JPS59204296A - Board for printed circuit - Google Patents

Board for printed circuit

Info

Publication number
JPS59204296A
JPS59204296A JP7937783A JP7937783A JPS59204296A JP S59204296 A JPS59204296 A JP S59204296A JP 7937783 A JP7937783 A JP 7937783A JP 7937783 A JP7937783 A JP 7937783A JP S59204296 A JPS59204296 A JP S59204296A
Authority
JP
Japan
Prior art keywords
metal
printed circuit
insulating layer
metal particles
particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7937783A
Other languages
Japanese (ja)
Other versions
JPH0316800B2 (en
Inventor
孝志 荘司
大石 直明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Holdings Corp
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP7937783A priority Critical patent/JPS59204296A/en
Publication of JPS59204296A publication Critical patent/JPS59204296A/en
Publication of JPH0316800B2 publication Critical patent/JPH0316800B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Insulated Metal Substrates For Printed Circuits (AREA)
  • Laminated Bodies (AREA)
  • Adhesives Or Adhesive Processes (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 (1)技術分野 本発明は電子工業用配吻、放熱板等に用いられる熱伝導
性の良い電気絶縁基板に関する。
DETAILED DESCRIPTION OF THE INVENTION (1) Technical Field The present invention relates to an electrically insulating substrate with good thermal conductivity used for proboscises, heat sinks, etc. in the electronic industry.

(2)背景技術の説明 前記電気絶縁基板は通常樹脂層を金属板上に貼付けた構
造となっておバ樹脂層上へCu箔を張付は印刷回路とな
る部分のCu箔全全マスク、マスク外に表出されたCu
箔をエツチング等で溶解除去して、印刷回路を形成する
。また、Cu箔を用いる代わりに樹脂層上に導電性ペー
スト等を用い、これ全同様にエツチングして印刷回路を
形成することも可能である。かくして形成された印刷回
路上には、トランジスター、ダイオード、抵抗、コンデ
ンサー等の種々・の部品全搭載する。これは実装といわ
れる。これらの部品は発熱するために、電気絶縁基板は
熱放電性が必要であり、電気絶縁性も当然必要である。
(2) Description of background technology The electrically insulating board usually has a structure in which a resin layer is pasted on a metal plate, and a Cu foil is pasted on the resin layer to mask the entire area of the Cu foil that will become the printed circuit. Cu exposed outside the mask
The foil is dissolved and removed by etching or the like to form a printed circuit. Furthermore, instead of using Cu foil, it is also possible to use a conductive paste or the like on the resin layer and to form a printed circuit by etching it in the same manner. All the various components such as transistors, diodes, resistors, and capacitors are mounted on the printed circuit thus formed. This is called implementation. Since these parts generate heat, the electrically insulating substrate needs to have heat discharge properties, and of course also needs to have electrical insulation properties.

(3)従来技術及びその問題点の説明 従来、印刷配線板、放熱板等の基板材料には紙基材フェ
ノール樹脂積層板あるいはガラス基材ニゲキシ樹脂積層
板などの有機高分子材料と基材との複合物や、アルミナ
基板などのセラミック栃料が用いられているが、いづれ
も熱伝導率が小さく、熱放散が不充分なためIC、MS
I 、 LSIなどの高発熱部品を高密度に配置(実装
)することができない欠点があった。
(3) Explanation of the prior art and its problems Conventionally, substrate materials such as printed wiring boards and heat sinks have been made of organic polymer materials and base materials such as paper-based phenol resin laminates or glass-based Nigeki resin laminates. Composites such as aluminum and ceramic materials such as alumina substrates are used, but both have low thermal conductivity and insufficient heat dissipation, so they are not suitable for ICs and MSs.
There was a drawback that high heat generation components such as I and LSI could not be arranged (mounted) at high density.

