JPS59224192A - High heat conductive metal base printed circuit board - Google Patents

High heat conductive metal base printed circuit board

Info

Publication number
JPS59224192A
JPS59224192A JP9994883A JP9994883A JPS59224192A JP S59224192 A JPS59224192 A JP S59224192A JP 9994883 A JP9994883 A JP 9994883A JP 9994883 A JP9994883 A JP 9994883A JP S59224192 A JPS59224192 A JP S59224192A
Authority
JP
Japan
Prior art keywords
metal base
insulating layer
conductive metal
thermally conductive
wiring board
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9994883A
Other languages
Japanese (ja)
Inventor
新田 功
泰彦 堀尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP9994883A priority Critical patent/JPS59224192A/en
Publication of JPS59224192A publication Critical patent/JPS59224192A/en
Pending legal-status Critical Current

Links

Landscapes

  • Insulated Metal Substrates For Printed Circuits (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、電子機器に利用される熱伝導性の良い高熱伝
導性金属ベースプリン1へ配線板に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a wiring board for a highly thermally conductive metal base 1 with good thermal conductivity used in electronic equipment.

従来例の構成とその問題点 近年、電子機器分野においては、小型化、軽石化の方向
にあり、IC,MS I、LS I、パワートランジス
タなどの高発熱部品をいかに放熱し、高密度に配置(実
装)するかが大きな課題となってきている。
Conventional configurations and their problems In recent years, the electronic equipment field has been trending towards miniaturization and use of pumice, and it is becoming increasingly difficult to dissipate heat from high-heating components such as ICs, MS I, LSI, power transistors, and arrange them in high density. (Implementation) has become a major issue.

従来、プリント配線板の基板材わlには、紙基材フェノ
ール樹脂積層板あるいはガラス基材エポキシ樹脂積層板
などの有機高分子材料や、アルミナ基板などのセラミッ
ク材料が用いられているが、いずれも熱伝導率が小さく
熱放散が不充分なため、IC,MS I、LS I、パ
ワートランジスタなどの高発熱部品を高密度に実装Jる
ことができなかった。
Conventionally, organic polymer materials such as paper-based phenolic resin laminates or glass-based epoxy resin laminates, and ceramic materials such as alumina substrates have been used as substrate materials for printed wiring boards. However, because of their low thermal conductivity and insufficient heat dissipation, it was not possible to mount high-heat generating components such as ICs, MSIs, LSIs, and power transistors in a high density.

そこで、熱伝導性と耐熱性及び機械的強度の優れた金属
をベースとした高熱伝導性金属ベースプリント配線板が
開発されてきた。この従来の高熱伝導性金属ベースプリ
ント配線板には、絶縁層の材料からして、有機高分子材
料でできているものど、金属酸化物を接着性のある有機
高分子中に分散した高熱伝導性のものとがあり、前者が
その主流で、後者は開発段階の状況にある。このような
従来の高熱伝導性金属ベースプリント配線板1こついて
第1図〜第2図を用いて説明する。第1図【は従来の高
熱伝導性金属ベースプリン1〜配線板に加工される高熱
伝導性金属ベース銅張板の断面図、第2図は前記高熱伝
導性金属ベース銅張板を配線加工した従来の高熱伝導性
金属ベースプリン1〜配線板に高発熱部品を含む電子部
品を実装した状態の断面図であり、1は金属ベース、2
は絶縁層、3は銅箔、4は高発熱部品、5は電子部品、
6a。
Therefore, highly thermally conductive metal-based printed wiring boards have been developed that are based on metals with excellent thermal conductivity, heat resistance, and mechanical strength. This conventional high thermal conductive metal-based printed wiring board is made of an organic polymer material from the material of the insulating layer. The former is the mainstream, while the latter is in the development stage. Such a conventional high thermal conductivity metal base printed wiring board 1 will be explained with reference to FIGS. 1 and 2. Figure 1 is a cross-sectional view of a conventional high thermal conductive metal base copper clad plate processed into a conventional high thermal conductive metal base pudding 1 to wiring board, and Figure 2 is a cross sectional view of a high thermal conductive metal base copper clad plate processed into a wiring board. Conventional high thermal conductivity metal base printer 1 - A cross-sectional view of a state in which electronic components including high heat generation components are mounted on a wiring board, 1 is a metal base, 2
is an insulating layer, 3 is a copper foil, 4 is a high heat generation component, 5 is an electronic component,
6a.

