JPH0832942B2 - Composite sintered alloy, heat resistant member and steel support member in heating furnace - Google Patents

Composite sintered alloy, heat resistant member and steel support member in heating furnace

Info

Publication number
JPH0832942B2
JPH0832942B2 JP1080871A JP8087189A JPH0832942B2 JP H0832942 B2 JPH0832942 B2 JP H0832942B2 JP 1080871 A JP1080871 A JP 1080871A JP 8087189 A JP8087189 A JP 8087189A JP H0832942 B2 JPH0832942 B2 JP H0832942B2
Authority
JP
Japan
Prior art keywords
alloy
sintered alloy
composite sintered
steel
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1080871A
Other languages
Japanese (ja)
Other versions
JPH02258946A (en
Inventor
紘一 柳井
秀雄 藤田
淳 船越
斌 篠崎
裕幸 蘭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kubota Corp
Original Assignee
Kubota Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kubota Corp filed Critical Kubota Corp
Priority to JP1080871A priority Critical patent/JPH0832942B2/en
Publication of JPH02258946A publication Critical patent/JPH02258946A/en
Publication of JPH0832942B2 publication Critical patent/JPH0832942B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)
  • Heat Treatments In General, Especially Conveying And Cooling (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、希土類酸化物粒子をFe−Cr合金とからなる
均一混合組織を有する複合焼結合金、その複合焼結合金
のブロックを主部材とする耐熱部材、および加熱炉内鋼
材支持部材に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial field of application] The present invention relates to a composite sintered alloy having a rare earth oxide particle and a Fe-Cr alloy and having a uniform mixed structure, and a block of the composite sintered alloy as a main member. And a steel support member in a heating furnace.

〔従来の技術〕[Conventional technology]

鋼材加熱炉内の被加熱鋼材(スラブ、ビレット等)を
支持する部材、例えばウォーキングビームコンベア式加
熱炉において、第3図のように、移動ビームおよび固定
ビームであるスキッドパイプ(20)に形設されるスキッ
ドボタン(10)(その頂面に鋼材が担持される)とし
て、従来より高合金鋼(10Ni−20Cr−Fe系鋼)や高Co合
金鋼(50Co−20Ni−Fe系鋼)等の耐熱合金が使用されて
きた。
As shown in FIG. 3, a member for supporting heated steel materials (slabs, billets, etc.) in the steel material heating furnace, such as a walking beam conveyor type heating furnace, is formed on the skid pipe (20) that is a moving beam and a fixed beam. As a skid button (10) to be used (steel material is carried on the top surface), high alloy steel (10Ni-20Cr-Fe series steel) or high Co alloy steel (50Co-20Ni-Fe series steel) etc. Heat resistant alloys have been used.

近時、加熱炉操業の高温化が進み、1300℃をこえる高
温操業が一般化しつつある。このような高温操業におい
て前記従来の耐熱合金では十分な強度を保証し難く、鋼
材荷重の繰り返しによる圧縮変形等を生じ易いという問
題がある。これに対するスキッドボタンの材質改善策と
して、クロム炭化物、窒化ケイ素、アルミナ等のセラミ
ック焼結材料、またはこれらのセラミックの微細粒子
と、耐熱金属、例えば金属コバルト、Co合金(UMCo50
等)、または高合金鋼(0.1C−27Cr−17Ni−40Co−Fe
系)とを複合化した混合組織を有する焼結材料(複合焼
結合金)の実用化がこころみられている。
In recent years, the heating furnace operation has become higher in temperature, and high temperature operation exceeding 1300 ° C is becoming common. In such a high temperature operation, it is difficult to guarantee sufficient strength with the conventional heat resistant alloy, and there is a problem that compressive deformation and the like due to repeated loading of steel material easily occur. To improve the skid button material, ceramic sintered materials such as chromium carbide, silicon nitride, and alumina, or fine particles of these ceramics, and refractory metals such as metallic cobalt and Co alloy (UMCo50
Etc.) or high alloy steel (0.1C-27Cr-17Ni-40Co-Fe)
Practical application of a sintered material (composite sintered alloy) having a mixed structure obtained by compositing with a (system) is attempted.

〔発明が解決しようとする課題〕[Problems to be Solved by the Invention]

セラミック焼結材料は、従来の耐熱合金では得られな
い硬質・高耐摩耗性と高温強度を有しているが、靱性に
乏しいため、スキッドボタンのように重量物である鋼材
による機械衝撃が繰り返し加わる用途では、欠け・割れ
等を生じ易いという難点がある。
Ceramic sintered materials have hard and high wear resistance and high-temperature strength that cannot be obtained with conventional heat-resistant alloys, but due to their poor toughness, mechanical impact due to heavy steel materials such as skid buttons is repeated. In addition, there is a drawback that chips and cracks are likely to occur.