そこで、耐熱性と熱伝導性にすぐれた金属を基材とした
基板の開発が行なわれて米だ。金属を基材とする基板は
、印刷回路形成上電気絶縁層が必須であり、この電気絶
縁層が熱放電性全低下させないことが肝要となる。そこ
で金属と有機高分子材料との複合積層板、或いはアルミ
ニウム板上に電気絶縁性のアルマイト皮膜を形成した金
属とセラミックの複合基板等が開発されているが、前者
は有機高分子中料の存在の為に熱抵抗が犬きくなシ、ま
た後者はアルマイト皮膜の温度が上昇した場合:アルマ
イト皮膜に割れが入シ、電気絶縁性が悪くなるなどの欠
点がある。前者の熱抵抗を低下させるために、有機高分
子材料中にAt203゜5i02 、 BN等のフィラ
ー全混入した複合積層板も開発されているが、熱抵抗の
低下は不十分である。本出願人は前に有機高分子中に形
状因子が1〜14で、平滑な面全有する多面体状の金属
酸化物粒子が分散した皮膜をアルミニウム等の上に設け
た電気絶縁基板全提案した(特開昭56−35494号
)。だが、このような多面体金属粒子は特殊な製法によ
らなければ得られないため、高価であるという欠点があ
る。
Therefore, efforts have been made to develop substrates made of metal, which has excellent heat resistance and thermal conductivity. For substrates based on metal, an electrically insulating layer is essential for forming a printed circuit, and it is important that this electrically insulating layer does not completely reduce thermal discharge properties. Therefore, composite laminates of metal and organic polymer materials, or composite substrates of metal and ceramic with an electrically insulating alumite film formed on an aluminum plate, etc., have been developed. The latter has drawbacks such as cracking in the alumite film and poor electrical insulation when the temperature of the alumite film increases. In order to reduce the thermal resistance of the former, a composite laminate in which fillers such as At203°5i02 and BN are completely mixed in the organic polymer material has been developed, but the reduction in thermal resistance is insufficient. The present applicant has previously proposed an electrically insulating substrate in which a film in which polyhedral metal oxide particles with a shape factor of 1 to 14 and all smooth surfaces are dispersed in an organic polymer is provided on aluminum or the like ( JP-A-56-35494). However, such polyhedral metal particles can only be obtained by a special manufacturing method, so they have the disadvantage of being expensive.

更に、有機高分子中にガラス繊維を入れることも特開昭
57−56988号及び%開昭57−155794号に
よシ公知であるが、繊維間に気泡の巻き込みを避けられ
ず、このためし・工脂層の熱伝導性能が低下する。
Furthermore, it is known to incorporate glass fibers into organic polymers, as disclosed in Japanese Patent Application Laid-open No. 57-56988 and Japanese Patent Application Publication No. 57-155794.・Thermal conductivity of the resin layer decreases.

(4)発明の目的 本発明の目的は、基板の金属と有機高分子との複合基板
において、熱伝導性能を改良すること全目的とする。
(4) Purpose of the Invention The purpose of the present invention is to improve the thermal conductivity of a composite substrate of metal and organic polymer.

(5)発明の構成許伊壽桑 本発明は金属板上に絶縁層全役けた印刷回路用基板にお
いて、絶縁層が金属酸化物で被覆これた金属粒子全台ん
でなる有機高分子からなること全特徴とする。
(5) Structure of the Invention The present invention is a printed circuit board having an insulating layer on a metal plate, and the insulating layer is made of an organic polymer made of metal particles coated with a metal oxide. shall be.

以下、本発明全図面全参照しつつ説明する。Hereinafter, the present invention will be explained with reference to all the drawings.

第1図は本発明の基板の断面全模式的に示したもので、
1は金属板、例えばアルミニウム板で、これは図示して
ないがアルマイト処理したものでもよい。2が接着性の
ある有機高分子からなる絶縁層で、その中に金属酸化物
で被覆された金属粒子3(以下、被覆金属粒子3と称す
る)が存在している。4は通常のCu箔等である1、金
属&]としてはアルミニウムの他に、高熱伝導性を有す
る銅、銀、ニッケル、チタニウム等が使用可能であるが
、価格、N量等からアルミニウム或いはこれにアルマイ
ト処理したものが最も好ましい。これら金属板1の厚さ
は通常0.5〜3+++mのものが用いられる。絶縁層
2に用いられる接着性のある有磯茜分子としてはエポキ
シ、フェノール等の樹脂、シリコンゴム等のゴム状物等
が使用できる。
FIG. 1 schematically shows the entire cross section of the substrate of the present invention.
Reference numeral 1 denotes a metal plate, for example an aluminum plate, which may be anodized although not shown. Reference numeral 2 denotes an insulating layer made of an adhesive organic polymer, in which metal particles 3 coated with a metal oxide (hereinafter referred to as coated metal particles 3) are present. 4 is ordinary Cu foil, etc. 1. As the metal &], in addition to aluminum, copper, silver, nickel, titanium, etc., which have high thermal conductivity, can be used, but due to price, amount of N, etc., aluminum or this It is most preferable to use alumite treatment. The thickness of these metal plates 1 is usually 0.5 to 3+++ m. As the adhesive molecule used in the insulating layer 2, resins such as epoxy and phenol, rubber-like substances such as silicone rubber, etc. can be used.

