JPS59199569A - Formation of ceramic sintered body - Google Patents

Formation of ceramic sintered body

Info

Publication number
JPS59199569A
JPS59199569A JP58073972A JP7397283A JPS59199569A JP S59199569 A JPS59199569 A JP S59199569A JP 58073972 A JP58073972 A JP 58073972A JP 7397283 A JP7397283 A JP 7397283A JP S59199569 A JPS59199569 A JP S59199569A
Authority
JP
Japan
Prior art keywords
nitride
group
nitrides
powder
sintered body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58073972A
Other languages
Japanese (ja)
Inventor
小形 勝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Komatsu Ltd
Original Assignee
Komatsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Komatsu Ltd filed Critical Komatsu Ltd
Priority to JP58073972A priority Critical patent/JPS59199569A/en
Publication of JPS59199569A publication Critical patent/JPS59199569A/en
Pending legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 成方法に関し、さらに詳しくは、硬質の粒子に窒化物粒
子と金属粒子とを配合し、成形・加熱することによって
耐摩耗用のセラミック焼結体を形成する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a manufacturing method, and more particularly to a method of forming a wear-resistant ceramic sintered body by blending nitride particles and metal particles with hard particles, shaping and heating the mixture.

金属の炭化物、窒化物、硼化物あるいは酸化物には、大
きな硬度を持つものが多く、このような例としては、■
B族元素(Ti 、Zr 、Hf )の炭化物、窒化物
、硼化物または酸化物、VB族元素( V 、 Nb 
、 Ta )の炭化物、窒化物または硼化物、MB族元
素( Cr 、Mo 、W ) ノ炭化物または硼化物
、硅素(Sl)の炭化物、窒化物または酸化物、硼素(
B)の炭化物または窒化物、アルミニウム(Az)の窒
化物または酸化物、マグネシウム(MgLベリリウム(
Be)またはカルシウム(Ca)の酸化物がある。これ
らの物質け粉末で得られ、従って、耐摩耗用部材として
工業的に用いるためには焼結する必要がある。
Many metal carbides, nitrides, borides, and oxides have high hardness, such as ■
Carbide, nitride, boride or oxide of group B elements (Ti, Zr, Hf), group VB elements (V, Nb)
, Ta) carbides, nitrides or borides, MB group elements (Cr, Mo, W) carbides or borides, silicon (Sl) carbides, nitrides or oxides, boron (
B) carbide or nitride, aluminum (Az) nitride or oxide, magnesium (MgL beryllium (
Be) or calcium (Ca) oxides. These substances can be obtained as powders and therefore need to be sintered for industrial use as wear-resistant members.

しかしなから、これらの物質はいずれも高融点であり、
その焼結は困難である。
However, all of these substances have high melting points,
Its sintering is difficult.

本発明は、上記の事情に鑑みなされたものであり、その
目的とするところは、前記のような高融点の硬質粒子の
焼結方法を改善し、強固に焼結された硬度の極めて高い
耐摩耗用セラミック焼結体およびその形成方法を提供す
ることにある。
The present invention has been made in view of the above circumstances, and its purpose is to improve the method for sintering hard particles with a high melting point as described above, and to produce highly sintered hard particles with extremely high durability. An object of the present invention is to provide a ceramic sintered body for wear and a method for forming the same.

上記本発明の目的は、 (A)  前記硬質粒子粉末に、 (B)  アルミニウムおよび/または硅素(AL、S
iまたは豆+Si )の金属粉末と、 (C)  窒化クロム、窒化マンガン、窒化鉄および仝
化モリブデンよりなる群から選ばれた1種以上の窒化物
粉末 とを添加混合し、この混合物を圧粉成形後または圧粉成
形しながら前記金属粉末の融点以上に加熱することによ
って達成されることを見い出し、本発明を完成するに至
ったものである。
The object of the present invention is to (A) add to the hard particle powder, (B) aluminum and/or silicon (AL, S
i or beans + Si) and (C) one or more nitride powder selected from the group consisting of chromium nitride, manganese nitride, iron nitride, and molybdenum nitride are added and mixed, and this mixture is pressed into powder. They discovered that this can be achieved by heating the metal powder to a temperature higher than its melting point after molding or while compacting, and have completed the present invention.

本発明に係るセラミック焼結体の形成方法は、アルミニ
ウムおよびまたは硅素の添加によって前記硬質粒子の液
相焼結を行なうと共に、比較的結合の弱い窒化物を窒素
源として添加し、該窒素源と上記アルミニウムおよび/
または硅素との反応により、前記硬質粒子の強固な結合
を達成するものである。
The method for forming a ceramic sintered body according to the present invention includes performing liquid phase sintering of the hard particles by adding aluminum and/or silicon, and adding a relatively weakly bonded nitride as a nitrogen source. The above aluminum and/or
Alternatively, strong bonding of the hard particles is achieved by reaction with silicon.

