JPS61221303A - Production of oxide dispersed fe high alloy - Google Patents

Production of oxide dispersed fe high alloy

Info

Publication number
JPS61221303A
JPS61221303A JP6290285A JP6290285A JPS61221303A JP S61221303 A JPS61221303 A JP S61221303A JP 6290285 A JP6290285 A JP 6290285A JP 6290285 A JP6290285 A JP 6290285A JP S61221303 A JPS61221303 A JP S61221303A
Authority
JP
Japan
Prior art keywords
powder
alloy
vessel
high alloy
explosive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6290285A
Other languages
Japanese (ja)
Inventor
Hideki Tonda
頓田 英機
Kazuki Takashima
和希 高島
Manabu Ueno
学 上野
Tatsuo Toraishi
虎石 龍雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Riken Corp
Original Assignee
Riken Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Riken Corp filed Critical Riken Corp
Priority to JP6290285A priority Critical patent/JPS61221303A/en
Publication of JPS61221303A publication Critical patent/JPS61221303A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To produce efficiently an oxide dispersed Fe high alloy having high density and uniform quality by mixing the pulverous powder of a metallic oxide having an adequate grain size at a specific ratio with Fe high alloy powder, packing the mixture in a vessel, disposing an explosive to the side part of the vessel and exploding said explosive. CONSTITUTION:0.2-3.0wt% Metallic oxide powder having <=1mum, more preferably about <=0.5mum grain size is uniformly mixed with the Fe high alloy powder contg. about >=90% powder having about 100 mesh undersize, more preferably 250 mesh undersize and about 5-40mum grain size. The resulted powder mixture 1 is packed into the cylindrical vessel 2 made of iron, aluminum, paper, etc. and a circular conical cap 3 is put thereon. The vessel is disposed in a cylindrical body 4 made of cardboard, etc. The explosive is then packed into a space 5 between the vessel 2 and the body 4 and is exploded by a detonator 6. The powder 1 is compressed together with the vessel 2 by the explosive powder. The oxide dispersed Fe high alloy which has the density of >=90% of the true denity and is uniformly dispersed with the metallic oxide in the alloy base having the uniform quality is obtd.

Description

【発明の詳細な説明】 (発明の利用分野) この発明はFe基嵩高合金製造方法に関し、更に詳述す
れば均質なFe基高合金の基地中金属酸化物粒子を均一
に分散させた高密度のFe基嵩高合金粉末から製造する
方法に関する6 (従来技術とその問題点) 近時、高温用Fe基合金の耐酸化特性や高温強度等の特
性を改善することを目的として高合金の合金基地中に酸
化物粒子を分散させた複合合金の開発が盛んになってき
ている。この種の複合合金は、合金を溶融状態から凝固
させるいわゆる溶製法によっては均質な複合合金組織と
することが不可能であるため、粉末冶金の方法による製
造が検討されている。
DETAILED DESCRIPTION OF THE INVENTION (Field of Application of the Invention) The present invention relates to a method for producing a Fe-based bulky alloy. (Prior art and its problems) Recently, in order to improve the properties such as oxidation resistance and high-temperature strength of high-temperature Fe-based alloys, high-alloy alloy bases have been developed. The development of composite alloys in which oxide particles are dispersed is gaining momentum. Since it is impossible to obtain a homogeneous composite alloy structure for this type of composite alloy by a so-called melting process in which the alloy is solidified from a molten state, manufacturing by a powder metallurgy method is being considered.

ところで、耐熱合金等の高性能合金を製造するためには
、焼結体の密度を真密度近くまで高める必要があるが、
原料粉末をプレス成形して圧粉体とし、次いで焼結する
従来の粉末冶金の方法でこの種の酸化物分散Fe基高合
金の製造しようとする場合、原料粉末として、酸化物粉
末を使用している上に母合金が多量の合金元素を含有し
ているので、その粉末の圧縮成形性が悪いために高密度
の合金を得ることが困難である。
By the way, in order to manufacture high-performance alloys such as heat-resistant alloys, it is necessary to increase the density of the sintered body to near the true density.
When attempting to produce this type of oxide-dispersed Fe-based high alloy by the conventional powder metallurgy method of press-molding raw material powder to form a green compact and then sintering, oxide powder is used as the raw material powder. Moreover, since the master alloy contains a large amount of alloying elements, the compression moldability of the powder is poor, making it difficult to obtain a high-density alloy.