他方、複合焼結合金は、セラミック粒子と金属との復
合効果によりセラミック単相焼結材の脆弱さを緩和する
と共に、耐熱金属単相材を凌ぐ高温特性を確保すること
を意図したものであるが、組み合わされるセラミック粒
子と金属の材質により、1300℃をこえる高温使用環境に
おいて、両者間に相互反応が生じ、セラミック粒子の劣
化(例えばクロム炭化物粒子の複炭化物化による耐酸化
性の低下)、あるいは金属分の組成変化に伴う材質劣化
(例えば融点降下による高温圧縮変形抵抗性の低下)等
を生じるという難点がある。
On the other hand, the composite sintered alloy is intended to alleviate the brittleness of the ceramic single-phase sintered material by the effect of combining the ceramic particles and the metal and to secure the high temperature characteristics superior to the heat-resistant metal single-phase material. However, due to the combined ceramic particles and metal materials, in a high temperature use environment exceeding 1300 ° C., mutual reaction occurs between the two, resulting in deterioration of the ceramic particles (for example, deterioration of oxidation resistance due to double carbide formation of chromium carbide particles), Alternatively, there is a drawback that deterioration of the material due to a change in the composition of the metal component (for example, deterioration of resistance to high-temperature compression deformation due to melting point decrease) occurs.

本発明は上記に鑑みてなされたものであり、1300℃を
こえる高温操炉用スキッドボタン等として有用な高温強
度、耐酸化性等にすぐれた複合焼結合金、その複合焼結
合金を主部材とする耐熱部材、および鋼材支持部材を提
供する。
The present invention has been made in view of the above, high temperature strength useful as a skid button for high temperature furnaces over 1300 ° C, a composite sintered alloy excellent in oxidation resistance and the like, and a main component of the composite sintered alloy. To provide a heat resistant member and a steel material supporting member.

〔課題を解決するための手段および作用〕[Means and Actions for Solving the Problems]

本発明の複合焼結合金は、Fe5〜50重量%を含有するF
e−Cr合金からなる基地金属中に、5〜80重量%の希土
類酸化物粒子が均一に分散した混合組織を有する焼結体
であることを特徴としている。
The composite sintered alloy of the present invention is F containing 5 to 50% by weight of Fe.
It is characterized in that it is a sintered body having a mixed structure in which 5 to 80% by weight of rare earth oxide particles are uniformly dispersed in a base metal made of an e-Cr alloy.

以下、本発明について詳しく説明する。 Hereinafter, the present invention will be described in detail.

本発明の複合焼結合金を基地金属をなすFe−Cr合金
は、固溶体型合金(Fe80重量%において液相線が固相線
と接する極小部をなし、その温度は約1510℃)である。
そのFe−Cr合金におけるFe量を5〜50重量%としたの
は、良好な焼結性を確保すると共に、1300℃をこえる高
温使用環境における圧縮変形抵抗性および耐酸化性を十
分なものとするためである。
The Fe-Cr alloy, which forms the base metal of the composite sintered alloy of the present invention, is a solid solution type alloy (at 80% by weight of Fe, the liquid phase line forms a local minimum portion in contact with the solid phase line, and its temperature is about 1510 ° C).
The Fe content in the Fe-Cr alloy is set to 5 to 50% by weight in order to secure good sinterability and to have sufficient compression deformation resistance and oxidation resistance in a high-temperature use environment exceeding 1300 ° C. This is because

すなわち、複合焼結合金の高温耐酸化性および圧縮強
度の点からは、Fe−Cr合金よりもクロム単体金属(融
点:約1830℃)を基地金属とする方が有利であるが、金
属クロムは難焼結性であり、熱間静水圧加圧焼結のよう
に高加圧力下の焼結を行っても、ピンホールやクラック
等の焼結欠陥が生じ易い。またそのためにその焼結合金
は高融点でありながら、圧縮変形抵抗性は低い。そこ
で、本発明は一定量のFeを含むFe−Cr合金を使用するこ
ととしている。Fe−Cr合金におけるFe量の下限を5重量
%(液相線温度:約1810℃固溶線温度:約1775℃)とし
たのはピンホール等の焼結欠陥のない緻密性を確保する
ためのものである。より好ましくは10重量%以上であ
る。Feの増量に伴って焼結性の向上をみるが、反面耐酸
化性の低下を伴う。このため、本発明では50重量%を上
限とし、これにより1300℃をこえる高温大気雰囲気炉で
の使用に耐える酸化抵抗性を確保している。またFe量が
この範囲内に制限されることにより、上記高温環境での
スキッドボタン等としての使用に耐える圧縮変形抵抗性
も確保される。
That is, from the viewpoint of the high temperature oxidation resistance and the compressive strength of the composite sintered alloy, it is more advantageous to use a chromium simple metal (melting point: about 1830 ° C) as the base metal than the Fe-Cr alloy, but the metallic chromium is It is difficult to sinter, and even if it is sintered under a high pressure like hot isostatic pressing, sintering defects such as pinholes and cracks are likely to occur. For that reason, the sintered alloy has a high melting point but a low resistance to compressive deformation. Therefore, the present invention uses an Fe-Cr alloy containing a certain amount of Fe. The lower limit of the Fe content in the Fe-Cr alloy is set to 5% by weight (liquidus temperature: about 1810 ° C, solid solution temperature: about 1775 ° C) in order to ensure compactness without sintering defects such as pinholes. It is a thing. More preferably, it is 10% by weight or more. Although the sinterability is improved as the amount of Fe is increased, the oxidation resistance is decreased. For this reason, in the present invention, the upper limit is 50% by weight, and thereby, the oxidation resistance that can withstand use in a high-temperature atmospheric furnace exceeding 1300 ° C. is ensured. Further, by limiting the Fe content within this range, the compression deformation resistance that can be used as a skid button or the like in the above-mentioned high temperature environment is also ensured.