6bは半田層、7はシリコングリース、8は放熱フィン
である。絶縁層2を介して金属ベース1と銅箔3とを貼
り合せた高熱伝導性金属ベース銅張板(第1図)にエツ
チング等で配線回路を形成し、その上に第2図のように
、IC,MSI、LSI、パワートランジスタなどの半
導体の高発熱部品4と、コンデンサ、抵抗、ダイオード
、トランジスタ等の電子部品5とが隣接して高密度に配
置され、半田層5a、6bで銅箔3に接続しである。さ
らに金属ベース1の下面には、シリコングリース7を介
して放熱フィン8が取(dCプである。第2図において
高発熱部品4から出る熱は、高発熱部品4の表面からの
対流と輻射及び銅箔3への垂直方向に向っての伝導によ
って放熱する。しかし、対流及び輻射による放熱は無視
できるほど伝導による放熱が大きい。このため高発熱部
品4の放熱特性を良くするには、半田層6aからシリコ
ングリース7までの熱抵抗を小さくする必要がある。ま
た放熱フィン8に関しては、高発熱部品4の発熱量及び
シリコングリース7までの累計した熱抵抗によって決定
され、熱抵抗の小さい大型の放熱フィンを使用したり、
逆に熱抵抗が大きい小型の放熱フィンを使用できるよう
になったりする。即ち仮に高発熱部品4に負荷を与えた
時の発熱量をpc(W)とし、その時の高発熱部品4の
許容温度をTj(oC)、周囲温度をTa(・OC)、
半、円層6aの熱抵抗をRthi、銅箔3の熱抵抗eR
th2、絶縁層2の熱抵抗をRtb3、金属ベース1の
熱抵抗をRtl)4、シリコングリース7の熱抵抗を1
(1115、放熱フィン8の熱抵抗をRtb6とすると
、トータル熱抵抗Rt1)−り二nぜあり、各構成要素
c の熱抵抗Rth1〜Rtl+6との間にはRth= R
th1+Rth2 +l’(th3 +Rtb4−Jt
h5 +Rth6の関係がある。ここで、高発熱部品4
0発熱量pc、許容温度T j及び周囲温度Taを一定
(即ちRtb−一定)とした場合、放熱フィン8の大き
さく体積寸法)を決定する熱抵抗Rth6は、他の半田
層6aの熱抵抗RL111からシリコングリース7の熱
抵抗Rth5までの累計した熱抵抗の大きさによって決
まり、小さければ放熱フィン8の熱抵抗Rth6は大ぎ
くく即ち小型の放熱フィンに)でき、逆に大ぎ(プれば
放熱フィン8の熱抵抗Rtheは小さいものく即ち大型
もしくは強制冷部を伴なう放熱フィン)を選定り゛るこ
とになる。絶縁層2は、エポキシなどの有機高分子材料
からなっており、通常信頼性を含めた絶縁破壊電圧、熱
伝導性等から30μIIl〜60μ■厚さに形成されて
いる。また、金属ベース1の材料にはアルミニウム、 
半[1,1層6aには鉛と錫との共晶半田が使われ°C
いる。この従来の高熱伝導性金属ベースプリン1〜配線
板についてみた場合、上記熱抵抗Rth1〜Rthsの
中で絶縁層2の占める熱抵抗Rth3は90%以上もあ
る。さらに熱放散を良(して、高発熱部品4のパワーを
大きくしたり、放熱フィン8の小型化、軽量化を図るた
めには、絶縁層2の熱抵抗を小さくすることが最も効率
的な方法である。
6b is a solder layer, 7 is silicone grease, and 8 is a heat radiation fin. A wiring circuit is formed by etching etc. on a highly thermally conductive metal base copper clad plate (Fig. 1) in which a metal base 1 and a copper foil 3 are bonded together via an insulating layer 2, and a wiring circuit is formed on it as shown in Fig. 2. , ICs, MSIs, LSIs, power transistors, and other semiconductor high heat generating components 4 and electronic components 5 such as capacitors, resistors, diodes, transistors, etc. are arranged adjacent to each other with high density, and solder layers 5a and 6b are connected to copper foil. It is connected to 3. Furthermore, a heat dissipation fin 8 is attached to the lower surface of the metal base 1 via silicone grease 7 (dC type). In FIG. The heat is dissipated by conduction in the vertical direction to the copper foil 3.However, the heat dissipation by conduction is so large that the heat dissipation by convection and radiation can be ignored.For this reason, in order to improve the heat dissipation characteristics of the high heat generation component 4, it is necessary to solder It is necessary to reduce the thermal resistance from the layer 6a to the silicone grease 7.In addition, regarding the heat dissipation fin 8, it is determined by the calorific value of the high heat generation component 4 and the cumulative thermal resistance up to the silicone grease 7. or use heat dissipation fins,
Conversely, it becomes possible to use small heat dissipation fins with high thermal resistance. That is, let us assume that the amount of heat generated when a load is applied to the high heat generating component 4 is pc (W), the allowable temperature of the high heat generating component 4 at that time is Tj (oC), the ambient temperature is Ta (・OC),
The thermal resistance of the semicircular layer 6a is Rthi, and the thermal resistance of the copper foil 3 is eR.
th2, thermal resistance of insulating layer 2 is Rtb3, thermal resistance of metal base 1 is Rtl)4, thermal resistance of silicone grease 7 is 1
(1115, if the thermal resistance of the radiation fin 8 is Rtb6, there is a total thermal resistance Rt1) - 2n, and between the thermal resistances Rth1 to Rtl+6 of each component c, Rth=R
th1+Rth2 +l'(th3 +Rtb4-Jt
There is a relationship of h5 +Rth6. Here, high heat generation component 4
When the 0 calorific value pc, the allowable temperature Tj, and the ambient temperature Ta are constant (that is, Rtb-constant), the thermal resistance Rth6 that determines the size and volume of the radiation fins 8 is the thermal resistance of the other solder layer 6a. It is determined by the total thermal resistance from RL111 to the thermal resistance Rth5 of the silicone grease 7. If it is small, the thermal resistance Rth6 of the radiation fin 8 will be too large (that is, a small radiation fin), and if it is too large (the thermal resistance Rth6 will be too small), For example, a heat dissipation fin 8 with a small thermal resistance Rthe (ie, a large heat dissipation fin or a heat dissipation fin with a forced cooling part) is selected. The insulating layer 2 is made of an organic polymer material such as epoxy, and is usually formed to have a thickness of 30 .mu.II to 60 .mu.m from the viewpoint of reliability, dielectric breakdown voltage, thermal conductivity, etc. In addition, the material of the metal base 1 is aluminum,
For the semi-[1,1 layer 6a, eutectic solder of lead and tin is used °C
There is. When looking at the conventional highly thermally conductive metal base print 1 to wiring board, the thermal resistance Rth3 accounted for by the insulating layer 2 is 90% or more of the thermal resistances Rth1 to Rths. Furthermore, in order to improve heat dissipation (and thereby increase the power of the high heat generation component 4) and to reduce the size and weight of the heat dissipation fins 8, it is most efficient to reduce the thermal resistance of the insulating layer 2. It's a method.