これに対して、高温加圧成形(ホットプレス)や高温静
水圧プレス(HIP)の手段でこの種の複合合金を製造
する試みもなされているが、ホットプレスやHIPは生
産効率が低く、コスト高になる等の難点を有しており実
用的な製造方法として採用されるには至っていない。
In response, attempts have been made to manufacture this type of composite alloy by means of high-temperature pressure forming (hot press) and high-temperature isostatic pressing (HIP), but hot press and HIP have low production efficiency and are costly. This method has disadvantages such as being expensive and has not been adopted as a practical manufacturing method.

(本発明が解決しようとする問題点) この発明は、上記に鑑み、金属酸化物粒子が微細均一に
分散していて且つ真密度に近い密度を有する酸化物分散
Fe基高合金の生産能率良く得ることができる実用的方
法を提供することを目的とする。
(Problems to be Solved by the Present Invention) In view of the above, the present invention provides an efficient method for producing an oxide-dispersed Fe-based high alloy in which metal oxide particles are finely and uniformly dispersed and has a density close to the true density. The purpose is to provide a practical method that can be obtained.

(本発明の技術的手段とその作用) 本発明は、100メッシ篩下のFe基高合金の粉末粒径
1μm以下の金属酸化物粉末を0.2〜3.0(重量)
%混合した混合粉末を容器内に充填し、該容器の側部に
爆薬を配して爆発させて該容器とともに混合粉末を圧縮
固着させ、真密度の90%以上の密度を有する成形体と
することを特徴とする酸化物分散Fe基高合金の製造方
法に係り、本発明方法を採用することにより圧縮成形性
の良くない高合金粉末と金属酸化物粉末との混合粉末を
原料粉として使用しながら、均質で緻密な合金基地を有
し且つ高密度の酸化物分散Fe基高合金の焼結工程を経
ることなく容易に得ることが可能となる。
(Technical means of the present invention and its effects) The present invention provides metal oxide powder with a powder particle size of 1 μm or less of Fe-based high alloy under a 100 mesh sieve of 0.2 to 3.0 (by weight)
% mixed powder is filled into a container, and an explosive is placed on the side of the container and detonated to compress and fix the mixed powder together with the container to form a molded body having a density of 90% or more of the true density. By adopting the method of the present invention, a mixed powder of high alloy powder and metal oxide powder, which has poor compression moldability, is used as a raw material powder. However, it becomes possible to easily obtain a high-density oxide-dispersed Fe-based high alloy having a homogeneous and dense alloy matrix without going through a sintering process.

本発明の実施のために使用される合金成形装置の一例を
第1図に示す。原料となる混合粉末1は予めボールミル
等によって可及的均一に混合しておく。混合粉末1を充
填する容器2は鉄やアルミニウムあるいは紙製の筒状体
で、その頭部には爆発圧力を分散させる円錐形のキャッ
プ3がのせられる。前記容器2は好ましくは厚紙層の筒
状体4で囲まれ、その間に空間5が形成される。空間5
には爆薬が装填され、該爆薬は上部の雷管6によって爆
発し、そのエネルギーにより混合粉末1は容器2ととも
に圧縮され高密度に固着される。以下、これを爆圧成形
体という。爆発成形後、容器部分を除去して爆圧成形体
を取り出す。
An example of an alloy forming apparatus used for carrying out the present invention is shown in FIG. The mixed powder 1 serving as the raw material is mixed in advance as uniformly as possible using a ball mill or the like. A container 2 filled with mixed powder 1 is a cylindrical body made of iron, aluminum, or paper, and a conical cap 3 is placed on the top of the container to disperse the explosion pressure. Said container 2 is surrounded by a cylinder 4, preferably of a cardboard layer, between which a space 5 is formed. space 5
is loaded with explosives, which are detonated by the detonator 6 at the top, and the mixed powder 1 is compressed together with the container 2 by its energy and is fixed at high density. Hereinafter, this will be referred to as an explosive molded product. After the explosion molding, the container portion is removed and the explosive molded body is taken out.

