JPH0729028B2 - Denitration treatment method - Google Patents

Denitration treatment method

Info

Publication number
JPH0729028B2
JPH0729028B2 JP61259838A JP25983886A JPH0729028B2 JP H0729028 B2 JPH0729028 B2 JP H0729028B2 JP 61259838 A JP61259838 A JP 61259838A JP 25983886 A JP25983886 A JP 25983886A JP H0729028 B2 JPH0729028 B2 JP H0729028B2
Authority
JP
Japan
Prior art keywords
ash
boiler
exhaust gas
heavy metal
denitration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61259838A
Other languages
Japanese (ja)
Other versions
JPS63116729A (en
Inventor
正人 向井
博 黒田
輝雄 久村
富久 石川
勇人 森田
Original Assignee
バブコツク日立株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by バブコツク日立株式会社 filed Critical バブコツク日立株式会社
Priority to JP61259838A priority Critical patent/JPH0729028B2/en
Priority to DE19873736912 priority patent/DE3736912C3/en
Publication of JPS63116729A publication Critical patent/JPS63116729A/en
Publication of JPH0729028B2 publication Critical patent/JPH0729028B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • B01D53/8621Removing nitrogen compounds
    • B01D53/8625Nitrogen oxides

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は脱硝処理方法に係り、特に燃料中に触媒の被毒
成分である重金属元素を含む排ガスの処理を行なうのに
好適な脱硝処理方法に関する。
The present invention relates to a denitration treatment method, and more particularly to a denitration treatment method suitable for treating exhaust gas containing heavy metal elements, which are poisoning components of catalysts in fuel. Regarding

(従来の技術) 第6図は、従来技術による最も一般的な排煙脱硝装置を
組み込んだボイラプラントの主要排ガス系統図を示す。
例えば排ガス発生装置(以下、ボイラで代表する)1よ
り排出された排ガス中の窒素酸化物(以下、NOxと称
す)を処理するため、ボイラ1の排ガス煙道18にアンモ
ニア15を還元剤としNOxとNH3の反応を促進するための触
媒を内蔵した脱硝装置(脱硝反応器)2が設けられてい
る。本脱硝装置2は一般的に300〜400℃程度の温度域で
最も効率よく脱硝が行なわれるため、ボイラの節炭器24
とエアヒータ3の間に設けられている。一方、ボイラか
らの排ガスは、エアヒータ3を経て、除塵装置(例えば
電気集塵装置等)4にて除塵された後、脱硫装置5を経
て煙突6から大気へ放出される。他方、排ガス中に含ま
れる灰分は、ボイラ1の火炉25で約15%程度の灰分が火
炉25の炉底からクリンカとして排出され、残り84%が集
塵装置4で除塵される。ボイラ1で燃焼される燃料(石
炭)の種類によっては燃焼しにくいものもあり、例えば
集塵装置4で集塵された灰中に多量の未燃分を含む場合
がある。例えば、ボイラ1に供給される燃料分の約5〜
10%もの量が未燃分として含まれる場合もある。したが
ってこの未燃分を第6図に示すように灰排出ライン20か
らそのまま廃棄したのではボイラ1の燃焼効率は低くな
り、ボイラ効率の低下を招くこととなり熱収支上問題が
あった。なお、この場合の一例では灰のマスバランス
は、燃料供給ライン10を100とした場合、ボイラ1の出
口で85、ボイラの灰排出ライン20で15、集塵装置4の捕
集灰で84、脱硫装置5の入口ラインで1となる。
(Prior Art) FIG. 6 shows a main exhaust gas system diagram of a boiler plant incorporating the most common flue gas denitration device according to the prior art.
For example, in order to treat nitrogen oxides (hereinafter referred to as NOx) in the exhaust gas discharged from the exhaust gas generator (hereinafter referred to as a boiler) 1, ammonia 15 is used as a reducing agent in the exhaust gas flue 18 of the boiler 1 to reduce NOx. A denitration device (denitration reactor) 2 having a built-in catalyst for accelerating the reaction of NH 3 with NH 3 is provided. Since this denitration device 2 generally performs the denitration most efficiently in the temperature range of about 300 to 400 ° C, the boiler economizer 24
And the air heater 3. On the other hand, the exhaust gas from the boiler passes through the air heater 3, is dust-removed by a dust remover (for example, an electric dust collector, etc.) 4, and is then released from the chimney 6 into the atmosphere through the desulfurizer 5. On the other hand, about 15% of the ash contained in the exhaust gas is discharged as a clinker from the furnace bottom of the furnace 25 in the furnace 25 of the boiler 1, and the remaining 84% is removed by the dust collector 4. Some of the fuel (coal) burned in the boiler 1 is difficult to burn, and for example, the ash collected by the dust collector 4 may contain a large amount of unburned components. For example, about 5 to 5 parts of the fuel supplied to the boiler 1
In some cases, as much as 10% is included as unburned matter. Therefore, if this unburned component is discarded as it is from the ash discharge line 20 as shown in FIG. 6, the combustion efficiency of the boiler 1 will be low, which will lead to a decrease in boiler efficiency, resulting in a heat balance problem. In this example, the ash mass balance is 85 at the outlet of the boiler 1, 15 at the ash discharge line 20 of the boiler, and 84 at the ash collected by the dust collector 4 when the fuel supply line 10 is 100. It becomes 1 at the inlet line of the desulfurization device 5.

