JPS59196719A - Treatment of exhaust gas - Google Patents

Treatment of exhaust gas

Info

Publication number
JPS59196719A
JPS59196719A JP58071112A JP7111283A JPS59196719A JP S59196719 A JPS59196719 A JP S59196719A JP 58071112 A JP58071112 A JP 58071112A JP 7111283 A JP7111283 A JP 7111283A JP S59196719 A JPS59196719 A JP S59196719A
Authority
JP
Japan
Prior art keywords
gas
reactor
exhaust gas
added
catalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58071112A
Other languages
Japanese (ja)
Inventor
Kazuyoshi Takahashi
和義 高橋
Shinichi Yamada
慎一 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Heavy Industries Ltd
Original Assignee
Sumitomo Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Heavy Industries Ltd filed Critical Sumitomo Heavy Industries Ltd
Priority to JP58071112A priority Critical patent/JPS59196719A/en
Publication of JPS59196719A publication Critical patent/JPS59196719A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters

Landscapes

  • Treating Waste Gases (AREA)

Abstract

PURPOSE:To prevent an NH3 leak while high denitration ratio is kept, in a desulfurizing and denitrating method for passing exhaust gas through two reactors each filled with a carbonaceous catalyst while mixing NH3 in said gas, by adding SO3 or H2SO4 to the outlet gas of the second reactor before dust collection. CONSTITUTION:NH3 is added to NOx and SOx-containing exhaust gas from a line 2 while the NH3 added gas is introduced into a moving bed reactor 3 receiving a carbonaceous catalyst 4 to perform desulfurization and denitration. NH3 is again injected into the gas exhausted from the reactor 3 from a line 6 while the NH3 added gas is passed through a moving bed reactor 7 receiving a carbonaceous catalyst 8 to perform denitration and desulfurization and, thereafter, SO3 or H2SO4-containing gas is introduced into a line 9 to convert leaked NH3 in the gas to (NH4)2SO4 or NH4HSO4 which is, in turn, collected along with fly ash by a dust collector 10. The catalysts discharged from the reactors 3, 7 are regenerated under heating in a regenerator 12 to be recirculated. The high concn. SO2 gas recovered from the regenerator 12 is used as a stock material of SO3 or H2SO4 to be added to the outlet gas of the reactor 7.

Description

【発明の詳細な説明】 本発明はイオウ酸化物及び窒素散化物を含有する排ガス
の処理方法に関し5詳しくは排ガス処理の際に混入され
るアンモニアのリークの問題を解決する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for treating exhaust gas containing sulfur oxides and nitrogen dispersions, and more particularly to a method for solving the problem of leakage of ammonia mixed in during exhaust gas treatment.

石炭、重油たきゲイジ排ガスや製鉄所焼結炉排ガス等の
様にイオウ酸化物(SOxJ及び窒素酸化物(NOxJ
を高濃度に含有する排ガスの処理方法として、排ガス中
にアンモニアを混入した後、炭素質触媒の充填床に排ガ
スを通過させて処理する方法が知られている。この方法
でij、 SOxとNOx f同時に除去でき゛る上、
触媒の再生使用が可能である等の利点金偏えている。
Sulfur oxides (SOxJ and nitrogen oxides (NOxJ) are
A known method for treating exhaust gas containing a high concentration of is to mix ammonia into the exhaust gas and then pass the exhaust gas through a packed bed of carbonaceous catalyst. With this method, SOx and NOx f can be removed simultaneously, and
Advantages such as the ability to reuse the catalyst are significant.