上記基地金属であるFe−Cr合金に複合化される希土類
酸化物粒子は、例えばイットリウム、ランタン、セリウ
ム、ネオジム等の酸化物、またはこれらの複酸化物等で
ある。その粒径は、約1〜10μmであってよい。
The rare earth oxide particles complexed with the Fe-Cr alloy as the base metal are, for example, oxides of yttrium, lanthanum, cerium, neodymium, etc., or complex oxides thereof. The particle size may be about 1-10 μm.

複合焼結合金における希土類酸化物粒子の割合は任意
に調整することができるが、本発明は、鋼材加熱炉内に
スキッドボタン等のように高温熱影響下に高い圧縮荷重
が反復作用する使用環境に耐え得る改良された圧縮強度
を得るために、希土類酸化物粒子の含有割合は5重量%
以上とする。より好ましくは10重量%以上である。もっ
とも、その割合をあまり高くすると、マトリックス金属
の占める相対的割合の減少に伴う靱性の低下傾向をみる
ので、スキッドボタンの場合には、鋼材の衝撃による欠
けや割れ等の防止に必要な耐衝撃性を確保するために、
希土類酸化物粒子の割合は80重量%までとするのがよ
く、より好ましくは70重量%を上限とする。
The ratio of rare earth oxide particles in the composite sintered alloy can be adjusted arbitrarily, but the present invention is a working environment in which a high compressive load repeatedly acts under the influence of high temperature heat such as a skid button in a steel heating furnace. In order to obtain improved compressive strength to withstand, the content of rare earth oxide particles is 5% by weight.
That is all. More preferably, it is 10% by weight or more. However, if the ratio is made too high, the toughness tends to decrease with the decrease in the relative ratio of the matrix metal, so in the case of skid buttons, the impact resistance required to prevent cracks and cracks due to the impact of the steel material. To ensure
The proportion of rare earth oxide particles is preferably up to 80% by weight, more preferably up to 70% by weight.

本発明の複合焼結合金は、希土類酸化物粉末と、Fe−
Cr合金粉末との均一な混合粉末を出発原料とし、公知の
各種焼結法、好ましくは熱間静水圧加圧焼結法を適用す
ることにより製造される。
The composite sintered alloy of the present invention comprises a rare earth oxide powder, Fe-
It is produced by using a uniform mixed powder with a Cr alloy powder as a starting material and applying various known sintering methods, preferably hot isostatic pressing.

焼結原料粉末混合物の調製においては、混合・粉砕の
均一性やMA(メカニカル・アロイング)効果等の点から
アトライタ等の高エネルギボールミルによる混合粉砕を
行うのが好ましい。高エネルギボールミルによる混合粉
砕を行う場合には、Fe−Cr合金粉末に代えて、Fe粉末と
Cr粉末の混合物を使用することができる。
In the preparation of the sintering raw material powder mixture, it is preferable to carry out the mixing and pulverization by a high energy ball mill such as an attritor from the viewpoint of the uniformity of the mixing and pulverization and the MA (mechanical alloying) effect. When mixing and pulverizing with a high-energy ball mill, replace Fe-Cr alloy powder with Fe powder.
A mixture of Cr powders can be used.

熱間静水圧加圧焼結は、原料粉末混合物を適宜の金属
カプセル(例えば、軟鋼、炭素鋼、ステンレス鋼)に充
填し、脱気密封したうえ、温度約1000〜1300℃、加圧力
約1000〜2000kgf/cm2に適当時間(例えば、2〜4時
間)保持することにより達成される。その焼結処理過程
ににおいて希土類酸化物粒子とFe−Cr合金との間に、材
質の変化をもたらすような反応を生じることはない。焼
結完了後の冷却は、例えば24時間を要して常温まで降下
させるようにすればよい。
In hot isostatic pressing, the raw material powder mixture is filled in an appropriate metal capsule (for example, mild steel, carbon steel, stainless steel), degassed and hermetically sealed, and the temperature is about 1000 to 1300 ° C, and the pressure is about 1000. It can be achieved by holding at ˜2000 kgf / cm 2 for a suitable time (for example, 2 to 4 hours). During the sintering process, the rare earth oxide particles and the Fe-Cr alloy do not cause a reaction that causes a change in the material. Cooling after the completion of sintering may be carried out by lowering the temperature to room temperature, for example, taking 24 hours.