本発明の方法により得られた爆圧成形体は高合金の母合
金粉末と金属酸化物粉末との混合粉末を爆圧により圧縮
固着したものであるから、真密度の90%以上の高密度
をなし、均質な合金基地中に金属酸化物粒子が微細均一
に分散したものとすることができる。
Since the explosive compact obtained by the method of the present invention is a mixture of a high-alloy mother alloy powder and a metal oxide powder that is compressed and fixed by explosive pressure, it has a high density of 90% or more of the true density. None, metal oxide particles can be finely and uniformly dispersed in a homogeneous alloy base.

したがって、耐食耐酸化特性等が良好であるとともに混
合した金属酸化物粉末粒子は合金基地中に均一微細に分
散していて高温状態での使用に際しての合金の耐酸化特
性を改善するとともに結晶粒の成長を抑制する顕著な効
果を示し、良好な機械的強度を維持させる上で有効に作
用する。
Therefore, it has good corrosion and oxidation resistance properties, and the mixed metal oxide powder particles are uniformly and finely dispersed in the alloy matrix, improving the oxidation resistance properties of the alloy when used in high-temperature conditions, and improving the crystal grain size. It shows a remarkable effect of suppressing growth and acts effectively in maintaining good mechanical strength.

なお、本発明において、Fe基高合金の粉末して水アト
マイズ法その他の従来公知の急冷凝固の方法により得ら
れた合金粉末を採用することは、多量の合金元素を含有
する母合金粉末自体を均質なものとし、得られる合金基
地の均質性を良好なものとする上で特に有効である。
In the present invention, the use of Fe-based high alloy powder obtained by water atomization or other conventionally known rapid solidification methods means that the master alloy powder itself containing a large amount of alloying elements is used. It is particularly effective in making the alloy base homogeneous and improving the homogeneity of the obtained alloy matrix.

本発明で、Fe基高合金の粉末粒径が過度に大きい場合
には合金基地中への金属酸化物の分散状態の均一性が損
われるので粒径100メッシ篩下、好ましくは250メ
ッシ篩下で且つ5〜40μmの粒径をもつ粉末がおよそ
90%以上を占めるFe基高合金の粉末使用される。
In the present invention, if the powder particle size of the Fe-based high alloy is excessively large, the uniformity of the dispersion state of the metal oxide in the alloy base will be impaired, so the particle size is below 100 mesh sieve, preferably below 250 mesh sieve. A Fe-based high alloy powder is used in which about 90% or more of the powder has a particle size of 5 to 40 μm.

また、金属酸化物粉末の粒径が過度に大きい場合には合
金の耐酸化性や機械的特性の改善効果が充分に得られな
くなる。それ故、本発明では使用する金属酸化物粉末の
粒度を1.0μm以下、好ましくは0.5μm以下とす
る。
Furthermore, if the particle size of the metal oxide powder is excessively large, the effect of improving the oxidation resistance and mechanical properties of the alloy will not be sufficiently improved. Therefore, in the present invention, the particle size of the metal oxide powder used is 1.0 μm or less, preferably 0.5 μm or less.

金属酸化物粉末の量が0.2(重量)%未満では結晶粒
成長の抑制および強度改善等の上記効果が充分に得られ
ず、3(重量)%を越えて多量に添加するとかえって合
金を脆弱にする傾向が生ずるとともに、後工程での加工
性を低下させあるいは所望の高密度が得られなくなる等
のマイナス効果が大きくなる。 それ故、本発明では金
属酸化物粉末の添加量を0.2〜3(重量)%の範囲と
する。
If the amount of metal oxide powder is less than 0.2% (by weight), the above-mentioned effects such as suppressing grain growth and improving strength cannot be obtained sufficiently, and if it is added in a large amount exceeding 3% (by weight), it may actually weaken the alloy. This tends to make the material brittle, and the negative effects such as lowering workability in subsequent steps or not being able to obtain the desired high density increase. Therefore, in the present invention, the amount of metal oxide powder added is in the range of 0.2 to 3% (by weight).