本発明の最大の特徴は、被覆金属粒子3を絶縁層2の一
構成分として用いたことであり、被覆金属粒子の金属部
分(芯部)は、熱放散性向上に寄与し、酸化物部分(被
覆層)は金属部分が電気伝導に関与しないよう芯部に被
堕しているために、良好な熱伝導性能と良好な電気絶縁
性が同時に達成される。
The greatest feature of the present invention is that the coated metal particles 3 are used as a component of the insulating layer 2, and the metal part (core) of the coated metal particles contributes to improving heat dissipation, and the oxide part Since the (coating layer) is submerged in the core so that the metal part does not participate in electrical conduction, good thermal conductivity and good electrical insulation are achieved at the same time.

有機高分子中に分散させる被覆金属粒子の量が少な過ぎ
ると熱伝導性が悲くなり、また多過ぎると強固な絶縁層
皮膜を形成でせることか困難となるので、絶縁層3中に
占める粒子の割合は容積で10〜70%、好ましくは2
0〜60%である。
If the amount of coated metal particles dispersed in the organic polymer is too small, the thermal conductivity will be poor, and if it is too large, it will be difficult to form a strong insulating layer film. The proportion of particles is 10-70% by volume, preferably 2
It is 0-60%.

壕だ、絶縁層皮膜形成強度金儲しく劣化させない範囲で
、上記容積比10〜70%のうちの2〜30襲相当分全
、通常市販され、ているセラミ、り微粉(例えば、六方
晶BN 、 BeO、5i(32)で、かつ該稜被覆金
属粒子3より粒径の小さな微粒子をもって添加し、該被
覆金属粒子:3の間に介在させ、絶縁層2のことも可能
である。
However, within a range that does not deteriorate the strength of the insulating layer film formation, an amount equivalent to 2 to 30 layers of the above 10 to 70% volume ratio is usually commercially available, such as ceramic or fine powder (for example, hexagonal BN It is also possible to form the insulating layer 2 by adding fine particles of BeO, 5i (32) and having a smaller particle size than the edge coating metal particles 3 and interposing them between the edge coating metal particles 3.

絶縁層2の厚さは用途目的等によって異なるが一般的に
は0.01〜0.1−が適する。なお、雄脈層2が薄い
ほど熱伝導性は良好となり、絶縁層は悪くなる。また絶
縁層2の4妊は、被覆金属粒子3の直径とほぼ等しく、
有機高分子中に−ノ曽に配列されている状態からランダ
ムに多層分数させろ状態までが可能である。この場合は
当然被覆金属粒子3同志の接触も起こる。本発明に2け
る被覆金属粒子3は高い熱伝導率を有しているので こ
の粒子同志の接触によシ伝熱パスが形成され熱伝導向上
に寄与する。
The thickness of the insulating layer 2 varies depending on the purpose of use, etc., but generally 0.01 to 0.1 - is suitable. Note that the thinner the male vein layer 2, the better the thermal conductivity, and the worse the insulation layer. Further, the diameter of the insulating layer 2 is approximately equal to the diameter of the coated metal particles 3,
It is possible to range from a state in which they are arranged in a uniform arrangement in an organic polymer to a state in which they are randomly arranged in multilayer fractions. In this case, naturally, the coated metal particles 3 also come into contact with each other. Since the coated metal particles 3 in the second aspect of the present invention have high thermal conductivity, a heat transfer path is formed by contact between the particles, contributing to improved heat conduction.