しかしながら、この方法でNOx f効率よく除去する
には、少なくとも200℃以上の、好ましくは220〜
250℃程度の反応温度が必要であって、これよシ低温
度ではNOx f充分に除去することはできない。とこ
ろが、200℃の反応温度では排ガス中の酸累によって
炭素質触媒の一部が、c−1−ot−+co、の如く消
費はれてしまう問題がある。また、ボイラ等からの排ガ
スはエアヒータ等の出口でほぼ150℃前後であるので
、排ガスを200℃以上の温度に予熱しなければならな
い点でも不利である。
However, in order to efficiently remove NOx f with this method, the temperature must be at least 200°C or higher, preferably 220°C or higher.
A reaction temperature of about 250° C. is required, and NOx f cannot be removed sufficiently at lower temperatures. However, at a reaction temperature of 200[deg.] C., there is a problem in that part of the carbonaceous catalyst is consumed as c-1-ot-+co due to acid accumulation in the exhaust gas. Further, since the temperature of exhaust gas from a boiler or the like is approximately 150° C. at the outlet of an air heater or the like, it is also disadvantageous in that the exhaust gas must be preheated to a temperature of 200° C. or higher.

これに対し、 SOxは勿論、150℃程度の温度にお
いてもNOx f高い除去率でもって除去可能な方法が
提案されている。この方法は、排ガス中にアンモニアを
混入し、この混合ガスを第1の反応器に導いて大部分の
SOXを除去した後、処理済ガスに改めてアンモニアを
混入し、この混合ガスを第2の反応器に導いて再処理す
るものである。
In contrast, a method has been proposed that can remove not only SOx but also NOx at a high removal rate even at temperatures of about 150°C. In this method, ammonia is mixed into the exhaust gas, this mixed gas is introduced into the first reactor to remove most of the SOX, and then ammonia is mixed into the treated gas again, and this mixed gas is introduced into the second reactor. It is introduced into a reactor and reprocessed.

しかしながら、この方法では、第2の反応器で高い脱硝
率が得られるものの、処理ガス中に多址のアンモニアが
リークして2次公害の恐れが生ずる・仮に詳述する様に
第1の反応器の出口ガスへのアンモニアの混入量を少な
くすると?IJH,IJ−り儀は少なくなるが、脱硝率
の低下を招(結果になる□ 不発明の目的に、高い脱硝率を維持し、かつアンモニア
のリークの問題をVPf決する排ガスの処理方法を提供
するり[にある6 本発明者らは、上記方法において第2の反応器出口ガス
にSO,又は)]2So4奮添〃11シブこ(iミ、集
じん処理を施すことで不発明の目IJすが赴成されるこ
と7児い出し本発明を兄成し罠。
However, in this method, although a high denitrification rate can be obtained in the second reactor, there is a risk of secondary pollution due to large amounts of ammonia leaking into the treated gas. What if we reduce the amount of ammonia mixed into the outlet gas of the vessel? IJH, IJ-reduction will be reduced, but the denitrification rate will be reduced (result) □ It is an object of the present invention to provide an exhaust gas treatment method that maintains a high denitrification rate and solves the problem of ammonia leakage by VPf. [6] In the above method, the present inventors added SO, or )]2So4 to the second reactor outlet gas. When IJ is appointed, he gives birth to seven children and uses the invention as a trap.

NOxとSOxを含有する排ガスの処理プロセスの一例
を示しfc第1図りこぞって本発明を1況明する。10
0−170℃程度に温調されlこ排ガスはラインlを介
して直焚流式移動床反応器3に導入される。この隙ライ
ン2を介してアンモニアが排ガスに添加される。排ガス
は1反応器3内を下降する炭素質触媒床4と接19’J
iして脱硫・脱硝処理されt後、反応器3から排出嘔れ
る。
An example of a process for treating exhaust gas containing NOx and SOx will be shown and the present invention will be explained in detail in the fc first diagram. 10
The exhaust gas, whose temperature is controlled to about 0-170°C, is introduced into the direct firing type moving bed reactor 3 via line 1. Ammonia is added to the exhaust gas via this gap line 2. The exhaust gas descends in the reactor 3 and comes in contact with the carbonaceous catalyst bed 4.
After being subjected to desulfurization and denitrification treatment, it is discharged from the reactor 3.