そこで第7図に示すごとく、集塵装置4にて除塵した灰
を再びボイラ1へ灰リサイクルライン19を用いてリサイ
クルし、ボイラ1で再燃焼させることにより、未燃分を
少なくし、燃焼効率を高めるシステムを採用している例
があるが、この場合の灰のマスバランスは、一例では燃
料供給ライン10を100とした場合、ボイラ1の出口で6
5、集塵装置4の灰リサイクルライン19で63、ボイラ1
の灰排出ライン12で98、脱硫装置5の入口ラインで2と
なる。したがって灰のマスバランス上からはボイラ1の
火炉25にて分離除去された灰が灰排出ライン12を経て系
外へ排出されているため、脱硝装置2の部分においては
第6図の場合と大差がない。
Therefore, as shown in FIG. 7, the ash removed by the dust collector 4 is recycled to the boiler 1 again by using the ash recycle line 19 and reburned in the boiler 1 to reduce unburned content and combustion efficiency. Although there is an example of adopting a system that raises the fuel consumption, the ash mass balance in this case is 6 at the exit of the boiler 1 when the fuel supply line 10 is 100 in one example.
5, 63 in the ash recycling line 19 of the dust collector 4, boiler 1
The ash discharge line 12 is 98, and the inlet line of the desulfurization device 5 is 2. Therefore, from the mass balance of ash, the ash separated and removed in the furnace 25 of the boiler 1 is discharged to the outside of the system through the ash discharge line 12, so that the denitration device 2 portion is largely different from the case of FIG. There is no.

しかし、ボイラ1にて燃焼される燃料中に含まれる微量
の重金属元素の中には、ボイラ1の火炉25における高温
ガスの雰囲気ではガス化しているものがあり、その後脱
硝装置2、エアヒータ3を経る内に、低温度域で凝縮固
化し、灰中に入り、集塵装置4で灰とともに除去される
ものがある。したがって、灰中に前記微量の重金属元素
を含んだ灰を再びボイラ1に供給して再度燃焼させるこ
とから、重金属元素は前記灰リサイクルライン19による
循環によって濃縮されることとなる。一例として前記重
金属元素の含有量を灰をリサイクルしない場合(第6図
の場合)、排ガス煙道18において排ガス中に重金属元素
が30ppm含まれているとすると、第7図の場合、ボイラ
系外から供給される量と集塵装置から系外へ排出される
バランスから循環ライン中においては理論上50倍に濃縮
されることとなり、排ガス中の重金属元素が実に1500pp
mという高濃度まで濃縮されることとなる。
However, some of the trace amounts of heavy metal elements contained in the fuel burned in the boiler 1 are gasified in the high-temperature gas atmosphere in the furnace 25 of the boiler 1, and then the denitration device 2 and the air heater 3 are used. In the course of time, there is a thing that is condensed and solidified in a low temperature range, enters into ash, and is removed together with ash by the dust collector 4. Therefore, since the ash containing the trace amount of the heavy metal element in the ash is supplied again to the boiler 1 and burned again, the heavy metal element is concentrated by the circulation through the ash recycling line 19. As an example, when the content of the heavy metal element is not recycled as ash (in the case of FIG. 6), if the exhaust gas flue 18 contains 30 ppm of the heavy metal element in the exhaust gas, in the case of FIG. 7, outside the boiler system. From the balance of the amount supplied from the system and the discharge from the dust collector to the outside of the system, the concentration in the circulation line is theoretically 50 times higher, and the heavy metal element in the exhaust gas is actually 1500 pp.
It will be concentrated to a high concentration of m.