イこで、熱放散の向上を図るため、絶縁層2の材お1と
して、上記したように、金属酸化物を接着性のある有機
高分子中に分散した高熱伝導性のものが実用化されつつ
ある。しかし、この高熱伝導性材料のみで絶縁層、2を
形成した場合、絶縁層2における熱抵抗は、有機高分子
材料のみで形成したものに比べて50%以上も小ざくで
き、高発熱部品4のパワー向上及び放熱フィン8の小型
化、懸吊化が図れるが、それも限界がある。即ら、絶縁
層2の高熱伝導化は、高発熱部品4に隣接して実装され
た他の電子部品5の温度をも高熱伝導性の絶縁層2を通
じて」二昇さぜることになり、電子部品5の信頼性から
問題が生じる。したがって、高熱伝導性の材料を絶縁層
2として使用した場合、大きなパワーの発熱部品4の使
用が可能になるが、伯の電子部品5への熱的影響が大き
くなり、高熱伝導性金属ベースプリンl−配線板上に高
密度に実装゛りることかできないことになる。逆に高密
度実装をしようとすれば、熱放散能力があっても、極端
に大ぎなパワーの高発熱部品4を使用覆ることができな
いという問題点を有している。
In order to improve heat dissipation, a highly thermally conductive material in which a metal oxide is dispersed in an adhesive organic polymer has been put into practical use as the material 1 for the insulating layer 2, as described above. It's coming. However, when the insulating layer 2 is formed only with this highly thermally conductive material, the thermal resistance of the insulating layer 2 can be reduced by more than 50% compared to that formed only with an organic polymer material, and the high heat generation component 4 Although it is possible to improve the power of the heat dissipation fins 8 and to make the heat dissipation fins 8 smaller and more hanging, there are limits to this. In other words, increasing the thermal conductivity of the insulating layer 2 also raises the temperature of other electronic components 5 mounted adjacent to the high heat generating component 4 through the highly thermally conductive insulating layer 2. A problem arises from the reliability of the electronic component 5. Therefore, when a highly thermally conductive material is used as the insulating layer 2, it becomes possible to use a heat generating component 4 with a large power, but the thermal influence on the electronic component 5 becomes large, and the high thermally conductive metal base material This means that high-density mounting on the l-wiring board is only possible. On the other hand, if high-density packaging is attempted, there is a problem in that even if there is heat dissipation ability, it is not possible to use high heat generation components 4 with extremely large power.