なお、焼結工程の別のプロセスとして、原料粉末混合
物をラバーに充填し冷間静水圧プレスを加えて圧粉成形
体を形成し、これに粗機械加工を施したうえ、カプセル
内に密封して熱間静水圧加圧焼結を行う方法、または粗
機械機械を加えた圧粉成形体を不活性雰囲気や水素ガス
雰囲気下に常圧焼結し、もしくは真空下に焼結する方
法、所望によりその焼結体を更に熱間静水圧加圧焼結す
る方法、あるいは原料粉末混合物をホットプレスに付し
て焼結する方法等を使用することもできる。
As another process of the sintering process, the raw material powder mixture was filled in rubber and cold isostatic pressing was applied to form a powder compact, which was subjected to rough machining and then sealed in a capsule. Hot isostatic pressing method, or a method of sintering a powder compact with a rough mechanical machine under normal pressure in an inert atmosphere or hydrogen gas atmosphere, or under vacuum. Thus, a method of further hot isostatic pressing and sintering of the sintered body, a method of subjecting the raw material powder mixture to hot pressing and sintering, or the like can be used.

第1図は本発明の複合焼結合金からなるブロックを示
している。その複合焼結合金ブロック(1)を例えば加
熱炉内の鋼材支持部材であるスキッドボタンとして使用
する場合、その部材は必ずしも全体を本発明の複合焼結
合金とする必要はなく、スキッドパイプ(20)に当接す
る側の下半部分(12)、すなわちスキッドパイプ(20)
からの伝導伝熱による十分な冷却作用が及ぶ部分は従来
の耐熱合金(例えば、高Cr高Ni系合金鋼)とし、その上
半部分(11)を本発明の複合焼結合金で形成したもので
あってもよい。そのスキッドボタンは、上半部分(11)
となる本発明の複合焼結合金のブロックと、別途準備し
た下半部分(12)となる耐熱合金のブロックとを溶接、
または固溶接合等で結着する方法により製作することが
でき、あるいは、複合焼結合金の原料粉末もしくはその
圧粉成形体を耐熱合金ブロックと共にカプセル内に密封
して熱間静水圧加圧焼結を行う方法等による製作するこ
ともできる。
FIG. 1 shows a block made of the composite sintered alloy of the present invention. When the composite sintered alloy block (1) is used as, for example, a skid button which is a steel material supporting member in a heating furnace, the member does not necessarily have to be the composite sintered alloy of the present invention in its entirety, and the skid pipe (20 ), The lower half (12) of the side that abuts against), namely the skid pipe (20)
The part that is sufficiently cooled by conduction heat transfer from the conventional heat-resistant alloy (for example, high Cr high Ni alloy steel), the upper half (11) of which is formed by the composite sintered alloy of the present invention May be The skid button has an upper half (11)
Welding the block of the composite sintered alloy of the present invention, which is to be described below, and the block of the heat-resistant alloy to be the separately prepared lower half part (12),
Alternatively, it can be manufactured by a method of binding by solid welding or the like, or the raw material powder of the composite sintered alloy or its powder compact is sealed in a capsule together with the heat resistant alloy block and hot isostatic pressing is performed. It can also be manufactured by a method of binding.

本発明の複合焼結合金は、所望により、耐熱鋼ケーシ
ングで被包され、耐熱鋼ケーシングとの結合一体関係を
有する耐熱部材を構成する。第2図にその例を示す。
(2)は耐熱鋼ケーシングであり、複合焼結合金ブロッ
ク(1)は、その頂面を除いて耐熱鋼ケーシング(2)
で被包され、その当接界面は固相接合されている。
The composite sintered alloy of the present invention, if desired, is covered with a heat-resistant steel casing to form a heat-resistant member having a combined integral relationship with the heat-resistant steel casing. FIG. 2 shows an example thereof.
(2) is a heat-resistant steel casing, and the composite sintered alloy block (1) is a heat-resistant steel casing (2) except for its top surface.
And the contact interface is solid-phase bonded.

複合焼結合金ブロック(1)を被包する耐熱鋼ケーシ
ング(2)は、複合焼結合金ブロック(1)に対する衝
撃による欠損・割れ等を防ぐための保護部材として機能
する。そのケーシングの材料である耐熱鋼とは、本発明
耐熱部材の高温酸化環境に耐える鋼材という程の意味で
あって、例えばSUS310,同310S,同304,HK,HP,UMCo50,そ
の他の公知の合金鋼からの適宜選択してよい。
The heat-resistant steel casing (2) encapsulating the composite sintered alloy block (1) functions as a protective member for preventing chipping or cracking due to impact on the composite sintered alloy block (1). The heat-resistant steel that is the material of the casing means a steel material that can withstand the high-temperature oxidizing environment of the heat-resistant member of the present invention, for example, SUS310, 310S, 304, HK, HP, UMCo50, and other known alloys. It may be appropriately selected from steel.