前記微量重金属元素としては、第8図に示したボイラプ
ラントの各部のガス温度とその重金属元素の気化温度の
関係から、As、Cd、Cu、Pb、Sb、Se、Tl、Znが考えられ
る。
As the trace amount of heavy metal element, As, Cd, Cu, Pb, Sb, Se, Tl, Zn can be considered from the relationship between the gas temperature of each part of the boiler plant shown in FIG. 8 and the vaporization temperature of the heavy metal element.

第9図は、前記第6図に示した、灰をリサイクルしてい
ないAプラントと、第7図に示した灰リサイクルを行な
うBプラントにそれぞれに脱硝装置2を設けた場合の脱
硝性能の低下状況を示したものである。Aプラントの場
合、初期運転開始直後、若干の脱硝性能の低下が見られ
るものの、その後は安定した脱硝運動を行なっている。
一方、Bプラントの場合には運動初期で大きく脱硝性能
の低下があり、その後も運動時間の経過とともに触媒活
性が大きく低下している。
FIG. 9 shows a reduction in the denitration performance when the denitration device 2 is provided in each of the A plant that does not recycle ash shown in FIG. 6 and the B plant that recycles ash shown in FIG. It shows the situation. In the case of the plant A, although a slight decrease in the denitration performance was observed immediately after the start of the initial operation, the denitration movement was stable thereafter.
On the other hand, in the case of the B plant, the denitration performance is largely reduced at the beginning of the exercise, and thereafter the catalytic activity is greatly reduced with the passage of the exercise time.

A、Bプラントの系統上の相違点は、灰のリサイクルの
有無であり、前記微量重金属元素の濃縮作用による触媒
の被毒が直接の原因となっていることがわかる。
The systematic difference between the A and B plants is the presence or absence of ash recycling, and it can be seen that the poisoning of the catalyst due to the concentration action of the trace amount of heavy metal elements is the direct cause.

したがってこのような微量の重金属元素の問題に対して
は、第10図に示すごとく脱硝装置2を脱硫装置5の後流
に設置した、いわゆるアフターDeSOx型の脱硝装置2を
採用することが検討されている。しかしながら脱硫装置
5の出口の処理ガス温度が脱硝を行なうには低いため
(通常DeSOx出口ガス温度は150℃程度)、ガス加熱炉22
等を設けて排ガスを燃料供給ライン23からの燃料によっ
て脱硝に適した温度(約300〜400℃)まで昇温する等の
対策を行なう必要がある。このため、ガス加熱炉22に供
給される燃料費および熱回収装置であるガス−ガスヒー
タ21等の設備費用がかさみ、建設費、運転費ともにコス
ト高になる問題があった。
Therefore, in order to solve such a problem of a trace amount of heavy metal elements, it is considered to adopt a so-called after-DeSOx type denitration device 2 in which the denitration device 2 is installed in the downstream of the desulfurization device 5 as shown in FIG. ing. However, since the processing gas temperature at the outlet of the desulfurization device 5 is low for performing denitration (normally the DeSOx outlet gas temperature is about 150 ° C), the gas heating furnace 22
It is necessary to take measures such as to increase the temperature of the exhaust gas to a temperature (about 300 to 400 ° C.) suitable for denitration by using the fuel from the fuel supply line 23 by providing the above. Therefore, there is a problem that the fuel cost to be supplied to the gas heating furnace 22 and the facility cost of the gas-gas heater 21 which is a heat recovery device and the like are high, and both the construction cost and the operating cost are high.