第2図は、被覆金属粒子の断面全模式的に示)−図面で
ある。ここで5は金属粒子、6は金属酸化物粒子す。金
属粒子5は銅、アルミニウム、銀、ニッケル等よりなる
球形、その他任意の形状の微粒子である。この金属粒子
5ばあ−19太きいと必然的に絶縁層が厚くなるので、
一般的には100ミクロン以下、特に30ミクロン以下
程度が適する。釡属1ソ化物6はAt203. MgO
・At203.ムライト、フォルステライトなどよυな
シ、浮式は一般に0.5〜10ミクロン程度である。か
かる被覆金属粒子3は〈1ン属粒子5を眩化物粉末中に
混合し、高速’I:ij押して製造される。
FIG. 2 is a diagram schematically showing the entire cross section of a coated metal particle. Here, 5 is a metal particle and 6 is a metal oxide particle. The metal particles 5 are fine particles made of copper, aluminum, silver, nickel, etc. and have a spherical shape or any other shape. If this metal particle is 5-19 mm thick, the insulating layer will inevitably become thicker, so
Generally, a thickness of about 100 microns or less, particularly about 30 microns or less, is suitable. Kagen 1 So compound 6 is At203. MgO
・At203. Floating types such as mullite and forsterite generally have a diameter of about 0.5 to 10 microns. Such coated metal particles 3 are produced by mixing the <1> group particles 5 into a dazzling powder and pressing at high speed.

これらの金属粒子5全上記した有機旨分子中によく混a
1分散し、硬化剤等全添加して、スフ″V−1印刷法%
Vこよシ金属板の片側面上又は両面上に塗布し、乾燥、
硬化させる。
All of these metal particles 5 are well mixed in the above-mentioned organic molecules.
1 Disperse, add all hardening agents, etc., and make ``V-1 printing method%''
Apply on one side or both sides of the V-koyoshi metal plate, dry,
Let it harden.

(6)実施 ψ1」 実施例 1 5〜20ミクロンの銅粒子75N量部と平均粒径で0.
5ミクロンのアルミナ粉末25重量部とアルミナが^す
5ミクロン付層した被覆金属粒子が得られた。この被覆
金属粒子に150℃で約1()分間の硬化処理全行った
(6) Implementation ψ1" Example 1 75N parts of copper particles of 5 to 20 microns and an average particle size of 0.
Coated metal particles coated with 25 parts by weight of 5 micron alumina powder and a 5 micron layer of alumina were obtained. The coated metal particles were completely cured at 150° C. for about 1 minute.

この様にして作製した被覆金属粒子50mjt部をエポ
キシ樹脂フェス】00重量部全力日えてよく攪拌し、厚
さ35μの銅箔に約80μの厚さになる様に塗工し、接
着層全作製し、ブラスト処理した1、5瓢厚さのアルミ
板に載置して加熱ロールで熱圧着させアルミベース銅張
&全作成した。
50 mjt parts of the coated metal particles thus prepared were coated with 00 parts by weight of epoxy resin, thoroughly stirred, and coated on a 35 μm thick copper foil to a thickness of about 80 μm to prepare the entire adhesive layer. Then, it was placed on a blast-treated aluminum plate with a thickness of 1.5 mm and bonded under heat with a heated roll to create an aluminum base and copper cladding.

同様の方法で10μ以下のAL206粒子全フィラーと
して添加した場合と無象加の場合について熱抵抗を測定
してみた。基板の寸法は50X50閣口として中央部に
] (l X l 5μs口の)ぐノド部をエツチング
で残し、’l’(J −220″トランジスター全放熱
半田全使用して1走した。尚、基板は理想放熱板に固定
して測定した。
In the same manner, the thermal resistance was measured for cases in which AL206 particles of 10 μm or less were added as a total filler and cases in which no engraving was added. The dimensions of the board were 50 x 50 holes in the center, leaving the throat part (l x l 5 μs) by etching, and one run was made using all the heat dissipating solder of the 'l'(J-220" transistor). The measurement was performed with the substrate fixed to an ideal heat sink.

測定結果全次の表に示す。All measurement results are shown in the following table.

す、下余白 第1表 温度上昇率(単位’c、’w ) 表中Tjはトランジスター接合温度、 Psは印カロ′鴫力である。, bottom margin Table 1 Temperature rise rate (unit 'c,'w) In the table, Tj is the transistor junction temperature, Ps is the Inkaro power.

第1表より、本発明の印刷回路基板は比較例に比べ温度
上昇率が低いことが分かる。
From Table 1, it can be seen that the printed circuit board of the present invention has a lower temperature increase rate than the comparative example.