上記耐熱部材は、複合焼結合金ブロック(1)を形成
するための希土類酸化物粉末とFe−Cr合金粉末とからな
る焼結原料粉末混合物と、ケーシング(2)とからなる
耐熱鋼製カプセルと用い熱間静水圧加圧焼結法により製
造することができる。その場合の焼結プロセスについて
も、前記のように焼結原料粉末混合物をカプセル内に充
填し、脱気密封して熱間静水圧加圧焼結に付す工程のほ
か、冷間静水圧加圧成形等により圧粉成形体を形成した
うえ、これを耐熱鋼製カプセルに密封して熱間静水圧加
圧焼結に付す工程等をとることができる。熱間静水圧加
圧焼結を行ったのち、その焼結体を機械加工に付し、頂
面側のカプセル材を除去すれば、第2図に示したよう
に、複合焼結合金ブロック(1)と、その胴部周囲およ
び底面を被包する耐熱鋼ケーシング(2)とを有する耐
熱部材が得られる。その耐熱部材をスキッドボタンとし
て使用する場合は耐熱鋼ケーシング(2)を介して溶接
により簡単にスキッドパイプに取り付けることができ
る。
The heat resistant member is a mixture of sintering raw material powders made of rare earth oxide powder and Fe—Cr alloy powder for forming the composite sintered alloy block (1), and a heat resistant steel capsule made of a casing (2). It can be manufactured by a hot isostatic pressing method. Regarding the sintering process in that case as well, in addition to the step of filling the sintering raw material powder mixture in the capsule as described above, degassing and sealing and subjecting to hot isostatic pressing, cold isostatic pressing A step of forming a powder compact by molding or the like, sealing it in a heat-resistant steel capsule, and subjecting it to hot isostatic pressing can be performed. After performing hot isostatic pressing and then subjecting the sintered body to machining and removing the encapsulant on the top surface side, as shown in FIG. 2, a composite sintered alloy block ( A heat-resistant member having 1) and a heat-resistant steel casing (2) enclosing the periphery and bottom of the body is obtained. When the heat resistant member is used as a skid button, it can be easily attached to the skid pipe by welding through the heat resistant steel casing (2).

〔実施例〕〔Example〕

セラミック粉末と基地金属粉末を高エネルギボールミ
ルで混合粉砕し、その粉末混合物(セラミック粒子平均
粒径:2μm、金属粉末平均粒径:10μm)を軟鋼製カプ
セルに充填して脱気密封したうえ、熱間静水圧加圧焼結
に付し、温度1250℃,加圧力1200kgf/cm2で2時間を要
して焼結を行い、その後24時間を要して常温まで降下さ
せて供試焼結合金のブロック(Φ100×150,mm)を得
た。
Ceramic powder and base metal powder are mixed and pulverized with a high energy ball mill, and the powder mixture (ceramic particle average particle size: 2 μm, metal powder average particle size: 10 μm) is filled in a mild steel capsule, degassed and sealed, and then heated. Sintered hydrostatic pressure sintering, temperature of 1250 ℃, pressure of 1200kgf / cm 2 for 2 hours, and then 24 hours, and the temperature is lowered to room temperature. Block (Φ100 × 150, mm) was obtained.

各供試焼結合金の成分構成を第1表に示す。表中、N
o.1〜6は希土類酸化物粒子と適量のFeを含むFe−Cr合
金とからなる複合焼結合金である発明例、No.101〜103
は比較例であり、No.101は希土類酸化物粒子を金属クロ
ムと複合化した焼結合金、No.102は希土類酸化物粒子
を、Fe過剰のFe−Cr合金と複合化した焼結合金、No.103
は従来の代表的なスキッドボタン材料の1つであるクロ
ム炭化物粒子と高Co合金鋼(0.1C−27Ni−17Cr−40Co−
Fe)とからなり複合焼結合金の例である。
Table 1 shows the component composition of each test sintered alloy. N in the table
Inventive Examples Nos. 101 to 103, o.1 to 6 are composite sintered alloys composed of rare earth oxide particles and an Fe-Cr alloy containing an appropriate amount of Fe.
Is a comparative example, No. 101 is a sintered alloy in which rare earth oxide particles are compounded with metallic chromium, No. 102 is rare earth oxide particles, a sintered alloy in which Fe-rich Fe-Cr alloy is compounded, No. 103
Is one of the most typical conventional skid button materials, including chromium carbide particles and high Co alloy steel (0.1C-27Ni-17Cr-40Co-
Fe) and is an example of a composite sintered alloy.