この排出されm排ガスは、ライン5を介して第2の直交
流式移動床反応器7へ尋人される。この際ライン6を介
してアンモニアが改めて注入される。排ガスは1反応器
7内を下降する炭素質触媒床8と接触して脱硝・脱硫処
理された後、ライン9を介して集じん器lOへ導入これ
る。
This discharged waste gas is sent to the second cross-flow moving bed reactor 7 via line 5. At this time, ammonia is injected again via line 6. The exhaust gas comes into contact with the carbonaceous catalyst bed 8 descending in the reactor 7 and is subjected to denitrification and desulfurization treatment, and then is introduced into the dust collector IO via the line 9.

この際、ライン21を介してSO3又はH,f90.の
含有ガスを導入してガス中のり−クNH,を、主として
(NH4J、SO4又はNH,H3O4としてフライア
ッシュと共に集じん処理する。集じん器工0で処理され
たガスμライン11を介して大気へ放出される。乗じん
器10で捕集されたアンモニウム塩を含有したフライア
ッシュはゼイラー等で焼却処理される。なお、集じん器
としては電気集じん器、バグフィルタ、その他マルチサ
イクロン等のいずれを使用しても良い。
At this time, SO3 or H, f90. The glue NH in the gas is mainly collected together with fly ash as (NH4J, SO4 or NH,H3O4). It is released into the atmosphere.The fly ash containing ammonium salts collected by the dust multiplier 10 is incinerated by Zeiler, etc.The dust collector may be an electrostatic precipitator, a bag filter, or a multi-cyclone, etc. You can use either one.

−万、反応器3及び7よ〕排出される触媒は再生器12
Vこ導かれ、ここ′t″^温不活性ガス雰囲気下300
〜600℃に加熱・再生された後。
- ten thousand, reactors 3 and 7] The catalyst discharged from the regenerator 12
V was guided here 't''^ under a warm inert gas atmosphere for 300 minutes.
After being heated and regenerated to ~600℃.

反応器3及び7の各々の頂部に戻されて再使用される。It is returned to the top of each of reactors 3 and 7 for reuse.

あるいは触媒の流れとしで、第2の反応器7より排出さ
れる触媒を第1の反応器3に供給し、ここで排出される
触媒盆再生器12へ供給し再生仮、第2の反応器7へ供
給して循環使用しても良い^ 反応器7の出口ガスに添加されるS OB又にH,S 
O4は通常再生器12で回収される市纏度S02ガスを
原料とする。この高儂庇5()2ガスは硫酸、イオウ、
石コウ等の副生品として回収される・第1図ではイオウ
を回収し、この回収工程力・らのテールガスをリークN
f(3除去に利用する場合を示す・再生器12内で発生
した高鹸f131o2ガスは、石炭又はコークス等が充
填きれた移動床式の還元反応器14へ空気と共に供給さ
れ、ここで800〜950℃の温度でS02の還元反応
が行われる。還元反応器14からのS、H2S、COS
、Soy等を含むガスは集じん器15を経てイオウコン
デンサー16で冷却されてイオウが回収される。更にコ
ンデンサーエ6を出たガスは温調器(図示されていない
〕で昇温後、クラウス反応器17及びイオウコンデンサ
ー18金経てイオウが回収される。クラウヌ反応は通常
2段以上のクラウス反応器により実施される。
Alternatively, as a catalyst flow, the catalyst discharged from the second reactor 7 is supplied to the first reactor 3, and then supplied to the catalyst tray regenerator 12 from which it is discharged, and then regenerated and then transferred to the second reactor. It may be supplied to 7 and used for circulation ^ S OB or H, S added to the outlet gas of reactor 7
The raw material for O4 is usually municipal S02 gas recovered in the regenerator 12. This high school gas 5()2 gas is sulfuric acid, sulfur,
Sulfur is recovered as a by-product of gypsum, etc. Figure 1 shows that sulfur is recovered and the tail gas of this recovery process is leaked.
Highly saponified f131o2 gas generated in the regenerator 12 is supplied together with air to a moving bed type reduction reactor 14 filled with coal or coke, etc. A reduction reaction of S02 is carried out at a temperature of 950° C. S, H2S, COS from the reduction reactor 14
, Soy, etc. passes through a dust collector 15 and is cooled in a sulfur condenser 16 to recover sulfur. Furthermore, the gas exiting the condenser 6 is heated in a temperature controller (not shown), and then passes through a Claus reactor 17 and a sulfur condenser 18, where sulfur is recovered.The Claus reaction is usually carried out in two or more Claus reactors. Implemented by

