonia as the reducing agent,
A high-temperature denitration catalyst having a function of promoting the reaction between ammonia and nitrogen oxide at 250 ° C. or higher and decomposing into nitrogen and water is installed upstream of the combustion exhaust gas inlet of the denitration device,
A nitrogen dioxide partial reduction catalyst having a function of promoting the reaction between ammonia and nitrogen dioxide at a temperature lower than 250 ° C. and partially reducing nitrogen dioxide to nitrogen monoxide, and ammonia at a temperature lower than 250 ° C. A denitration apparatus comprising a catalyst mixed layer of a low temperature denitration catalyst having a function of accelerating a reaction of nitrogen oxides and decomposing into nitrogen and water.
還元剤にアンモニアを用いた脱硝装置において、
前記脱硝装置の内部に、燃焼排ガス入口に対して最下流に配置される触媒層は、上流側の触媒層で未反応のアンモニア分解反応を促進させる脱硝触媒層であることを特徴とする脱硝装置。
In denitration equipment using ammonia as the reducing agent,
The denitration apparatus, wherein the catalyst layer disposed in the most downstream with respect to the combustion exhaust gas inlet in the denitration apparatus is a denitration catalyst layer that promotes an unreacted ammonia decomposition reaction in the upstream catalyst layer. .
脱硝装置内で還元剤にアンモニアを用いて燃焼排ガス中の窒素酸化物を選択的還元処理する方法において、
250℃以上の高温で脱硝活性の高い高温脱硝触媒を用いてアンモニアと窒素酸化物との反応を促進させて窒素と水に分解し、
前記高温脱硝触媒層の下流側で、250℃未満で脱硝活性の高い低温脱硝触媒を用いてアンモニアと窒素酸化物の反応を促進させて窒素と水に分解することを特徴とする窒素酸化物の処理方法。
In a method of selectively reducing nitrogen oxides in combustion exhaust gas using ammonia as a reducing agent in a denitration apparatus,
Using a high-temperature denitration catalyst with high denitration activity at a high temperature of 250 ° C. or higher, the reaction between ammonia and nitrogen oxide is promoted to decompose into nitrogen and water,
Downstream of the high-temperature denitration catalyst layer, using a low-temperature denitration catalyst having a high denitration activity at less than 250 ° C., the reaction between ammonia and nitrogen oxide is promoted and decomposed into nitrogen and water. Processing method.
前記高温脱硝触媒の下流側設置の二酸化窒素部分還元触媒で、250℃未満からアンモニアと二酸化窒素との反応を促進させて二酸化窒素を一酸化窒素に部分還元させ、続いて、前記二酸化窒素部分還元触媒の下流側設置の前記低温脱硝触媒で窒素酸化物を脱硝処理して窒素と水に分解する請求項6に記載の窒素酸化物の処理方法。 A nitrogen dioxide partial reduction catalyst installed on the downstream side of the high-temperature denitration catalyst, the reaction between ammonia and nitrogen dioxide is promoted from less than 250 ° C. to partially reduce nitrogen dioxide to nitrogen monoxide, and then the nitrogen dioxide partial reduction The method for treating nitrogen oxide according to claim 6, wherein the nitrogen oxide is denitrated by the low-temperature denitration catalyst installed downstream of the catalyst and decomposed into nitrogen and water. 脱硝装置内で還元剤にアンモニアを用いて燃焼排ガス中の窒素酸化物を選択的還元処理する方法において、
250℃以上の高温で脱硝活性の高い高温脱硝触媒を用いてアンモニアと窒素酸化物の反応を促進させて窒素と水に分解し、
前記高温脱硝触媒の下流側で、250℃未満で活性が高く、二酸化窒素を一酸化窒素に部分還元させる二酸化窒素部分還元触媒と250℃未満で脱硝活性の高い低温脱硝触媒との触媒混合層により、前記二酸化窒素部分還元触媒で生成される一酸化窒素を前記低温脱硝触媒で迅速に脱硝反応処理し、窒素と水に分解することを特徴とする窒素酸化物の処理方法。
In a method of selectively reducing nitrogen oxides in combustion exhaust gas using ammonia as a reducing agent in a denitration apparatus,
Using a high-temperature denitration catalyst with high denitration activity at a high temperature of 250 ° C. or higher, the reaction between ammonia and nitrogen oxide is promoted and decomposed into nitrogen and water.
On the downstream side of the high-temperature denitration catalyst, a catalyst mixing layer of a nitrogen dioxide partial reduction catalyst that is highly active at less than 250 ° C. and that partially reduces nitrogen dioxide to nitrogen monoxide and a low-temperature denitration catalyst that has a high denitration activity at less than 250 ° C. A method for treating nitrogen oxides, characterized in that nitric oxide produced by the nitrogen dioxide partial reduction catalyst is rapidly denitrated by the low-temperature denitration catalyst and decomposed into nitrogen and water.
JP2015121758A 2015-06-17 2015-06-17 Denitration apparatus and treatment method of nitrogen oxide Pending JP2017006813A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015121758A JP2017006813A (en) 2015-06-17 2015-06-17 Denitration apparatus and treatment method of nitrogen oxide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015121758A JP2017006813A (en) 2015-06-17 2015-06-17 Denitration apparatus and treatment method of nitrogen oxide