また、第12図のように、捕集灰の一部をライン14を介し
て系外に抜き出し、重金属成分の濃縮度を下げる方法
(部分リサイクル法)も検討されている。つまり第2図
のAに示すように、灰のリサイクル率 が低くなれば重金属成分の濃縮割合も下がり、触媒被毒
は緩和されるが、灰のリサイクル率を下げるということ
は未燃分を多く含む灰を多く捨てることであり、ボイラ
1の熱効率の低下につながる。しかしこの点の妥協をす
れば簡単なシステムで触媒被毒を低減できるメリットは
得られる。
Further, as shown in FIG. 12, a method of extracting a part of the collected ash to the outside of the system through a line 14 to reduce the concentration of heavy metal components (partial recycling method) is also under study. In other words, as shown in Fig. 2A, the ash recycling rate The lower the concentration, the lower the concentration ratio of heavy metal components and the catalyst poisoning is alleviated. However, lowering the ash recycling rate means discarding a large amount of ash containing a large amount of unburned matter, which lowers the thermal efficiency of the boiler 1. Leads to. However, if this point is compromised, the advantage of being able to reduce catalyst poisoning with a simple system can be obtained.

(発明が解決しようとする問題点) 上述のように第6図に示した一般的なフローを採用した
場合、ボイラ1の燃焼効率が低いとき、これが原因でボ
イラの熱効率が低下するという問題がある。さらに第7
図に示した未燃分を含む燃焼灰をリサイクルした方式を
採用した場合、第6図のものと比べてボイラの熱効率の
向上は図れるものの、触媒被毒成分の濃縮作用により脱
硝触媒が被毒されるという問題があった。
(Problems to be Solved by the Invention) When the general flow shown in FIG. 6 is adopted as described above, when the combustion efficiency of the boiler 1 is low, there is a problem that the thermal efficiency of the boiler is reduced due to this. is there. Furthermore, the seventh
When the method of recycling combustion ash containing unburned components shown in the figure is adopted, the thermal efficiency of the boiler can be improved compared to the one shown in Fig. 6, but the denitration catalyst is poisoned by the concentration effect of the catalyst poisoning component. There was a problem of being done.

これらに対する対策として第7図に示すように脱硝装置
2を脱硫装置5の後流に設ける、いわゆるアフターDeSO
x方式が検討されているが、本方式を採用すれば建設
費、運転費が高くなり、コストが高くなる問題があっ
た。またある程度の熱効率を犠牲にし、第12図に示すよ
うに捕集灰の一部を系外に抜く方法(部分リサイクル
法)もあるが、触媒被毒は低減はされるものの、未燃分
を含む灰が系外に排出されるので、依然として熱効率の
低下の問題が残る。
As a countermeasure against these, as shown in FIG. 7, a denitration device 2 is provided in the downstream of the desulfurization device 5, so-called after DeSO.
The x method has been studied, but if this method is adopted, there is a problem that the construction cost and the operating cost increase, and the cost increases. There is also a method (partial recycling method) in which part of the collected ash is removed from the system as shown in Fig. 12 at the expense of some thermal efficiency, but catalyst poisoning is reduced, but unburned components are removed. Since the ash containing is discharged out of the system, there still remains the problem of lowering the thermal efficiency.

本発明の目的は、上記従来技術の欠点をなくし、脱硝装
置を最も経済的なボイラ出口に設け、熱効率を大幅に低
下させることなく、部分リサイクル法において触媒被毒
を最小限に抑えた脱硝処理方法を提供することにある。
The object of the present invention is to eliminate the above-mentioned drawbacks of the prior art, to provide a denitration device at the most economical boiler outlet, to significantly reduce the thermal efficiency, and to perform a denitration treatment that minimizes catalyst poisoning in the partial recycling method. To provide a method.

(問題点を解決するための手段) 上記目的は、触媒被毒成分である、排ガス中に含まれた
微量の重金属元素が凝縮された灰を分級し、粒径の大き
な灰だけを排ガス発生装置へリサイクルし、粒径の小さ
な灰は系外へ排出することにより達成される。すなわ
ち、本発明は排ガス発生装置から排出された燃焼排ガス
を脱硝処理後、後流の集塵装置で集塵処理し、一部の灰
を排ガス発生装置に戻して再燃焼処理する脱硝処理方法
において、前記集塵装置またはその後流に設けられた分
級器により回収灰を大粒子と小粒子に分級し、大粒径の
灰のみを前記排ガス発生装置に戻すことを特徴とする。
(Means for Solving Problems) The above-mentioned object is to classify ash in which a trace amount of heavy metal elements contained in exhaust gas, which is a catalyst poisoning component, is condensed, and to generate only ash having a large particle size in an exhaust gas generator. It is achieved by recycling the ash to a small particle size and discharging the ash with a small particle size out of the system. That is, the present invention is a denitrification treatment method in which the combustion exhaust gas discharged from the exhaust gas generator is subjected to denitrification treatment, then subjected to a dust collection treatment in a downstream dust collector, and a part of the ash is returned to the exhaust gas generator to be reburned. The collected ash is classified into large particles and small particles by the dust collector or a classifier provided in the subsequent stream, and only the large-sized ash is returned to the exhaust gas generator.