本発明は、Fe基高合金の粉末して多量の合金元素を含
有するFe基高合金の粉末使用し、これに所定量の金属
酸化物粉末を混合した混合粉末を原料粉末として使用す
る。
In the present invention, Fe-based high alloy powder containing a large amount of alloying elements is used, and a mixed powder obtained by mixing this with a predetermined amount of metal oxide powder is used as a raw material powder.

ここで、Fe基高合金の粉末は、少なくともCr、Mn
、Co、Ni、 AQ、Mo、V、W、Nb、Zr、C
e 、 Ti、Taの一種又は二種以上を合計で20(
重量)%以上含有するFe基合金の粉末であり、このよ
うに多量の合金元素を含有するFe基合金粉末は圧縮成
形性が悪く、従来の粉末冶金法によっては高密度の焼結
体(複合合金成形体)とすることが困難であるが、本発
明によれば真密度に近い高密度を有する複合合金成形体
として容易に成形することができる。
Here, the Fe-based high alloy powder contains at least Cr, Mn
, Co, Ni, AQ, Mo, V, W, Nb, Zr, C
A total of 20 (20) of one or more of e, Ti, and Ta
(wt)% or more, and Fe-based alloy powder containing such a large amount of alloying elements has poor compression moldability, and cannot be formed into a high-density sintered body (composite body) depending on the conventional powder metallurgy method. However, according to the present invention, it is possible to easily form a composite alloy molded product having a high density close to the true density.

また、金属酸化物粉末としてはY、La、Ce。Further, metal oxide powders include Y, La, and Ce.

Th、Zr、HhおよびAQ等の金属の酸化物の一種ま
たは二種以上を採用することが有効である。
It is effective to use one or more metal oxides such as Th, Zr, Hh, and AQ.

(実施例) 次に、Fe基高合金の粉末してF e −A Q −C
r系高合金粉末を、金属酸化物粉末としてYの酸化物(
yz Off )粉末を採用した場合についての実施例
を示す・ AQ5%、Cr24%、残部が実質的にFeからなる合
金を溶融させ、従来の水アトマイズ法により350メッ
シ篩下で粒径5〜40μmの粉末が全体の90%以上を
占める合金粉末とした。
(Example) Next, powder of Fe-based high alloy was prepared as Fe-A Q-C.
The r-based high-alloy powder is used as a metal oxide powder to form Y oxide (
yz Off ) powder is used. An alloy consisting of 5% AQ, 24% Cr, and the remainder substantially Fe is melted, and the particle size is 5 to 40 μm under a 350 mesh sieve using the conventional water atomization method. The alloy powder was made up of 90% or more of the powder.

上記の合金粉末に、粒径0.5μm以下のY2O,粉末
をそれぞれ0.2.0.5.1.3.5(重量)%添加
し、ボールミルにてそれぞれ25時間混合した。このよ
うにして準備した各混合粉末を、内径10.7mm、肉
厚1mmの円筒状鉄製容器2内に充填し、上部に円錐形
キャップ3をのせ、容器2の周囲に空間4を形成する如
く紙筒5を配し、容器と紙筒との間に火薬を充填し、上
部に雷管6を設置させた後、点火スイッチにより点火し
爆発させ、そのエネルギーを利用して容器2ごと圧縮し
、混合粉末を固着させ爆圧成形体を得た。
To the above alloy powder, 0.2, 0, 5, 1, 3.5 (weight) % of Y2O powder having a particle size of 0.5 μm or less was added, and the mixture was mixed in a ball mill for 25 hours. Each of the mixed powders thus prepared was filled into a cylindrical iron container 2 with an inner diameter of 10.7 mm and a wall thickness of 1 mm, and a conical cap 3 was placed on top to form a space 4 around the container 2. A paper cylinder 5 is arranged, gunpowder is filled between the container and the paper cylinder, a detonator 6 is installed on the top, the ignition switch is used to ignite and explode, and the energy is used to compress the entire container 2. The mixed powder was solidified to obtain an explosive compact.