発明の目的 本発明は上記従来の欠点を解消りるもので゛、従来より
も大きなパワー(以下高パワーと記す)の高発熱部品を
、従来通りに、電子部品と隣接して高密度に実装可能と
する高熱伝導性金属ベースプリント配線板を提供するこ
とを目的とする。
Purpose of the Invention The present invention solves the above-mentioned drawbacks of the conventional technology.It is an object of the present invention to solve the above-mentioned drawbacks of the conventional technology. The purpose of the present invention is to provide a metal-based printed wiring board with high thermal conductivity.

発明の構成 上記目的を達成するl〔め、本発明の高熱伝導性金属ベ
ースプリント配線板は、金属ベースと、この金属ベース
上に積層された絶Rmと、この絶縁層上に積層された導
体層とを備え、前記絶縁層は、低熱伝導性材料からなる
絶縁層と高熱伝導性材料からなる絶縁層とを選択的に配
置Jる構成としたものである。
Structure of the Invention In order to achieve the above object, the highly thermally conductive metal-based printed wiring board of the present invention comprises a metal base, an insulation layer laminated on the metal base, and a conductor laminated on the insulating layer. The insulating layer has a structure in which an insulating layer made of a low thermal conductive material and an insulating layer made of a high thermal conductive material are selectively arranged.

実施例の説明 」ス下、本発明の一実施例について、図面に基づいて説
明する。
DESCRIPTION OF EMBODIMENTS Below, an embodiment of the present invention will be described based on the drawings.

第3図は高熱伝導性金属ベースプリント配線板に用いる
高熱伝導性金属ベース銅張板の断面図、第4図は第3図
に示す高熱伝導性金属ベース銅張板を配線加工した高熱
伝導性金属ベースプリント配線板に電子部品を実装した
状態の断面図であり、第1図及び第2図に示す構成要素
と同一の構成要素には同一の符号を付している。
Figure 3 is a cross-sectional view of a highly thermally conductive metal-based copper clad board used for a high thermally conductive metal-based printed wiring board, and Figure 4 is a high thermal conductive metal-based copper clad board with wiring processed as shown in Figure 3. FIG. 2 is a cross-sectional view of a state in which electronic components are mounted on a metal-based printed wiring board, in which the same components as those shown in FIGS. 1 and 2 are given the same reference numerals.