(作用) 灰を分級して粒径の大きなものを排ガス発生装置へ戻す
場合、リサイクルの割合により捕集灰中の重金属成分の
濃度は第2図Bのようになる。つまり、捕集灰を全量リ
サイクルすると、重金属成分の濃縮度が非常に高くなる
が、灰の一部を第12図のように、系外に排出することに
より、濃縮度を下げることができる。
(Function) When ash is classified and large sized particles are returned to the exhaust gas generator, the concentration of heavy metal components in the collected ash is as shown in FIG. 2B depending on the recycling rate. In other words, when the entire amount of collected ash is recycled, the concentration of heavy metal components becomes extremely high, but the concentration can be lowered by discharging a part of the ash out of the system as shown in FIG.

ここで本発明者らは、捕集灰中に含まれる重金属成分の
割合は粒径が小さいほど多くなる傾向にあることを見出
した。すなわち、灰中の重金属成分は、第13図に示すよ
うに灰の粒径の小さなものには、粒径の大きなものに比
べ、相対的に多くの重金属成分が含まれるため、灰を分
級し、さらに粒径の小さなものだけを系外に排出するこ
とにより、灰自体の系外への排出量が分級しない場合と
同量でも、多くの重金属成分を系外に排出することがで
きることを見出した。これにより重金属成分のリサイク
ル率を低くすることも可能になる。換言すれば、灰を分
給し、粒径の小さなものだけを系外に排出することによ
り、分級しない場合に比べ、重金属成分の濃縮度を下げ
ることができ、重金属成分による触媒の被毒作用を緩和
することができる。なお、捕集灰中の重金属成分の割合
が粒径が小さいもの程多くなる理由は、粒径の小さいも
のの方が重量あたりの表面積が大きいので、重金属成分
が付着しやすいためと思われる。
Here, the present inventors have found that the proportion of heavy metal components contained in the collected ash tends to increase as the particle size decreases. In other words, the heavy metal components in the ash are classified as shown in Fig. 13 because those with a small particle size of ash contain relatively more heavy metal components than those with a large particle size. We also found that by discharging only those with a smaller particle size to the outside of the system, even if the amount of ash itself discharged outside the system is the same as when the ash itself is not classified, many heavy metal components can be discharged outside the system. It was This also makes it possible to lower the recycling rate of heavy metal components. In other words, by dispensing ash and discharging only those with a small particle size out of the system, it is possible to reduce the concentration of heavy metal components compared to the case without classification, and the poisoning action of the catalyst by heavy metal components. Can be relaxed. The reason why the proportion of heavy metal components in the collected ash increases with smaller particle size is that the smaller metal particles have a larger surface area per weight, and therefore the heavy metal components are more likely to adhere.

(実施例) 第1図は、本発明の一実施例を示す脱硝処理方法の系統
図である。ボイラ1での燃焼により生じた排ガスは、脱
硝装置2にて脱硝された後、エアヒータ3にて熱回収さ
れる。その後、排ガス中の灰は、サイクロンセパレータ
7にて粒径の大きなものが分離された後、ライン13を介
してボイラ1に戻され、その中の未燃分が再燃焼され
る。サイクロンセパレータ7を出た排ガスは、バグフィ
ルタ8にて、さらに粒径の小さなものが除かれる。除塵
された排ガスは、必要に応じて設置された脱硫装置5で
も除塵される。バグフィルタ8にて捕集された灰は、ラ
イン14を介して系外に排出され、埋立等により処理され
る。
(Example) FIG. 1 is a system diagram of a denitration treatment method showing an example of the present invention. The exhaust gas generated by the combustion in the boiler 1 is denitrated by the denitration device 2 and then recovered by the air heater 3. After that, the ash in the exhaust gas is separated into a large particle size by the cyclone separator 7, and then returned to the boiler 1 through the line 13 to reburn the unburned content therein. The exhaust gas discharged from the cyclone separator 7 is removed by a bag filter 8 having a smaller particle size. The dust-removed exhaust gas is also dust-removed by the desulfurization device 5 installed as necessary. The ash collected by the bag filter 8 is discharged to the outside of the system through the line 14 and disposed of by landfill or the like.