なお、爆薬としては爆速2100〜2400m/see
のものを使用し、混合粉末に対する爆薬の重量比を約1
5とした。Y2O,を0.2〜3.0(重量)%添加し
て得られた爆圧成形体は、その密度が真密度の95%以
上であり、金属酸化物粒子が合金基地中に均一微細に分
散している極めて緻密な組織の合金組織をなしていた。
In addition, the explosive speed is 2100 to 2400 m/see.
The weight ratio of explosive to mixed powder is approximately 1.
I gave it a 5. The explosion compacted product obtained by adding 0.2 to 3.0% (by weight) of Y2O has a density of 95% or more of the true density, and the metal oxide particles are uniformly and finely distributed in the alloy matrix. It had an alloy structure with a dispersed and extremely dense structure.

第2図(a)は得られた合金の顕微鏡組織の例としてY
2O,粉末0.5%添加のものの顕微鏡組織を示す。な
を、Y2O3を5(重量)%添加のものは密度が真密度
の85%とやや低い値を示していた。
Figure 2(a) shows an example of the microstructure of the obtained alloy.
The microscopic structure of the sample containing 0.5% 2O powder is shown. Furthermore, the density of the material containing 5% (by weight) of Y2O3 was 85% of the true density, which was a rather low value.

第3図には第2図(8)に示したものと同一の原料粉末
を従来の粉末冶金法により成形圧力6t/Cff12で
圧粉体に成形し、  これを真空中で1250℃XIH
rの焼結を行って得られた合金(比較合金A)の顕微鏡
組織を示すが、図中、黒色部分は空孔であって、第2図
(a)のものに比較して密度が格段に小さい(真密度の
69%)。
In Figure 3, the same raw material powder as shown in Figure 2 (8) is molded into a green compact using a conventional powder metallurgy method at a compacting pressure of 6t/Cff12, and this is then molded in a vacuum at 1250℃XIH.
The microscopic structure of the alloy obtained by sintering R (comparative alloy A) is shown. In the figure, the black parts are pores, and the density is much higher than that in Figure 2 (a). (69% of true density).

上記の如くして本発明方法で得られた各爆圧成形体を大
気中1200℃において20時間加熱し酸化試験をおこ
なった。第2図(a)に示す合金の酸化試験後の顕微鏡
組織を例として第2図(b)に示す。
Each explosion-molded article obtained by the method of the present invention as described above was heated in the atmosphere at 1200° C. for 20 hours and subjected to an oxidation test. An example of the microscopic structure of the alloy shown in FIG. 2(a) after an oxidation test is shown in FIG. 2(b).

また、第4図(a)に前記実施例において使用したもの
と同一組成および粒度構成のFe−AQ、−Cr系合金
粉末を用い金属酸化物粉末を混合しないで爆圧成形して
得られた合金(比較合金B)の爆圧成形状態における顕
微鏡組織を示し、第4図(b)には、前記比較合金Bを
大気中1200℃において20時間加熱した後の顕微鏡
組織を示す。第2図(a)、(b)および第4図(a)
、(b)とを比較して明らかな如く本発明の方法により
得られた合金は高温に長時間曝されても結晶粒の成長が
極めて少なく微細な結晶組織を維持している。したがっ
て、高温での使用によって材質が脆化するようなことが
なく特に高温用途に好適な合金を得ることができる。
In addition, FIG. 4(a) shows a sample obtained by bombardment molding using Fe-AQ, -Cr alloy powder having the same composition and particle size structure as that used in the above example without mixing metal oxide powder. The microscopic structure of the alloy (comparative alloy B) in the explosively formed state is shown, and FIG. 4(b) shows the microscopic structure of the comparative alloy B after being heated in the atmosphere at 1200° C. for 20 hours. Figure 2 (a), (b) and Figure 4 (a)
, (b), the alloy obtained by the method of the present invention shows very little growth of crystal grains and maintains a fine crystal structure even when exposed to high temperatures for a long time. Therefore, the material does not become brittle when used at high temperatures, and an alloy particularly suitable for high-temperature applications can be obtained.

上記実施例ではFe基高合金の粉末してFe−AQ−C
r系合金粉末を使用した例について示した。
In the above example, Fe-AQ-C was used as Fe-based high alloy powder.
An example using r-based alloy powder is shown.