コンデンサー18を出たガスはデミスタ−19を経友後
、焼却処理でれ反応器30入口へ戻される。この際、焼
却処理前又は処理後のガスの一部を触媒反応器20に通
してSO8をS O3に酸化後、ライン21を介して集
じん器入口に注入してリークNH,全捕集除去する。触
媒反応器20に使用される触媒としては、特に制限はな
く、通常使用される酸化バナジウム系の触媒を使用すれ
ば充分目的を達成することができる。
The gas exiting the condenser 18 passes through a demister 19, is incinerated, and is returned to the inlet of the reactor 30. At this time, a part of the gas before or after the incineration process is passed through the catalytic reactor 20 to oxidize SO8 to SO3, and then injected into the inlet of the dust collector via the line 21 to collect and remove all leaked NH. do. The catalyst used in the catalytic reactor 20 is not particularly limited, and the purpose can be sufficiently achieved by using a commonly used vanadium oxide catalyst.

他に、ライン21より注入されるSO5又はH2SO4
源としては、ライン13の高濃度SO,ガスの一部を酸
化して使用しても良く、あるいは副生品として硫酸を回
収する場合にはSOs含有のテールガスを使用しても良
い。あるいは反応器3の下部より排出される触媒粉(硫
酸を吸着しているノヲライン21を介して添加しても良
い。
In addition, SO5 or H2SO4 injected from line 21
As a source, high concentration SO in the line 13 may be used by oxidizing a part of the gas, or when recovering sulfuric acid as a by-product, tail gas containing SOs may be used. Alternatively, the catalyst powder may be added through the nozzle line 21 which adsorbs sulfuric acid, which is discharged from the lower part of the reactor 3.

排ガス中へ添加されるS03又はH,So、の量は。What is the amount of S03 or H, So added to the exhaust gas?

ガス中のNH,1モルに対して0.2〜1モル程度が好
ましく、より好ましくは硫安の生成条件である0、 5
モル程度である。
It is preferably about 0.2 to 1 mole per mole of NH in the gas, and more preferably 0.5 to 1 mole, which is the condition for producing ammonium sulfate.
It is on the order of moles.

なお、不発明における第1及び第2の反応器には、活性
炭や石炭を熱処理あるいは水蒸気等で賦活して得られる
活性コークス粒等の炭素質触媒が一般に使用されるが、
この触媒にバナジウム、鉄、銅等の金属酸化物を担持さ
せることもできる・ 以上、イオウ酸化物濃度の商い排カスを処理する場合を
説明したが、イオウ酸化物濃度の低い排ガス(約300
 ppm以下〕、例えはLNG燃焼排ガス、ゴミ焼却炉
排ガヌ、湿式脱硫装置で予め処理された排ガスを処理す
る場合には。
In addition, in the first and second reactors in the invention, a carbonaceous catalyst such as activated coke grains obtained by heat treating coal or activating coal with steam etc. is generally used.
Metal oxides such as vanadium, iron, copper, etc. can also be supported on this catalyst. The case where the exhaust gas with a low sulfur oxide concentration (approx.
ppm or less], for example, when processing LNG combustion exhaust gas, garbage incinerator exhaust gas, or exhaust gas that has been pretreated with a wet desulfurization device.