第2図に、ライン13からの灰のリサイクル率と重金属成
分の濃縮割合を示したが、本発明の場合A(灰を分級
し、粒径の大きいもののみをリサイクル)の方が分級し
ない場合Bよりも重金属の濃縮割合が低下していること
が明らかである。
Fig. 2 shows the recycling rate of ash from line 13 and the concentration ratio of heavy metal components. In the case of the present invention, A (classifying ash and recycling only the one with a large particle size) does not classify. It is clear that the concentration ratio of heavy metals is lower than that of B.

第2図のBは、サイクロンセパレータ7を設けず、集塵
装置としてバグフィルタ8のみを設け、その捕集灰の一
部をバイラ1に戻す場合(分級しない場合)を示してい
るが、サイクロンセパレータ7を設置した場合は、設置
しない場合に比べ、同じ量の捕集灰をボイラ1に戻して
も、重金属成分の濃縮割合は小さくなり、触媒の被毒が
緩和される。第3図は、第2図のA、B各場合について
の運転時間と脱硝率の関係を示した図であるが、本発明
の場合Aの方が触媒の被毒が少なく、長時間、脱硝活性
を維持できることが明らかである。なお、粒径の大きな
灰には粒径の小さな灰に比べ、灰中の未燃炭素の割合が
多く、したがって分級した方が、全体的に排出灰の未燃
炭素の量が少なくなるという利点もある。
FIG. 2B shows a case where the cyclone separator 7 is not provided and only the bag filter 8 is provided as a dust collector, and a part of the collected ash is returned to the baler 1 (when not classified). When the separator 7 is installed, even if the same amount of collected ash is returned to the boiler 1 as compared with the case where the separator 7 is not installed, the concentration ratio of the heavy metal component becomes small and the poisoning of the catalyst is alleviated. FIG. 3 is a diagram showing the relationship between the operating time and the denitration rate in each of the cases A and B of FIG. 2. In the case of the present invention, A is less poisoned by the catalyst and the denitration is performed for a long time. It is clear that activity can be maintained. It should be noted that ash with a large particle size has a higher proportion of unburned carbon in ash than ash with a small particle size, and therefore classification has the advantage that the amount of unburned carbon in the ash discharged is smaller overall. There is also.

第4図は、本発明の他の実施例を示すもので、除塵装置
としてガス流れ方向に複数室9A、9Bを有する電気集塵器
9を設け、前流側の室9Aで捕集された粒径の大きい粒子
のみをライン13を介してボイラ1に戻すようにしたもの
である。この実施例によれば、前流側の室9Aでは捕集灰
の粒径は大きく、後流側の室9Bでは粒径が小さいため、
前記と同様にボイラ1の重金属成分の濃縮および脱硝触
媒の被毒を防止することができる。またこの場合、2種
類の除塵装置を設ける必要がなく、プロセスが簡単にな
る利点もある。
FIG. 4 shows another embodiment of the present invention, in which an electrostatic precipitator 9 having a plurality of chambers 9A and 9B in the gas flow direction is provided as a dust remover, and the dust is collected in the chamber 9A on the upstream side. Only the particles having a large particle diameter are returned to the boiler 1 via the line 13. According to this example, since the particle size of the collected ash is large in the chamber 9A on the upstream side and the particle size is small in the chamber 9B on the downstream side,
Similar to the above, concentration of heavy metal components of the boiler 1 and poisoning of the denitration catalyst can be prevented. Further, in this case, it is not necessary to provide two types of dust removing devices, and there is an advantage that the process is simplified.

第5図は、除塵装置4にて捕集した灰を分級装置11に導
き、粒径の大きな灰のみをボイラ1に戻すようにしたも
ので、第4図と同様な効果が得られる。
In FIG. 5, the ash collected by the dust removing device 4 is guided to the classifying device 11 so that only the ash having a large particle size is returned to the boiler 1, and the same effect as in FIG. 4 is obtained.