第3図において、1は金属ベース、3は銅箔、9は低熱
伝導性絶縁層、10は高熱伝導性絶縁層であり、金属ベ
ース1と銅箔3との間に介在する絶縁層として、低熱伝
導性絶縁層9と高熱伝導性絶縁層10とが同一平面上に
形成されている。第4図において、4は高発熱部品、5
は電子部品、5a。
In FIG. 3, 1 is a metal base, 3 is a copper foil, 9 is an insulating layer with low thermal conductivity, and 10 is an insulating layer with high thermal conductivity, and as an insulating layer interposed between the metal base 1 and the copper foil 3, A low thermal conductivity insulating layer 9 and a high thermal conductivity insulating layer 10 are formed on the same plane. In Figure 4, 4 is a high heat generation component, 5
is an electronic component, 5a.

6 bは半田層、7はシリコングリース、8は放熱フィ
ンであり、従来と同じ方法で数句【)られている。IC
,MSI、LSI、パワー1−ランジスタなどの前記高
発熱部品4の下方に位置する絶縁層は前記高熱伝導性絶
縁層10により]14或され、前記高発熱部品4から過
度な熱を受りて番ま困る電子部品5(例えばチップ抵抗
、チップコンデンサ、ダイオード、トランジスタなど)
の下方に位置する絶縁層は前記低熱伝導性絶縁層9によ
り構成されている。これによって、高発熱部品4からの
熱はほど/υどが熱抵抗の小さい高熱伝導性絶縁図10
から放熱フィン8へ向って垂直方向に流れ、高熱伝導性
絶縁層10から低熱伝導性絶縁層9への水平方向につl
こって流れる熱が大幅に減少することになり、前記電子
部品5が高発熱部品4からの熱ににって過熱することが
なくなる。
6 b is a solder layer, 7 is silicone grease, and 8 is a heat dissipation fin, all of which are made in parentheses in the same manner as in the past. IC
, MSI, LSI, power transistor, etc., the insulation layer located below the high heat generation components 4 is protected by the high thermal conductivity insulation layer 10 and receives excessive heat from the high heat generation components 4. Electronic components that are difficult to find 5 (e.g. chip resistors, chip capacitors, diodes, transistors, etc.)
The insulating layer located below is constituted by the low thermal conductivity insulating layer 9. As a result, the heat from the high heat generation components 4 is reduced to a high thermal conductivity insulation figure 10 with low thermal resistance.
It flows in the vertical direction from the to the heat dissipation fins 8, and in the horizontal direction from the high thermal conductivity insulating layer 10 to the low thermal conductivity insulating layer 9.
As a result, the flowing heat is significantly reduced, and the electronic component 5 is prevented from being overheated by the heat from the high heat generation component 4.

次に」−記高熱伝導性金属ベースプリント配線板の製造
方法の一例を説明する。まず高発熱部品4を搭載覆る部
分を設定してパターン設計を行なう。
Next, an example of a method for manufacturing the highly thermally conductive metal-based printed wiring board will be described. First, a pattern design is performed by setting the portion on which the high heat generating component 4 will be mounted and covered.

高発熱部品4を搭載する部分に接着性のある有機高分子
中にアルミナ、窒化ボロン、マグネシアなどの金属酸化
物を分散したものに代表される高熱伝導性材料を絶縁層
10として、金属ベー、ス1上にバーコータ、ロールコ
ータ、スクリーン印刷などで塗工する。次いで低熱伝導
性絶縁層9として有機高分子中料のみからなる接着剤な
どを前記塗工方法などを使用して金属ベース1上に塗工
する。
A metal base, a metal base, Coating is performed on the base 1 using a bar coater, roll coater, screen printing, etc. Next, as a low thermal conductivity insulating layer 9, an adhesive or the like consisting only of an organic polymer medium is coated on the metal base 1 using the coating method described above.

このように高熱伝導性絶縁層10と低熱伝導性絶縁層9
とを選択的に金属ベース1上に塗工したものに銅箔3を
積層して、熱加ニブレスで加熱しながらプレスして高熱
伝導性金属ベース銅箔板(第3図)を得る。この金属ベ
ース銅張板を前記パターン設計に基づいてエツヂング加
工などで配線加工を行い、高熱伝導性金属ベースプリン
]・配線板を1gる。なお、金属ベース1上に絶縁層9
,1oを塗工する代りに、銅箔3上に塗工しても良い。
In this way, the high thermal conductivity insulating layer 10 and the low thermal conductivity insulating layer 9
Copper foil 3 is laminated onto the metal base 1 selectively coated with the following, and pressed while heating with a heating nib press to obtain a highly thermally conductive metal base copper foil plate (FIG. 3). This metal base copper clad board is subjected to wiring processing by etching or the like based on the pattern design, and 1 g of a highly thermally conductive metal base print/wiring board is obtained. Note that an insulating layer 9 is provided on the metal base 1.
, 1o may be coated on the copper foil 3.