すなわち、前記硬質粒子粉末より低い融点を有するアル
ミニウムや硅素は、加熱中に溶融し、圧粉体の隙間に浸
透して液相焼結の機能を果す。
That is, aluminum and silicon, which have a melting point lower than that of the hard particle powder, melt during heating and penetrate into the gaps in the powder compact, thereby performing the function of liquid phase sintering.

次いで、これらの金属溶液は、窒素源として添加しであ
る比較的結合力の弱い窒化物(窒化クロム、窒化マンガ
ン、窒化鉄または窒化モリブデン)と反応焼結し、窒化
アルミニウムまたは窒化硅素を形成しながら前記硬質粒
子を強1間に結合することができる。この除、例えばア
ルミニウム(融点約660℃)は上記窒化物中の窒素元
素と反応して、MN(融点約2150〜2200℃)を
形成し、その融点も増大する。
These metal solutions then react and sinter with relatively weak bonding nitrides (chromium nitride, manganese nitride, iron nitride or molybdenum nitride) added as a nitrogen source to form aluminum nitride or silicon nitride. However, the hard particles can be strongly bonded together. For example, aluminum (melting point: about 660°C) reacts with the nitrogen element in the nitride to form MN (melting point: about 2150-2200°C), and its melting point also increases.

従って、窒素源として添加する上記窒化物は、化学士−
−輪組成のMNまたはSi3N4を形成するに充分な量
の窒素を含有するような量的割合で添加すべきであり、
通常上記窒化物中の窒素元素が前記Mおよび/またはS
iより原子比で1.5より大きげれば充分である。また
、アルミニウムや硅素は酸化し易いので、真空中または
不活性ガス雰囲気中、より好ましくは空気を遮断した型
の中で加圧しながら加熱する必要がある。
Therefore, the nitride added as a nitrogen source is
- should be added in such a quantitative proportion as to contain a sufficient amount of nitrogen to form a ring composition of MN or Si3N4;
Usually, the nitrogen element in the nitride is the M and/or S
It is sufficient to make the atomic ratio larger than i by 1.5. Furthermore, since aluminum and silicon are easily oxidized, it is necessary to heat them under pressure in a vacuum or an inert gas atmosphere, more preferably in a mold shut off from air.

以下に実施例及び比較例を示して、本発明の方法および
効果についてさらに具体的に説明する。
The method and effects of the present invention will be explained in more detail by showing Examples and Comparative Examples below.

実施例1〜3及び比較例 硬質粒子として立方晶窒化硼素、窒素源窒化物粒子とし
てCr 2N 、金属粉末として各々アルミニウム、硅
素またはアルミニウムと硅素を用い、下記表に示すよう
に配合した。各粒子の粒度は325メツシユ以細である
。なお、比較のため、硬質粒子のみの焼結も行なった。
Examples 1 to 3 and Comparative Examples Cubic boron nitride was used as the hard particles, Cr 2N was used as the nitrogen source nitride particles, and aluminum, silicon, or aluminum and silicon were used as the metal powders, and they were blended as shown in the table below. The particle size of each particle is 325 mesh or finer. For comparison, only hard particles were also sintered.

各配合物を、直径10瓢、高さlo+nmに冷間成形し
、次いで耐火性の型を用いて、圧力1.23paで表に
示した各過度に20分間保持してホットプレスを行なっ
た。
Each formulation was cold-formed to a diameter of 10 mm and a height of lo+nm, and then hot-pressed using a refractory mold at a pressure of 1.23 pa and held for 20 minutes at each pressure indicated in the table.

但し、比較例(硬質粒子のみ)の場合には冷開成形でき
なかったので、粉末のままホットプレスに供した。
However, in the case of the comparative example (hard particles only), cold-open molding could not be performed, so the powder was subjected to hot pressing as it was.

その結果、比較例の場合はホットプレス後においても全
く焼結されておらず、手で容易にくずれる状態であった
が、実施例1〜3の場合にはセラミック焼結体が強固な
塊状体で得られた。
As a result, in the case of the comparative example, the ceramic sintered body was not sintered at all even after hot pressing and could be easily broken down by hand, but in the case of Examples 1 to 3, the ceramic sintered body was a solid lump. Obtained with.

また、この焼結体は、超硬合金をきずつけることができ
、極めて高い硬度を有するものであつた。
Moreover, this sintered body could damage cemented carbide and had extremely high hardness.