この種のFe −AQ −Cr系合金は酸化性雰囲気中
で使用されるとその表面にAl2O2を主体とする皮膜
を容易に形成するので耐酸化特性の極めて良好な合” 
金である反面、高温における機械的強度が充分でないた
めにその用途が制限されていた。本発明の方法において
Fe基高合金の粉末してこの種のFe −AQ−Cr系
母合金粉末を使用すれば、耐酸化特性の良好な均質な合
金基地中に酸化物微粒子が微細均一に分散した緻密な組
織構造の複合合金となるので、耐酸化特性に優れ且つ高
温強度が改善された特に高温用途に好適な合金を得るこ
とができる。
When this kind of Fe-AQ-Cr-based alloy is used in an oxidizing atmosphere, it easily forms a film mainly composed of Al2O2 on its surface, making it a highly oxidation-resistant alloy.
Although it is gold, its use has been limited because it does not have sufficient mechanical strength at high temperatures. If this type of Fe-AQ-Cr-based master alloy powder is used as the Fe-based high alloy powder in the method of the present invention, oxide fine particles will be finely and uniformly dispersed in a homogeneous alloy matrix with good oxidation resistance. Since the composite alloy has a dense microstructure, it is possible to obtain an alloy that has excellent oxidation resistance and improved high-temperature strength, and is particularly suitable for high-temperature applications.

第1表は、前記実施例において得られた各酸化物分散F
e基高合金のY、O,:0.5〜3%添加)と従来の溶
製の方法で得られた合金(比較材)についての1200
℃における酸化試験の結果を示すものであるが、本発明
に係る各酸化物分散Fe基高合金の極めて良好な耐酸化
特性(酸化増量)を示し、その酸化増量は従来の溶製法
により得られた合金のそれの172〜1/3程度である
Table 1 shows each oxide dispersion F obtained in the above examples.
1200 for e-based high alloy Y, O,: 0.5 to 3% addition) and alloy obtained by conventional melting method (comparative material)
The results of the oxidation test at °C show that each oxide-dispersed Fe-based high alloy according to the present invention has extremely good oxidation resistance properties (oxidation weight gain), and the oxidation weight gain is higher than that obtained by conventional melting methods. It is about 172 to 1/3 of that of the alloy.

第1表 拳本発明:Fe−5A −L8Cr  Y、03.、.
0.5〜3%添加*申比較材:Fe−5A −18Cr
 (酸化物の添加なし)なお、上記目的に好適なFe 
−AQ −Cr系高合金粉末としては、A(3〜12(
重量)%、Cr 18〜35(重量)%、残部が実質的
にFeからなる合金組成のものとすることが望ましい。
Table 1: Present invention: Fe-5A-L8Cr Y, 03. ,.
Added 0.5-3% * Comparison material: Fe-5A-18Cr
(Without the addition of oxides) In addition, Fe suitable for the above purpose
-AQ -Cr-based high alloy powder is A(3-12(
% by weight, 18 to 35% by weight of Cr, and the balance is preferably Fe.

ここで、AQが3%未満。Here, AQ is less than 3%.

Crが18%未満では所望の耐酸化特性が得られない。If the Cr content is less than 18%, desired oxidation resistance properties cannot be obtained.

また、AilおよびCrの含有量が増加するに従い合金
の耐酸化特性は向上する。本発明では急冷凝固された母
合金粉末を原料粉末として使用することができるので従
来の溶製法による場合に比較して多量のA/lおよびC
rを過飽和の状態で含有する母合金粉末を使用すること
ができる利点がある。しかしながら、AQが12%を越
え、Crが35%を越えると得られる合金が脆弱となる
のでAQおよびCrの上限をそれぞれ12%および35
%とすることが必要である。
Furthermore, as the content of Ail and Cr increases, the oxidation resistance of the alloy improves. In the present invention, rapidly solidified master alloy powder can be used as the raw material powder, so a large amount of A/l and C can be used as compared to the conventional melting method.
There is an advantage that a master alloy powder containing r in a supersaturated state can be used. However, if AQ exceeds 12% and Cr exceeds 35%, the resulting alloy becomes brittle, so the upper limits of AQ and Cr are set at 12% and 35%, respectively.
%.

なお、本発明で得られる酸化物分散Fe基高合金の、爆
発成形加工の後に特別に焼結工程を経ることなく直接に
、切削、圧延、伸線等の加工工程に提供し最終製品にま
で加工することができる。
It should be noted that the oxide-dispersed Fe-based high alloy obtained by the present invention can be directly provided to processing processes such as cutting, rolling, and wire drawing without going through a special sintering process after the explosive molding process to produce the final product. Can be processed.