第1の反応器は省略はれ、その構成例は第2図に示す通
りである。処理すべき排ガスのSOx濃度は低いため1
通常、S02ガスの副生品の製造工程は省略される。
The first reactor is omitted, and an example of its configuration is as shown in FIG. Since the SOx concentration of the exhaust gas to be treated is low, 1
Normally, the process for producing the S02 gas by-product is omitted.

本発明者らは、 NH,注入tが脱硫率及び脱硝率に及
はす影響全実験により確認した。第3白はSo、110
50pp、NOx 230ppm、 H,07,8係%
0.3.8係を含む排ガスに所定量のアンモニアを注入
し、この混合ガス’1145℃の条件で炭素質触媒を充
填した第1の直交流式移動床反応器に空間速度600 
hr−1の速度で通過させた場合のNu、注入量とN 
Ox + 802除去率及びNHsリーク量の関係を示
すグラフである。なお、この場合の反応器内での触媒の
滞留時間は33 hrである。
The present inventors confirmed the effect of NH injection on the desulfurization rate and the denitrification rate through all experiments. 3rd white is So, 110
50pp, NOx 230ppm, H, 07, 8%
A predetermined amount of ammonia is injected into the exhaust gas containing 0.3.8, and the mixed gas is heated at 1145°C to the first cross-flow moving bed reactor filled with a carbonaceous catalyst at a space velocity of 600.
Nu, injection amount and N when passed at a speed of hr-1
It is a graph showing the relationship between Ox + 802 removal rate and NHs leakage amount. Note that the residence time of the catalyst in the reactor in this case was 33 hr.

第3図に示した結果から、 NH3リーク量は数ppm
  以下で問題ないが、脱硝率は20〜4゜チ程度と低
いことが判る。
From the results shown in Figure 3, the amount of NH3 leakage is several ppm.
There is no problem below, but it can be seen that the denitrification rate is low at about 20 to 4 degrees.

第4図は、SO250ppm、 NOx 160 pp
m 。
Figure 4 shows SO250ppm, NOx 160ppm
m.

H,07,8% 、 0.3.8係を含む排ガスに所定
量のアンモニアを注入し、この混合ガスを145℃の条
件で炭素質触tl&を充填した第2の移動床反応器に空
間速g 800 hr−”  の速度で通過させた場合
の結果である。この反応器内での触媒の滞留時間は25
 hrでちる。第4図に示した結  実。
A predetermined amount of ammonia was injected into the exhaust gas containing H, 07.8%, and 0.3.8%, and the mixed gas was transferred to a second moving bed reactor filled with carbonaceous reactor at 145°C. The results are obtained when the catalyst is passed through the reactor at a speed of 800 hr-''.The residence time of the catalyst in this reactor is 25
Chill in hr. Fruit set shown in Figure 4.

来がら、第2の反応器の入ロSO,濃度が低いため高い
脱硝率を得ることが可能ではあるが、脱硝率全高(丁ゐ
ほどNH,jJ−り量が増大すること及びこれよυ脱硝
率の同上が困離であることが判る。         
            1本発明では、第2の反応器
出口ガスにso、又はH2So4f添加するため、ガス
中のNH3と迅速に反応してアンモニウム塩を形成し7
ライ了ツシユと共に集じん器で捕集ζ力る。このため、
乗じん処理後のガス中のN1(3は低減これ、NH3リ
ークの問題が解決できる。また、こカ、よ!l11第2
の反応器入口のNH8注入吋を多ぐすることができ、脱
硝率の向上が図れる。更に、イオウ回収又は硫酸回収等
のテールカス全利用できるため、テールガスの処理に対
1−る負荷の低減が崗れる。
Although it is possible to obtain a high denitration rate due to the low SO concentration in the second reactor, the total denitrification rate (the amount of NH,jJ- increases as much as It can be seen that the same level of denitrification rate is difficult.
1 In the present invention, since SO or H2So4f is added to the second reactor outlet gas, it quickly reacts with NH3 in the gas to form an ammonium salt.
Collect it with a dust collector together with the light. For this reason,
The N1 (3) in the gas after the multiplication treatment is reduced.This can solve the problem of NH3 leakage.
The amount of NH8 injected at the inlet of the reactor can be increased, and the denitrification rate can be improved. Furthermore, since the tail gas can be fully utilized for sulfur recovery or sulfuric acid recovery, the load on tail gas treatment can be reduced by 1-1.