各供試焼結合金について、焼結欠陥(ピンホール等)
の検査、融点、高温圧縮強度(at.1350℃の測定、およ
び耐酸化製試験を行って第1表右欄に示す結果を得た。
なお、表中、「焼結欠陥」は、複合焼結合金ブロックを
径方向および軸方向に切断分割し、その切断面を顕微鏡
観察した結果を示している。また、「耐酸化性」は、各
供試焼結合金ブロックを1350℃に設定された大気雰囲気
炉中に48時間保持する酸化試験後、酸化による表面劣化
状況を肉眼観察により判定した。同欄の○マークは「酸
化なし」、×マークは「酸化」を意味している。
Sintering defects (pinholes, etc.) for each test sintered alloy
And the melting point, high temperature compression strength (at 1350 ° C. measurement, and oxidation resistance test) were carried out to obtain the results shown in the right column of Table 1.
In addition, in the table, "sintering defect" indicates a result obtained by cutting and dividing the composite sintered alloy block in the radial direction and the axial direction and observing the cut surface under a microscope. The “oxidation resistance” was determined by observing the condition of surface deterioration due to oxidation after the oxidation test in which each of the test sintered alloy blocks was held in an air atmosphere furnace set at 1350 ° C. for 48 hours. A circle mark in the same column means “no oxidation” and a cross mark means “oxidation”.

第1表に示したように、金属クロムと希土類酸化物粒
子からなる複合焼結合金(No.101)は高融点を有しては
いるが、難焼結性であるため、ピンホールやクラック等
の焼結欠陥を生じており、またそのために高温圧縮強度
も低いレベルにとどまっている。
As shown in Table 1, composite sintered alloy (No. 101) consisting of metallic chromium and rare earth oxide particles has a high melting point, but it is difficult to sinter, so pinholes and cracks And the like, and the high temperature compressive strength remains at a low level.

また、Fe70重量%のFe−Cr合金を用いた焼結合金(N
o.102)はピンホール等のない健全性を有しているが、1
300℃をこえる温度域で酸化による著しい劣化が生じて
いる。更に、従来の代表的なスキッドボタン材料の1つ
である高Co合金鋼とクロム炭化物セラミック粒子とから
なる複合焼結合金ブロック(No.103)は、その構成材料
が高融点(高Co合金鋼:約1380℃,Cr3C2粒子:1950℃)
であるに拘らず、その複合焼結合金の融点は1290℃と低
く、従って1300℃をこえる温度域での圧縮強度は低い。
In addition, a sintered alloy (N containing 70% by weight of Fe-Cr alloy)
o.102) has soundness without pinholes, etc.
Significant deterioration due to oxidation occurs in the temperature range over 300 ° C. Furthermore, the composite sintered alloy block (No. 103) consisting of high Co alloy steel and chromium carbide ceramic particles, which is one of the conventional typical skid button materials, has a high melting point (high Co alloy steel). : Approx. 1380 ℃, Cr 3 C 2 particles: 1950 ℃)
However, the melting point of the composite sintered alloy is as low as 1290 ° C, and therefore the compressive strength in the temperature range exceeding 1300 ° C is low.

これに対し、Fe5〜50重量%を含むFe−Cr合金を基地
金属とし希土類酸化物粒子と複合化した発明例No.1〜6
は、良好な焼結性によりピンホール、クラック等のない
健全性を有していると共に、ほぼ1500℃ないしそれ以上
の高融点を有し、1300℃をこえる高温域において高い圧
縮強度を示す。また、その高温酸化性雰囲気において品
質劣化のない安定した酸化抵抗性を有している。なお、
比較例No.102(Fe70%のFe−Cr合金と希土類酸化物粒子
との複合焼結合金)と、発明例のNo.5とに融点の差がな
いにも拘らず、発明例における高温圧縮強度が高いレベ
ルを有しているのは、その焼結合金組織に生成した鉄・
クロム化合物(FeCr)相の分散強化作用が寄与している
ものと考えられる。また、比較例No.103(高Co合金鋼と
クロム炭化物粒子の複合焼結合金)の融点がその焼結原
料の融点に比し著しく低下しているのは、その複合焼結
合金の焼結過程で、クロム炭化物粒子から高Co合金鋼基
地中への炭素の拡散により、基地金属の炭素濃度が増加
したことによる。
In contrast, invention examples Nos. 1 to 6 in which Fe-Cr alloy containing 5 to 50% by weight of Fe was used as a base metal and compounded with rare earth oxide particles.
Has good soundness such as pinholes and cracks due to its good sinterability, has a high melting point of approximately 1500 ° C or higher, and exhibits high compressive strength in the high temperature range of over 1300 ° C. Further, it has stable oxidation resistance without quality deterioration in the high temperature oxidizing atmosphere. In addition,
Although there is no difference in melting point between Comparative Example No. 102 (composite sintered alloy of Fe-70% Fe-Cr alloy and rare earth oxide particles) and No. 5 of Inventive Example, high temperature compression in Inventive Example The high level of strength is due to the formation of iron in the sintered alloy structure.
It is considered that the dispersion strengthening action of the chromium compound (FeCr) phase contributes. Further, the melting point of Comparative Example No. 103 (composite sintered alloy of high Co alloy steel and chromium carbide particles) is significantly lower than the melting point of the sintering raw material because the sintering of the composite sintered alloy During the process, the carbon concentration of the base metal increased due to the diffusion of carbon from the chromium carbide particles into the high Co alloy steel base.