なお、灰中の重金属成分の灰の粒径依存割合は、第14図
に示すように、粒径25μm以下で、急激に多くなるた
め、系外に排出する灰は粒径25μm以下の小さなものが
できるだけ多くなるように分級すれば、より効果的であ
る。
As shown in Fig. 14, the particle size-dependent ratio of heavy metal components in the ash rapidly increases with a particle size of 25 μm or less, so the ash discharged to the outside of the system is small with a particle size of 25 μm or less. It is more effective if you classify so that there are as many as possible.

また分級しない場合と、分級し、小さな粒径の灰のみ系
外に抜き出す場合の熱効率を比較すると、一般には粒径
の大きな灰の方が未燃分が多く含まれるため、同一量の
灰を系外に抜き出した場合、分級した方が熱効率が良く
なるという効果も得られる。
In addition, comparing the thermal efficiency when not classifying and when classifying and extracting only ash with a small particle size out of the system, ash with a larger particle size generally contains more unburned content, so the same amount of ash is When it is taken out of the system, it is possible to obtain the effect that the thermal efficiency is improved by classification.

(発明の効果) 本発明によれば、ボイラのような排ガス発生装置におけ
る触媒被毒成分(重金属成分)の濃縮を防止し、脱硝反
応器の触媒被毒を軽減することができる。
(Effects of the Invention) According to the present invention, it is possible to prevent concentration of catalyst poisoning components (heavy metal components) in an exhaust gas generator such as a boiler, and reduce catalyst poisoning of a denitration reactor.

【図面の簡単な説明】[Brief description of drawings]

第1図、第4図および第5図は、それぞれ本発明の脱硝
処理方法の種々の実施例を示す装置系統図、第2図は、
灰のリサイクル率と灰中の重金属成分の濃縮割合との関
係図、第3図および第9図は、脱硝装置の運転時間と脱
硝率との関係図、第6図、第7図、第10図、第11図およ
び第12図は、従来の脱硝方法の種々の例を示す装置系統
図、第8図は、種々の機器におけるガス温度を説明する
図、第13図は、捕集灰の粒径と重金属成分濃度との関係
図である。 1……ボイラ(排ガス発生装置)、2……脱硝装置、3
……エアヒータ、5……脱硫装置、7……サイクロンセ
パレータ、8……バグフィルタ、10……排ガス、13……
大粒子のリサイクルライン、14……小粒子の灰排出ライ
ン、15……アンモニア。
1, 4, and 5 are system diagrams showing various embodiments of the denitration treatment method of the present invention, and FIG.
The relationship diagram between the ash recycling rate and the concentration ratio of heavy metal components in the ash, FIGS. 3 and 9 are the relationship diagrams between the operating time of the denitration device and the denitration rate, FIG. 6, FIG. 7, and FIG. FIG. 11, FIG. 11 and FIG. 12 are device system diagrams showing various examples of conventional denitration methods, FIG. 8 is a diagram for explaining gas temperatures in various devices, and FIG. It is a relationship diagram of a particle size and a heavy metal component concentration. 1 ... Boiler (exhaust gas generator), 2 ... Denitration device, 3
...... Air heater, 5 …… Desulfurizer, 7 …… Cyclone separator, 8 …… Bag filter, 10 …… Exhaust gas, 13 ……
Large particle recycling line, 14 …… Small particle ash discharge line, 15 …… Ammonia.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 石川 富久 広島県呉市宝町6番9号 バブコック日立 株式会社呉工場内 (72)発明者 森田 勇人 広島県呉市宝町6番9号 バブコック日立 株式会社呉工場内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Tomihisa Ishikawa 6-9 Takaracho, Kure City, Hiroshima Prefecture Babcock Hitachi Ltd. Kure Factory (72) Hayato Morita 6-9 Takaracho, Kure City, Hiroshima Prefecture Babcock Hitachi Ltd. Kure Factory