Publications (1)

Publication Number Publication Date
JP2017006813A true JP2017006813A (en) 2017-01-12

Family

ID=57760959

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015121758A Pending JP2017006813A (en) 2015-06-17 2015-06-17 Denitration apparatus and treatment method of nitrogen oxide

Country Status (1)

Country Link
JP (1) JP2017006813A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018161634A (en) * 2017-03-27 2018-10-18 株式会社東芝 Denitration control device and denitration control method
KR20190142348A (en) * 2017-04-26 2019-12-26 할도르 토프쉐 에이/에스 Method and system for removing harmful compounds from flue gas using SCR catalyst
JP2020517448A (en) * 2017-04-26 2020-06-18 ハルドール・トプサー・アクチエゼルスカベット Method and system for removing harmful compounds from flue gas using fabric filter bag with SCR catalyst
JP2020519426A (en) * 2017-04-26 2020-07-02 ハルドール・トプサー・アクチエゼルスカベット Method and system for removing particulate matter and harmful compounds from flue gas using ceramic filters with SCR catalysts
WO2020161875A1 (en) * 2019-02-07 2020-08-13 中国電力株式会社 Combustion system
WO2020161874A1 (en) * 2019-02-07 2020-08-13 中国電力株式会社 Combustion system

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018161634A (en) * 2017-03-27 2018-10-18 株式会社東芝 Denitration control device and denitration control method
KR20190142348A (en) * 2017-04-26 2019-12-26 할도르 토프쉐 에이/에스 Method and system for removing harmful compounds from flue gas using SCR catalyst
JP2020517448A (en) * 2017-04-26 2020-06-18 ハルドール・トプサー・アクチエゼルスカベット Method and system for removing harmful compounds from flue gas using fabric filter bag with SCR catalyst
JP2020519426A (en) * 2017-04-26 2020-07-02 ハルドール・トプサー・アクチエゼルスカベット Method and system for removing particulate matter and harmful compounds from flue gas using ceramic filters with SCR catalysts
JP7061622B2 (en) 2017-04-26 2022-04-28 ハルドール・トプサー・アクチエゼルスカベット Methods and systems for removing harmful compounds from flue gas using fabric filter bags with SCR catalysts
KR102607313B1 (en) 2017-04-26 2023-11-29 토프쉐 에이/에스 Method and system for removing hazardous compounds from flue gas using SCR catalyst
WO2020161875A1 (en) * 2019-02-07 2020-08-13 中国電力株式会社 Combustion system
WO2020161874A1 (en) * 2019-02-07 2020-08-13 中国電力株式会社 Combustion system
JPWO2020161874A1 (en) * 2019-02-07 2021-12-09 中国電力株式会社 Combustion system
JPWO2020161875A1 (en) * 2019-02-07 2021-12-09 中国電力株式会社 Combustion system

Similar Documents

Publication Publication Date Title
JP2017006813A (en) Denitration apparatus and treatment method of nitrogen oxide
CN104136098B (en) The selective catalytic reduction system operating of the NOx emission in the gas stream of control sulfur-bearing and method
JP2007182812A (en) Denitration method of exhaust gas
US20110262334A1 (en) SYSTEM AND METHOD FOR CONTROLLING AND REDUCING NOx EMISSIONS
DK2144691T3 (en) Apparatus and method for reducing the content of nitrogen in supply of gas supply systems
EP3259528B1 (en) Exhaust system for power generating apparatus
JP2018126674A (en) Exhaust gas treatment system and exhaust gas treatment method
JP2005087815A (en) Exhaust gas treatment method
JP2006220107A (en) Method and device for denitrating and purifying exhaust gas
KR101449244B1 (en) The De-NOx system for combined LNG gas turbine exhaust gas
CN111068512B (en) Integrated catalytic conversion system and method for reducing exhaust ammonia emission
JP7061622B2 (en) Methods and systems for removing harmful compounds from flue gas using fabric filter bags with SCR catalysts
CN102698600A (en) System for intelligently controlling flue gas denitrification of cement plant based on selective catalytic reduction (SCR) method
Wu The development and application of SCR denitrification technology in power plant
JP4652047B2 (en) Exhaust gas treatment method and urea SCR type automobile exhaust gas treatment device
KR102434012B1 (en) Exhaust gas treatment apparatus
CN218599739U (en) Heat accumulating type incinerator-SNCR-SCR combined denitration integrated device
JP2010115600A (en) Oxidation catalyst and apparatus for treating exhaust gas by using the same
KR20090081866A (en) Hybrid DeNOx process using Selective Catalytic Reduction and Adsorption
CN101642715A (en) Pyrophosphate catalyst of cerium for selectively catalyzing and reducing nitrogen oxides and preparation method thereof
JP4045375B2 (en) Exhaust gas purification device
JP4228152B2 (en) Waste heat recovery method by low temperature denitration of cogeneration exhaust gas
KR20230100081A (en) Regenerative denox and cumbustion apparatus with scr or/and sncr function using mixed source comprising nh3
JP5564846B2 (en) Exhaust gas treatment method and exhaust gas treatment equipment
JP2005048733A (en) Co-generation system with exhaust emission control device

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20171127

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20171128