〔発明の効果〕 本発明に係る複合焼結合金は、ピンホールやクラック
等のない高緻密性・健全性を有し、かつ高融点で高温域
においても高強度を失わず、また高温での耐酸化性を備
えているので、これらの諸特性を要求される部材、殊に
加熱炉内のスキッドボタン等の鋼材支持部材として有用
であり、その耐久性の向上、メンテナンスの軽減、操炉
効率の向上等を諸効果をもたらす。
[Effects of the Invention] The composite sintered alloy according to the present invention has high density and soundness without pinholes, cracks, etc., and has a high melting point and does not lose high strength in a high temperature range, and also has a high temperature. Since it has oxidation resistance, it is useful as a member that requires these various characteristics, especially as a steel material supporting member such as skid buttons in a heating furnace. Its durability is improved, maintenance is reduced, and furnace operation efficiency is improved. To bring about various effects.

【図面の簡単な説明】[Brief description of drawings]

第1図は複合焼結合金ブロックの例を示す断面図、第2
図は複合焼結合金ブロックと耐熱鋼ケーシングからなる
耐熱部材の例を示す断面図、第3図は加熱炉内鋼材支持
部材の例を示す断面図である。 1:複合焼結合金ブロック、2:耐熱鋼ケーシング、10:ス
キッドボタン、20:ビーム(スキッドパイプ)
FIG. 1 is a sectional view showing an example of a composite sintered alloy block, and FIG.
FIG. 3 is a cross-sectional view showing an example of a heat-resistant member composed of a composite sintered alloy block and a heat-resistant steel casing, and FIG. 3 is a cross-sectional view showing an example of a steel material supporting member in a heating furnace. 1: Composite sintered alloy block, 2: Heat resistant steel casing, 10: Skid button, 20: Beam (skid pipe)

フロントページの続き (72)発明者 篠崎 斌 大阪府枚方市中宮大池1丁目1番1号 久 保田鉄工株式会社枚方製造所内 (72)発明者 蘭 裕幸 大阪府枚方市中宮大池1丁目1番1号 久 保田鉄工株式会社枚方製造所内 (56)参考文献 特開 昭61−261416(JP,A) 特開 昭61−221303(JP,A) 特公 昭49−40761(JP,B1)Front page continuation (72) Inventor Akira Shinozaki 1-1-1, Nakamiya Oike, Hirakata-shi, Osaka Prefecture Kubota Iron Works Co., Ltd. Hirakata Works (72) Inventor Hiroyuki Ran 1-1-1, Nakamiya Oike, Hirakata-shi, Osaka Prefecture Kubota Iron Works Co., Ltd. Hirakata Factory (56) References JP-A-61-261416 (JP, A) JP-A-61-221303 (JP, A) JP-B-49-40761 (JP, B1)

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】Fe5〜50重量%を含有するFe−Cr合金から
なる基地金属中に、5〜80重量%の希土類酸化物粒子が
均一に分散した混合組織を有する焼結体であることを特
徴とする複合焼結合金。
1. A sintered body having a mixed structure in which 5 to 80% by weight of rare earth oxide particles are uniformly dispersed in a base metal composed of an Fe-Cr alloy containing 5 to 50% by weight of Fe. Characteristic composite sintered alloy.
【請求項2】加熱炉内の被加熱鋼材を支持する鋼材支持
部材において、少なくとも被加熱鋼材と接触する頂部側
が、請求項1に記載の複合焼結合金からなることを特徴
とする加熱炉内鋼材支持部材。
2. A steel material supporting member for supporting a steel material to be heated in a heating furnace, wherein at least a top side in contact with the steel material to be heated is made of the composite sintered alloy according to claim 1. Steel support member.
【請求項3】Fe5〜50重量%を含有するFe−Cr合金から
なる基地金属中に、5〜80重量%の希土類酸化物粒子が
均一に分散した混合組織を有する焼結体である複合焼結
合金ブロックと、上記複合焼結合金ブロックの頂面を除
き少なくとも胴部周囲を被包する耐熱鋼ケーシングとを
有し、上記複合焼結合金ブロックと耐熱鋼ケーシングの
互いの当接界面が固相接合されている熱間静水圧加圧焼
結体であることを特徴とする耐熱部材。
3. A composite calcination which is a sintered body having a mixed structure in which 5 to 80% by weight of rare earth oxide particles are uniformly dispersed in a base metal made of an Fe-Cr alloy containing 5 to 50% by weight of Fe. It has a bonded gold block and a heat-resistant steel casing that covers at least the periphery of the body except the top surface of the composite sintered alloy block, and the contact interface between the composite sintered alloy block and the heat-resistant steel casing is solid. A heat-resistant member, which is a hot isostatic pressing sintered body that is phase-bonded.
【請求項4】請求項3に記載の耐熱部材からなり、その
複合焼結合金ブロックの頂面を被加熱鋼材支持面とする
加熱炉用被加熱鋼材支持部材。
4. A heated steel support member for a heating furnace, comprising the heat resistant member according to claim 3 and having a top surface of the composite sintered alloy block as a heated steel support surface.
JP1080871A 1989-03-30 1989-03-30 Composite sintered alloy, heat resistant member and steel support member in heating furnace Expired - Lifetime JPH0832942B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1080871A JPH0832942B2 (en) 1989-03-30 1989-03-30 Composite sintered alloy, heat resistant member and steel support member in heating furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1080871A JPH0832942B2 (en) 1989-03-30 1989-03-30 Composite sintered alloy, heat resistant member and steel support member in heating furnace