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】排ガス発生装置から排出された燃焼排ガス
を脱硝処理後、後流の集塵装置で集塵処理し、一部の灰
を排ガス発生装置に戻して再燃焼処理する脱硝処理方法
において、前記集塵装置またはその後流に設けられた分
級器により回収灰を大粒子と小粒子に分級し、大粒径の
灰のみを前記排ガス発生装置に戻すことを特徴とする脱
硝処理方法。
1. A denitration treatment method in which combustion exhaust gas discharged from an exhaust gas generator is subjected to denitration treatment, and then dust is collected by a downstream dust collector, and a part of ash is returned to the exhaust gas generator and reburned. A denitration treatment method, characterized in that the collected ash is classified into large particles and small particles by a classifier provided in the dust collector or a downstream thereof, and only the large-sized ash is returned to the exhaust gas generator.
JP61259838A 1986-10-31 1986-10-31 Denitration treatment method Expired - Lifetime JPH0729028B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP61259838A JPH0729028B2 (en) 1986-10-31 1986-10-31 Denitration treatment method
DE19873736912 DE3736912C3 (en) 1986-10-31 1987-10-30 Process for the denitrification of combustion gases

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61259838A JPH0729028B2 (en) 1986-10-31 1986-10-31 Denitration treatment method

Publications (2)

Publication Number Publication Date
JPS63116729A JPS63116729A (en) 1988-05-21
JPH0729028B2 true JPH0729028B2 (en) 1995-04-05

Family

ID=17339690

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61259838A Expired - Lifetime JPH0729028B2 (en) 1986-10-31 1986-10-31 Denitration treatment method

Country Status (2)

Country Link
JP (1) JPH0729028B2 (en)
DE (1) DE3736912C3 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5133950A (en) * 1990-04-17 1992-07-28 A. Ahlstrom Corporation Reducing N2 O emissions when burning nitrogen-containing fuels in fluidized bed reactors
US5043150A (en) * 1990-04-17 1991-08-27 A. Ahlstrom Corporation Reducing emissions of N2 O when burning nitrogen containing fuels in fluidized bed reactors

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3124932A1 (en) * 1981-06-25 1983-01-20 Deutsche Babcock Ag, 4200 Oberhausen Method and apparatus for operating a low temperature furnace
CA1252356A (en) * 1983-11-09 1989-04-11 Michel F.E. Couarc'h Method and device for the reinjection of exhausted particles in a solid fuel burning furnace
BE902935A (en) * 1984-07-27 1985-11-18 Hitachi Shipbuilding Eng Co METHOD AND DEVICE FOR PURIFYING EXHAUST GAS.

Also Published As

Publication number Publication date
DE3736912A1 (en) 1988-05-19
JPS63116729A (en) 1988-05-21
DE3736912C3 (en) 1995-03-23
DE3736912C2 (en) 1989-08-10

Similar Documents

Publication Publication Date Title
US6960329B2 (en) Method and apparatus for removing mercury species from hot flue gas
US8480984B2 (en) Biomass boiler SCR NOx and CO reduction system
US4956162A (en) Process for removal of particulates and SO2 from combustion gases
US6528030B2 (en) Alkaline sorbent injection for mercury control
US5525317A (en) Ammonia reagent application for NOX SOX and particulate emission control
US20050039598A1 (en) Control of mercury emissions from solid fuel combustion
EP2289608B1 (en) System and method for protecting a scr catalyst from large particle ash
US20040244657A1 (en) Control of mercury emissions from solid fuel combustion
US20100061906A1 (en) Method and a device for removing nitrogen oxides and sulphur trioxide from a process gas
JPS5824174B2 (en) Exhaust gas treatment method
RU2001128041A (en) Circulating fluidized bed reactor having a selective catalytic reduction system
JPH0693974B2 (en) Combustion exhaust gas treatment method
JPH0729028B2 (en) Denitration treatment method
KR100870758B1 (en) The flue-gas treatment process of fluidized bed boiler system
CN114849434A (en) Prilling tower system and tail gas treatment device
WO2017022519A1 (en) Coal-fired power generation equipment
CN111001292B (en) Coal chemical looping combustion demercuration device and method
EP0216885A1 (en) Method and catalyst for reducing the nitrogen oxide of flue gases
JPS6357094B2 (en)
JPS583730B2 (en) Exhaust gas treatment method
CN213253734U (en) Granule burnt desulfurization weary burnt device of recycling
JPS63258622A (en) Denitration method
JPS62176523A (en) Denitration treatment apparatus
JPH0194925A (en) Apparatus for removing nitrogen oxides in flue gas
JP3294046B2 (en) Flue gas treatment system

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term