な訃、第2図に示した球にSOx濃度の低い排ガス処理
の場合の作用効果は上記の説明より叩解される通ジであ
る。〕 施例1 1050 ppmのSOxと230 ppmのNOxと
を含有する排ガスに500 pprnのアンモニアガス
を混入後、この混合ガスを145℃の温度にて粒状の炭
素質触媒が充填された直交流式移動床反応器に空間速度
600 hr−”  の速度で通過させた。この場合1
反応器内の触媒の滞留時1faは33時間に設定されて
いる。この反応器での脱硫率は95.2qb、脱硝率は
30%であった。
However, the effect of treating exhaust gas with a low SOx concentration using the bulb shown in FIG. 2 is clear from the above explanation. [Example 1] After 500 pprn of ammonia gas was mixed into exhaust gas containing 1050 ppm SOx and 230 ppm NOx, this mixed gas was heated to 145°C in a cross-flow system filled with granular carbonaceous catalyst. was passed through the moving bed reactor at a space velocity of 600 hr-''. In this case 1
The residence time 1fa of the catalyst in the reactor is set to 33 hours. The desulfurization rate in this reactor was 95.2 qb, and the denitrification rate was 30%.

またNH,リークh【は0.5ppmであつ友。Also, NH and leak h[are good friends at 0.5 ppm.

次に、前記反応器の出口ガスに再度170ppmのアン
モニアガスを混入し、上記とは別の炭素質触媒が充填さ
れ建直交流式移動床反応器に空間速度800 hr” 
 の速度で通過させ友。
Next, 170 ppm of ammonia gas was again mixed into the outlet gas of the reactor, and a carbonaceous catalyst different from the above was filled into the vertical flow moving bed reactor at a space velocity of 800 hr.
Let your friend pass at the speed of.

この場合1反応器内の触媒の滞留時間は25時間に設定
されている。この反応器での第2の反応器の導入ガスに
対する脱硫率は1001、脱硝率は86係であった。従
って第1及び第2の反応器での総合の脱硫率は100%
、脱硝率は90%であった。tた、Nl(、リーク量は
19ppm %含しん量は70■/Ndであつ几・更に
、第2の反応器の出口カスにSo、 全9ppm添加し
た抜、電気集じん器へ導入した結果。
In this case, the residence time of the catalyst in one reactor was set at 25 hours. In this reactor, the desulfurization rate with respect to the gas introduced into the second reactor was 1001, and the denitration rate was 86. Therefore, the total desulfurization rate in the first and second reactors is 100%.
The denitrification rate was 90%. The leakage amount was 19 ppm, and the amount of sulfur was 70 μ/Nd.Furthermore, a total of 9 ppm of So was added to the exit sludge of the second reactor, and the results were introduced into the electrostatic precipitator. .