Publications (2)

Publication Number Publication Date
JPH02258946A JPH02258946A (en) 1990-10-19
JPH0832942B2 true JPH0832942B2 (en) 1996-03-29

Family

ID=13730406

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1080871A Expired - Lifetime JPH0832942B2 (en) 1989-03-30 1989-03-30 Composite sintered alloy, heat resistant member and steel support member in heating furnace

Country Status (1)

Country Link
JP (1) JPH0832942B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0747793B2 (en) * 1991-04-26 1995-05-24 株式会社クボタ Oxide dispersion strengthened heat resistant sintered alloy
AT399165B (en) * 1992-05-14 1995-03-27 Plansee Metallwerk CHROME BASED ALLOY
ES2087357T3 (en) * 1992-07-16 1996-07-16 Siemens Ag MATERIAL FOR METALLIC COMPONENTS OF FUEL CELL FACILITIES AT HIGH TEMPERATURE.
AT11555U1 (en) 2009-03-12 2010-12-15 Plansee Se INTERCONNECTOR OF A FIXED ELECTROLYTE HIGH TEMPERATURE FUEL CELL

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4940761A (en) * 1972-08-23 1974-04-16
JPS61221303A (en) * 1985-03-27 1986-10-01 Riken Corp Production of oxide dispersed fe high alloy
JPS61261416A (en) * 1985-05-11 1986-11-19 Sumitomo Electric Ind Ltd Production of heat resistant alloy having excellent resistance to high-temperature oxidation

Also Published As

Publication number Publication date
JPH02258946A (en) 1990-10-19

Similar Documents

Publication Publication Date Title
AU633665B2 (en) Mixed sintered metal materials based on borides, nitrides and iron binder metals
EP0465128B1 (en) Silver- or silver-copper alloy-metal oxide composite material and process of producing the same
JPH0747793B2 (en) Oxide dispersion strengthened heat resistant sintered alloy
JPH04505985A (en) Manufacturing method of CuCr contact piece for vacuum switch and attached contact piece
JP4193958B2 (en) Molten metal member having excellent corrosion resistance against molten metal and method for producing the same
JPH0832942B2 (en) Composite sintered alloy, heat resistant member and steel support member in heating furnace
CA1053485A (en) Ruthenium powder metal alloy and method for making same
JPH07233434A (en) Corrosion resistant material and its production
US3554740A (en) Nickel-aluminum electrical resistance elements
EP2045346B1 (en) Method for producing a sintered composite sliding part
JPH0633166A (en) Manufacture of oxide dispersion-strengthened heat resistant alloy sintered compact
JP2802768B2 (en) Composite sintered alloy and steel support in heating furnace
JP4409067B2 (en) Molten metal member having excellent corrosion resistance against molten metal and method for producing the same
JP4508736B2 (en) Copper-based material and method for producing the same
JPH036218B2 (en)
JPH02258947A (en) Heat-resistant sintered alloy and steel material supporting member in heating furnace
JP3511740B2 (en) Method for producing high toughness cemented carbide and composite cemented carbide roll
JPH02233990A (en) Refractory and steel support member in heating furnace
JPH06128604A (en) Production of metallic material
JP2002194536A (en) Sputtering target with low oxygen content
JP2928821B2 (en) Method for producing high-density chromium-based cermet sintered body
JPH07109173A (en) Sintered titanium boride ceramics and products therefrom
GB2312681A (en) A sintering method for a W-Ni-Mn type heavy alloy.
JPS5834152A (en) Composite material for metallic mold and its manufacture by powder metallurgy
CN116532645A (en) Preparation method of rare earth WC-CoFeNi hard alloy