弁理士 浜 本   忠Patent Attorney Tadashi Hamamoto

Claims (1)

【特許請求の範囲】 (A)  IVB族元素(Ti 、 Zr 、Hf )
(7)炭化物、窒化物、硼化物または酸化物、VB族元
素(V 、 Nb 。 Ta)の炭化物、窒化物または硼化物、■族元X (C
r 、 Mo 、 W ) ノ炭化物または硼化物、S
iの炭化物、窒化物または酸化物、Bの炭化物または窒
化物、奴の窒化物または酸化物、およびMg 、 Be
またけCaの酸化物よりなる群から選ばれた19゛1に
以上の硬質粒子粉末に、(B)  AAおよび/または
別−の金属粉末と、(C)  Cr 、Mn 、 Fe
またはMoの窒化物よりなる群から選ばれた1種以上の
窒化物粉末を、その窒化物中の窒素元素が上記Mおよび
/またはSi元素より原子比で1.5より大きくなるよ
うな量的割合で、 添加混合し、この混合物を圧粉成形後または圧粉成形し
ながら、真空中、不活性ガス雰囲気中または耐火性の型
中で前記金FA @末の融点以上の温度に加熱すること
を特徴とする耐摩耗用セラミック焼結体の形成方法。
[Claims] (A) Group IVB elements (Ti, Zr, Hf)
(7) Carbide, nitride, boride or oxide, carbide, nitride or boride of group VB elements (V, Nb, Ta), group element X (C
r, Mo, W) No carbide or boride, S
carbides, nitrides or oxides of i, carbides or nitrides of B, nitrides or oxides of Mg, Be
Hard particle powder of 19゛1 or more selected from the group consisting of oxides of Ca, (B) AA and/or another metal powder, and (C) Cr, Mn, Fe
Or one or more nitride powders selected from the group consisting of nitrides of Mo, in a quantitative manner such that the nitrogen element in the nitride is larger than the M and/or Si element in atomic ratio by 1.5 or more. After or during powder compaction, the mixture is heated to a temperature equal to or higher than the melting point of the gold FA powder in a vacuum, an inert gas atmosphere, or a refractory mold. A method for forming a wear-resistant ceramic sintered body characterized by:
JP58073972A 1983-04-28 1983-04-28 Formation of ceramic sintered body Pending JPS59199569A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58073972A JPS59199569A (en) 1983-04-28 1983-04-28 Formation of ceramic sintered body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58073972A JPS59199569A (en) 1983-04-28 1983-04-28 Formation of ceramic sintered body

Publications (1)

Publication Number Publication Date
JPS59199569A true JPS59199569A (en) 1984-11-12

Family

ID=13533507

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58073972A Pending JPS59199569A (en) 1983-04-28 1983-04-28 Formation of ceramic sintered body

Country Status (1)

Country Link
JP (1) JPS59199569A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996039471A1 (en) * 1995-06-06 1996-12-12 Korund Laufenburg Gmbh Sintered abrasive grain with high wear resistance, method of producing it and use thereof
WO2007144731A3 (en) * 2006-06-09 2008-09-12 Element Six Production Pty Ltd Ultrahard composite materials

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996039471A1 (en) * 1995-06-06 1996-12-12 Korund Laufenburg Gmbh Sintered abrasive grain with high wear resistance, method of producing it and use thereof
WO2007144731A3 (en) * 2006-06-09 2008-09-12 Element Six Production Pty Ltd Ultrahard composite materials

Similar Documents

Publication Publication Date Title
JP2702024B2 (en) Method for producing composite diamond abrasive compacts
US3839540A (en) Method of manufacturing silicon nitride products
JPS6256107B2 (en)
JPH05506422A (en) Reaction-sintered mullite-containing ceramic molded body, method for producing the molded body, and method for using the molded body
JPS59199569A (en) Formation of ceramic sintered body
JPS63236763A (en) Boron carbide sintered body and manufacture
JPH059509A (en) Sintered body of high-alloy tool steel and production thereof
JPS6197167A (en) Silicon nitride sintered body and manufacture
JP2000144301A (en) Tungsten carbide sintered body and its production
JPH09316589A (en) Aluminum oxide-tungsten carbide-cobalt composite material having high toughness, high strength, and high hardness
JPH10231174A (en) Composite ceramic including dispersed solid lubricant and its production
JPH0832942B2 (en) Composite sintered alloy, heat resistant member and steel support member in heating furnace
JPH06279124A (en) Production of silicon nitride sintered compact
JP2004107691A (en) High strength titanium alloy and its production method
JPS61191563A (en) Hard matter composite sintered body and manufacture
JPS63230569A (en) Tic sintered body and manufacture
JPH0656542A (en) Production of whisker reinforced sintered compact
JPH0687655A (en) Tantalum carbide-based sintered compact and its production
JPS6244554A (en) Hard material-tungsten carbide composite sintered compact and its production
JPS6395155A (en) Composite sintered body comprising carbide and oxide
JPS60110839A (en) Composite sintered structure body consisting of sintered hard material and high speed steel and production thereof
JP2000096161A (en) Production of titanium carbonitride sintered body
JPS6263644A (en) Composite sintered body of hard silicon nitride and its production
JPH0432034B2 (en)
JPS62146246A (en) High speed steel type compound sintered compact and its production