集じん器出ロガヌのNH,量は’Ppmh含じん量は1
019/Nnlであった。またSO8はほとんど検出さ
れなかった◎ 実施例2 s o ppmの80 xと170 [1mのNOx”
je含准する排ガスにi s o ppmのアンモニア
ガスを混入後、この混合ガス(i7145 ’Cの温度
にて粒状の炭素質触媒が充填された直交流式移動床反応
器に空間速度80 U hr”  の速度で通過式せた
The amount of NH from the dust collector is 'Ppmh, and the amount of dust is 1.
It was 019/Nnl. Also, SO8 was hardly detected ◎ Example 2 SO ppm of 80 x and 170 [NOx of 1 m]
After mixing iso ppm of ammonia gas into the exhaust gas containing je, this mixed gas (at a temperature of 7145'C) was transferred to a cross-flow moving bed reactor packed with granular carbonaceous catalyst at a space velocity of 80 U hr. ” I was able to pass at a speed of .

この場合1反応器内の触媒の滞留時間に25時間に設定
されている。この反応器での脱硫率は1o O% b脱
硝率は85循であった。ま1こNH。
In this case, the residence time of the catalyst in one reactor is set to 25 hours. The desulfurization rate in this reactor was 100%, and the denitrification rate was 85 cycles. Ma1ko NH.

リーク量は20 ppm、含じん量は50Q/Nr%で
あった。
The leakage amount was 20 ppm, and the dust content was 50Q/Nr%.

次に、前記反応器の出口カスにSO8を1θppm添加
した後、バグフィツトグーへ導入し1こ結果、パグフイ
月・ター出口のNH3%jに2 ppm、含じん量はl
 TR9/ Niであった。またSO3はほとんど検出
されなかった・
Next, 1θppm of SO8 was added to the outlet scum of the reactor, and then introduced into the baggage filter.
It was TR9/Ni. Also, SO3 was hardly detected.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はNOxとSOx  全含有する刊ガスの処理プ
ロセスの一例を示したものである。第2図は低@度のS
OX  を含有する排ガスの処理ゾロセスの一例を示し
たものである、第3図及び第4図は、NH8注入量とN
Ox、80214を去率及びNHsリーク虜の関係を示
すグラフである。 3.7・・・直交流式移動床反応器 ]0・・・集じん器    12・・・拘生器20  
触媒反応器 笛3図 剤4閃
FIG. 1 shows an example of a treatment process for a gas containing NOx and SOx. Figure 2 shows low @ degree S
Figures 3 and 4, which show an example of the treatment of exhaust gas containing OX, show the relationship between the NH8 injection amount and the N
It is a graph showing the relationship between the removal rate of Ox, 80214, and NHs leak rate. 3.7...Cross-flow type moving bed reactor] 0... Dust collector 12... Container 20
Catalyst reactor whistle 3 figure agent 4 flash

Claims (1)

【特許請求の範囲】 1、 窒素酸化物とイオウ酸化物を含有する排ガスにア
ンモニアを混入し、この混合ガスを炭素質触媒を充填し
fc第1の反応器に導入して脱硫・脱硝処理を行い、こ
の処理ガスに改めてアンモニア全混入し、この混合ガス
全炭素質触媒を充填した第2の反応器に導入して脱硝・
脱硫処理全行い、第2の反応器出口ガスにSO3又はH
2SO,’i添加した後、集じん処理を施す排ガスの処
理方法。 2、 イオウ酸化物含有量の低い窒素酸化物含有排ガス
にアンモニアを混入し、この混合ガスを炭素質触媒を充
填した反応器に導入して脱硝・脱硫処理を行い、この処
理ガスにSO8又はH,S O4を添加した後、集じん
処理を施す排ガスの処理方法。
[Claims] 1. Ammonia is mixed into the exhaust gas containing nitrogen oxides and sulfur oxides, and this mixed gas is filled with a carbonaceous catalyst and introduced into the FC first reactor to undergo desulfurization and denitrification treatment. This treated gas is then completely mixed with ammonia, and this mixed gas is introduced into a second reactor filled with a fully carbonaceous catalyst for denitration and denitrification.
After completing the desulfurization process, add SO3 or H to the second reactor outlet gas.
An exhaust gas treatment method that performs dust collection treatment after adding 2SO,'i. 2. Mix ammonia into nitrogen oxide-containing exhaust gas with a low sulfur oxide content, introduce this mixed gas into a reactor filled with a carbonaceous catalyst to perform denitrification and desulfurization treatment, and add SO8 or H to this treated gas. , SO4 is added, followed by dust collection treatment.
JP58071112A 1983-04-22 1983-04-22 Treatment of exhaust gas Pending JPS59196719A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58071112A JPS59196719A (en) 1983-04-22 1983-04-22 Treatment of exhaust gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58071112A JPS59196719A (en) 1983-04-22 1983-04-22 Treatment of exhaust gas