したがって、例えば、耐酸化特性に優れた前記のFe 
−AQ −Cr系合金粉末を原材粉末として使用し。
Therefore, for example, the above-mentioned Fe, which has excellent oxidation resistance,
-AQ -Cr-based alloy powder is used as raw material powder.

良好な耐酸化特性と機械的強度とを有するFe −AQ
−Cr系電気抵抗発熱線材あるいは帯材等の製造に本発
明方法を適用することができる。
Fe-AQ with good oxidation resistance and mechanical strength
The method of the present invention can be applied to the production of -Cr-based electrical resistance heating wires or strips.

上記の実施例では合金元素としてAQおよびCrを含有
するFe基高合金の粉末採用し、金属酸化物粉末として
Y2O3を採用した例について述べたが、本発明はこれ
に限らず、他の合金元素を含有するFe基高合金の粉末
採用することもでき、また、金属酸化物粉末についても
Y2O,の代わりに、あるいはこれと共にLa、Ce、
 Th、 Zr、 HfあるいはA2等の酸化物粉末の
一種または二種以上を採用する場合にも同様な効果を得
ることができる。
In the above embodiment, an example was described in which Fe-based high alloy powder containing AQ and Cr was used as the alloying element, and Y2O3 was used as the metal oxide powder, but the present invention is not limited to this, and other alloying elements Fe-based high alloy powder containing
Similar effects can be obtained when one or more of oxide powders such as Th, Zr, Hf, or A2 are used.

(効果) 以上説明した通り1本発明の方法は、真密度に近い高密
度を有し、且つ緻密な基地中に金属酸化物粒子を微細均
一に分散させた複合構造のFe基高合金の能率良く製造
することを可能にするものであり、その工業的価値は大
である。
(Effects) As explained above, the method of the present invention improves the efficiency of Fe-based high alloys with a composite structure that has a high density close to the true density and in which metal oxide particles are finely and uniformly dispersed in a dense matrix. It makes it possible to manufacture it well, and its industrial value is great.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は1本発明方法の実施に使用される装置の一例を
示す断面図、第2図(a)はFe−AQ−Cr系のFe
基高合金の粉末用いて得られた本発明の実施例の酸化物
分散高合金の一例の顕微鏡組織、第2図(b)は同じく
加熱後の顕微鏡組織を示す。 第3図は、従来の粉末冶金の方法により焼結された合金
の顕微鏡組織を示す。 第4図は、金属酸化物粉末を混合することなく爆圧成形
したFe −AQ −Cr系合金の顕・微鏡組織であり
。 第4図(a)は爆圧成形のままの組織、第4図(b)は
高温加熱後の組織を示す。 図中:1.、、混合粉末 219.容器 310.キャップ 4000円筒状壁体 500.空間(爆薬充填部) 600.雷管
FIG. 1 is a cross-sectional view showing an example of an apparatus used for carrying out the method of the present invention, and FIG.
FIG. 2(b) shows a microscopic structure of an example of an oxide-dispersed high alloy according to an embodiment of the present invention obtained using a base alloy powder, and also shows the microscopic structure after heating. FIG. 3 shows the microstructure of an alloy sintered by conventional powder metallurgy methods. FIG. 4 shows a microscopic structure of a Fe-AQ-Cr alloy that was explosively formed without mixing metal oxide powder. FIG. 4(a) shows the structure as it is after explosion molding, and FIG. 4(b) shows the structure after high-temperature heating. In the diagram: 1. ,, mixed powder 219. Container 310. Cap 4000 Cylindrical wall 500. Space (explosives filling part) 600. detonator

Claims (1)