また、この他種々の製造方法が可能であることは勿論で
ある。
Moreover, it goes without saying that various other manufacturing methods are possible.

金属ベース1としては、安価で熱伝導率の大きいアルミ
ニウムあるいはアルマイト処理したアルミニラムを用い
るのが望ましい。このように、金属ベース1の41斜と
してアルミニウムあるいはアルマイ1〜処理しICアル
ミニウムを使用することにより、放熱特性がいっそう向
上し、さらに高パワーの高発熱部品4を搭載Jることが
でき、その結果、高熱伝導性金属ベースプリント配線板
及び放熱フィンのいっそうの小型・軽量化が図れる。ま
たアルマイト処理したアルミニウムを用いた揚台、配F
A基板製造工程にd3&プるエッチングエ稈で、]−ツ
チング液に対して腐食することがないという効果をもU
f uで得ることができる。
As the metal base 1, it is desirable to use aluminum or alumite-treated aluminum, which is inexpensive and has high thermal conductivity. In this way, by using aluminum or treated IC aluminum as the 41 diagonal of the metal base 1, the heat dissipation characteristics are further improved, and furthermore, it is possible to mount high power and high heat generation components 4. As a result, it is possible to further reduce the size and weight of the highly thermally conductive metal-based printed wiring board and the radiation fin. In addition, a lifting platform and F distribution using anodized aluminum.
In the A substrate manufacturing process, the etching culm is added to the etching process, which also has the effect of not being corroded by the etching solution.
It can be obtained by f u.

発明の効果 以」−説明したようtこ本発明によれば、絶縁層を低熱
伝導性材料のものと高熱伝導性材料のものとを選択的に
設ける構成にしたので、従来よりも高パワーの高発熱部
品を他の電子部品と隣接した状態で高密度に実技し1!
7る。しICがって、高熱伝導性金属ベースプリン1〜
配線板の小型化、および放熱フィンの小型・軽量化を図
ることができる。
Effects of the Invention - As explained above, according to the present invention, since the insulating layer is selectively provided with a material of low thermal conductivity and a material of high thermal conductivity, it is possible to achieve higher power than before. Practical work on high-density high-heating components adjacent to other electronic components 1!
7ru. According to IC, high thermal conductive metal base pudding 1~
It is possible to reduce the size of the wiring board and the size and weight of the radiation fin.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の高熱伝導性金属ベースプリン1〜配線板
に用いる銅張板の断面図、第2図は従来の高熱伝導性金
属ベースプリン1〜配線板に実装を施しlζ状態の断面
図、第3図は本発明の一実施例にお【ブる高熱伝導性金
属ベースプリント配線板に用いる銅張板の断面図、第4
図は本発明の一実施例に43ける高熱伝導性金属ベース
プリント配線板に実装を施した状態の断面図である。 1・・・金属ベース、3・・・銅箔く導体層)、9・・
・低熱伝導性絶縁層、10・・・高熱伝導性絶縁層代理
人   森  本  義  弘 第1図 第8図
Fig. 1 is a cross-sectional view of a conventional high thermal conductive metal base print 1 - a copper clad plate used for a wiring board, and Fig. 2 is a cross sectional view of a conventional high thermal conductive metal base print 1 - mounted on a wiring board in the lζ state. , FIG. 3 is a cross-sectional view of a copper-clad board used in a highly thermally conductive metal-based printed wiring board according to an embodiment of the present invention.
The figure is a cross-sectional view of one embodiment of the present invention mounted on a highly thermally conductive metal-based printed wiring board. 1...metal base, 3...copper foil conductor layer), 9...
・Low thermal conductivity insulating layer, 10... High thermal conductivity insulating layer agent Yoshihiro Morimoto Figure 1 Figure 8