Publications (1)

Publication Number Publication Date
JPS59196719A true JPS59196719A (en) 1984-11-08

Family

ID=13451142

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58071112A Pending JPS59196719A (en) 1983-04-22 1983-04-22 Treatment of exhaust gas

Country Status (1)

Country Link
JP (1) JPS59196719A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104436994A (en) * 2014-11-17 2015-03-25 南京朗洁环保科技有限公司 Algae-char-impact-tower-based mercury removal method and preparation method of algae char
CN108697978A (en) * 2017-02-02 2018-10-23 北海道电力株式会社 The operation method of desulphurization system
CN108939904A (en) * 2018-07-04 2018-12-07 华润水泥技术研发有限公司 A kind of desulfurizing agent composition and its application in clinker production

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104436994A (en) * 2014-11-17 2015-03-25 南京朗洁环保科技有限公司 Algae-char-impact-tower-based mercury removal method and preparation method of algae char
CN104436994B (en) * 2014-11-17 2016-08-24 南京朗洁环保科技有限公司 A kind of demercuration method and preparation method of marine alga Jiao clashing into tower based on marine alga Jiao
CN108697978A (en) * 2017-02-02 2018-10-23 北海道电力株式会社 The operation method of desulphurization system
CN108939904A (en) * 2018-07-04 2018-12-07 华润水泥技术研发有限公司 A kind of desulfurizing agent composition and its application in clinker production

Similar Documents

Publication Publication Date Title
US10471383B2 (en) Dust removal and desulfurization of FCC exhaust gas
US4053554A (en) Removal of contaminants from gaseous streams
US4029752A (en) Method of producing sulfur from sulfur dioxide
US3533748A (en) Removal of sulfur oxides from waste gases
CA1072723A (en) Method of removing sulfur dioxide from flue gases
CN103212281A (en) Smoke desulfurization and denitrification integration method and special device thereof
JPS5911329B2 (en) How to remove nitrogen oxides and sulfur oxides from exhaust gas
US3959440A (en) Method for removing SO2 and NOx simultaneously from the exhaust of a combustion furnace
US4541999A (en) Method for removing acidic components including nitrogen oxide from waste gases
JPS59196719A (en) Treatment of exhaust gas
CN105771581B (en) Desulfurization and denitrification integral method
US4201753A (en) Flue gas desulfurization process
PL69777B1 (en)
JPH0154089B2 (en)
JPH02277522A (en) Process for removing sox from gas mixture
JPH08155300A (en) Dry denitration of sulfur oxide-containing low temperature exhaust gas and desulfurizing-denitrating catalyst
CN104084023A (en) Method for performing desulfurization and denitration on flue gas simultaneously
US3660040A (en) Gaseous oxide recovery
JPS6071029A (en) Simultaneous removal of sulfur oxide and nitrogen oxide
CN114904381B (en) Cement production system and gas treatment method thereof
PL123282B1 (en) Method of removing nitrogen and sulphur oxides from furnace exhaust gases
SU596541A1 (en) Method of reclaiming used ammonia sulphite-bisulphite solutions
JPH09236389A (en) Waste gas treatment apparatus of dl type sintering machine and treatment method
JPS62277127A (en) Removal of sulfur oxide from gaseous and/or liquid waste
JPS6061024A (en) Process for removing sox and nox simultaneously