(7)効果 本発明によると、従来/に機高分子中に単にセラミック
粉末全含有せしめた印刷回路基板よりも熱伝導性が改善
される。
(7) Effects According to the present invention, the thermal conductivity is improved compared to the conventional printed circuit board in which the entire ceramic powder is simply contained in the polymer.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係る印刷回路基板の実施態様を示す断
面図、 第2図は被覆金属粒子の模式断面図である。 1・・・金属板、2・・・絶縁層、3・・・彼0金属粒
子、5・・・金属粒子、6・・・金属酸化物。 特許出願人 昭和電工株式会社 特許出願代理人 弁理士 青 木    朗 弁理士 西 舘 和 之 弁理士 村 井 卓 雄 弁理士 山  口 昭 之
FIG. 1 is a sectional view showing an embodiment of a printed circuit board according to the present invention, and FIG. 2 is a schematic sectional view of coated metal particles. DESCRIPTION OF SYMBOLS 1...Metal plate, 2...Insulating layer, 3...Metal particles, 5...Metal particles, 6...Metal oxide. Patent applicant Showa Denko Co., Ltd. Patent agent Akira Aoki Patent attorney Kazuyuki Nishidate Patent attorney Taku Murai Patent attorney Akira Yamaguchi

Claims (1)

【特許請求の範囲】[Claims] 1、金属板上に絶縁層を設けた印刷回路用基板において
、絶縁層が金属酸化物で被覆された金属粒子を含んでな
る有機高分子から々ること全特徴とする印刷回路用基板
1. A printed circuit board comprising an insulating layer provided on a metal plate, wherein the insulating layer is made of an organic polymer containing metal particles coated with a metal oxide.
JP7937783A 1983-05-09 1983-05-09 Board for printed circuit Granted JPS59204296A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7937783A JPS59204296A (en) 1983-05-09 1983-05-09 Board for printed circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7937783A JPS59204296A (en) 1983-05-09 1983-05-09 Board for printed circuit

Publications (2)

Publication Number Publication Date
JPS59204296A true JPS59204296A (en) 1984-11-19
JPH0316800B2 JPH0316800B2 (en) 1991-03-06

Family

ID=13688176

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7937783A Granted JPS59204296A (en) 1983-05-09 1983-05-09 Board for printed circuit

Country Status (1)

Country Link
JP (1) JPS59204296A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62148512A (en) * 1985-12-23 1987-07-02 Matsushita Electric Works Ltd Modification of solidified polyphenylene oxide

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101652747B1 (en) * 2016-05-16 2016-09-01 이종칠 storage for tools with nct punch processing

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62148512A (en) * 1985-12-23 1987-07-02 Matsushita Electric Works Ltd Modification of solidified polyphenylene oxide
JPH0310650B2 (en) * 1985-12-23 1991-02-14 Matsushita Electric Works Ltd

Also Published As

Publication number Publication date
JPH0316800B2 (en) 1991-03-06

Similar Documents

Publication Publication Date Title
TW398163B (en) The plate for heat transfer substrate and manufacturing method thereof, the heat-transfer substrate using such plate and manufacturing method thereof
JP4181778B2 (en) Wiring board manufacturing method
US6649325B1 (en) Thermally conductive dielectric mounts for printed circuitry and semi-conductor devices and method of preparation
JP3418617B2 (en) Heat conductive substrate and semiconductor module using the same
JPS59204296A (en) Board for printed circuit
JPH05299788A (en) Printed wiring board with cooling device
JPH11199759A (en) Hole-filling material for printed circuit board and printed circuit board prepared by using same
JPS605589A (en) High thermal conductive metal base printed board
JPH118450A (en) Metal base circuit board
JPS6043891A (en) High thermal conductivity metal base printed board
JP3614844B2 (en) Thermal conductive substrate
JP3199599B2 (en) Metal-based multilayer circuit board
JPH05291715A (en) Metal core-containing board for printed wiring use
JPS6088492A (en) Printed circuit board
JP4663161B2 (en) Metal base circuit board
TW569659B (en) Multi-layered circuit board with high heat dissipation
JP2000049461A (en) Manufacture of multilayer printed wiring board
JP4921424B2 (en) Insulated metal base circuit board and hybrid integrated circuit module using the same
JPS59224192A (en) High heat conductive metal base printed circuit board
JPH0455558B2 (en)
JP2011119289A (en) Insulating metal base circuit board, and hybrid integrated circuit module using the same
JP2011124244A (en) Insulating metal base circuit board and hybrid integrated circuit module using the same
JPS61124196A (en) Multilayer wiring board
JPS59141283A (en) Metal foil insulating adhesive sheet
JPH0332099A (en) Multilayer printed wiring board