Claims (1)

【特許請求の範囲】 1、金属ベースと、この金属ベース上に積層された絶縁
層と、この絶縁層上に積層された導体層とを備え、前記
絶縁層は、低熱伝導性材料からなる絶縁層と高熱伝導性
材料からなる絶縁層とを選択的に配置する構成とした高
熱伝導性金属ベースプリント配線板。 2、金属ベースとして、アルミニウムを用いる構成とし
た特許請求の範囲第1項記載の高熱伝導性金属ベースプ
リント配線板。 3、金属ベースとして、アルマイト処理を施したアルミ
ニウムを用いる構成とした特許請求の範囲第1項記載の
高熱伝導性金属ベースプリント配線板。
[Claims] 1. A metal base, an insulating layer laminated on the metal base, and a conductor layer laminated on the insulating layer, the insulating layer being an insulating layer made of a material with low thermal conductivity. A highly thermally conductive metal-based printed wiring board having a structure in which layers and an insulating layer made of a highly thermally conductive material are selectively arranged. 2. The highly thermally conductive metal-based printed wiring board according to claim 1, wherein aluminum is used as the metal base. 3. The highly thermally conductive metal-based printed wiring board according to claim 1, wherein alumite-treated aluminum is used as the metal base.
JP9994883A 1983-06-03 1983-06-03 High heat conductive metal base printed circuit board Pending JPS59224192A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9994883A JPS59224192A (en) 1983-06-03 1983-06-03 High heat conductive metal base printed circuit board

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9994883A JPS59224192A (en) 1983-06-03 1983-06-03 High heat conductive metal base printed circuit board

Publications (1)

Publication Number Publication Date
JPS59224192A true JPS59224192A (en) 1984-12-17

Family

ID=14260924

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9994883A Pending JPS59224192A (en) 1983-06-03 1983-06-03 High heat conductive metal base printed circuit board

Country Status (1)

Country Link
JP (1) JPS59224192A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0258385U (en) * 1988-10-19 1990-04-26
CN111212517A (en) * 2020-01-07 2020-05-29 深圳市江霖电子科技有限公司 Three-dimensional ceramic-based circuit board

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0258385U (en) * 1988-10-19 1990-04-26
CN111212517A (en) * 2020-01-07 2020-05-29 深圳市江霖电子科技有限公司 Three-dimensional ceramic-based circuit board

Similar Documents

Publication Publication Date Title
US5500785A (en) Circuit board having improved thermal radiation
JP4159861B2 (en) Method for manufacturing heat dissipation structure of printed circuit board
US6156980A (en) Flip chip on circuit board with enhanced heat dissipation and method therefor
US6930885B2 (en) Densely packed electronic assemblage with heat removing element
US4994903A (en) Circuit substrate and circuit using the substrate
JPH09116057A (en) Apparatus for improvement of power diffusion of semiconductor device
US6770967B2 (en) Remote thermal vias for densely packed electrical assemblage
US20050063162A1 (en) Electrical assemblage and method for removing heat locally generated therefrom
SE513786C2 (en) Method for producing circuit boards and device for heat dissipation made according to the method
US6820328B2 (en) Method of removing heat from an electronic assemblage
JP2005183559A (en) Printed wiring board and method for manufacturing the same
JPH0573079B2 (en)
JPS61156754A (en) High thermal conductive metal base printed substrate
JPS59224192A (en) High heat conductive metal base printed circuit board
JP2793356B2 (en) Power device mounting board
JPH0818182A (en) Circuit board
JPS60167399A (en) High thermal conductive metal base circuit board
JPH01143388A (en) Printed wiring board with metal plate as base
US20100251536A1 (en) Heat-dissipating structure on case of industrial computer and manufacturing method thereof
TWI765791B (en) Circuit board and electronic device having the same
JP2006135202A (en) Heat radiating structure for electronic appliance
JP3436582B2 (en) Metal-based multilayer circuit board
JPH06120628A (en) Metallic base board
JPS63127590A (en) High heat radiation type printed wiring board
JPS6043891A (en) High thermal conductivity metal base printed board