【特許請求の範囲】 1)100メッシ篩下のFe基高合金粉末に粒径1μm
以下の金属酸化物粉末を0.2〜3.0(重量)%混合
した混合粉末を容器内に充填し、該容器の側部に爆薬を
配して爆発させて該容器とともに混合粉末を圧縮固着さ
せ、真密度の90%以上の密度を有する成形体とするこ
とを特徴とする酸化物分散Fe基高合金の製造方法。 2)前記Fe基高合金粉末がAl3〜12(重量)%、
Cr18〜35(重量)%、残部が実質的にFeからな
る合金粉末であり、金属酸化物粉末がY、La、Ce、
Th、Zr、HfおよびAlの各酸化物粉末から選ばれ
た一種または二種以上である特許請求の範囲第1項記載
の酸化物分散Fe基高合金の製造方法。
[Claims] 1) Fe-based high alloy powder under a 100 mesh sieve with a particle size of 1 μm
Fill a container with a mixed powder of 0.2 to 3.0% (by weight) of the following metal oxide powders, place an explosive on the side of the container, detonate it, and compress the mixed powder together with the container. A method for producing an oxide-dispersed Fe-based high alloy, the method comprising: fixing it to form a compact having a density of 90% or more of the true density. 2) the Fe-based high alloy powder contains 3 to 12% (by weight) of Al;
It is an alloy powder consisting of 18 to 35% (by weight) of Cr, the balance being substantially Fe, and the metal oxide powder is Y, La, Ce,
The method for producing an oxide-dispersed Fe-based high alloy according to claim 1, wherein the oxide powder is one or more selected from Th, Zr, Hf, and Al oxide powders.
JP6290285A 1985-03-27 1985-03-27 Production of oxide dispersed fe high alloy Pending JPS61221303A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6290285A JPS61221303A (en) 1985-03-27 1985-03-27 Production of oxide dispersed fe high alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6290285A JPS61221303A (en) 1985-03-27 1985-03-27 Production of oxide dispersed fe high alloy

Publications (1)

Publication Number Publication Date
JPS61221303A true JPS61221303A (en) 1986-10-01

Family

ID=13213643

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6290285A Pending JPS61221303A (en) 1985-03-27 1985-03-27 Production of oxide dispersed fe high alloy

Country Status (1)

Country Link
JP (1) JPS61221303A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6350448A (en) * 1986-08-18 1988-03-03 インコ、アロイス、インタ−ナショナル インコ−ポレ−テッド Dispersion reinforced alloy
JPH02182864A (en) * 1989-01-06 1990-07-17 Nippon Yakin Kogyo Co Ltd Material for heating unit having high electric resistivity value
JPH02258946A (en) * 1989-03-30 1990-10-19 Kubota Ltd Composite sintered alloy, heat-resistant member and steel material supporting member in heating furnace

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4948365A (en) * 1972-08-22 1974-05-10

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4948365A (en) * 1972-08-22 1974-05-10

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6350448A (en) * 1986-08-18 1988-03-03 インコ、アロイス、インタ−ナショナル インコ−ポレ−テッド Dispersion reinforced alloy
JP2845877B2 (en) * 1986-08-18 1999-01-13 インコ、アロイス、インタ−ナショナル インコ−ポレ−テッド Oxide dispersion strengthened iron-based alloy
JPH02182864A (en) * 1989-01-06 1990-07-17 Nippon Yakin Kogyo Co Ltd Material for heating unit having high electric resistivity value
JPH02258946A (en) * 1989-03-30 1990-10-19 Kubota Ltd Composite sintered alloy, heat-resistant member and steel material supporting member in heating furnace

Similar Documents

Publication Publication Date Title
US5580516A (en) Powders and products of tantalum, niobium and their alloys
US3890145A (en) Processes for the manufacture of tungsten-based alloys and in the corresponding materials
US4032335A (en) Process for making metallic, molded composite bodies
US6334882B1 (en) Dense parts produced by uniaxial compressing an agglomerated spherical metal powder
US3524744A (en) Nickel base alloys and process for their manufacture
US2809891A (en) Method of making articles from aluminous metal powder
US4612162A (en) Method for producing a high density metal article
US2467675A (en) Alloy of high density
US4490329A (en) Implosive consolidation of a particle mass including amorphous material
US5445787A (en) Method of extruding refractory metals and alloys and an extruded product made thereby
US2884688A (en) Sintered ni-al-zr compositions
US2988806A (en) Sintered magnetic alloy and methods of production
JP2801370B2 (en) Method for producing molded metal article with low oxygen content
US4300951A (en) Liquid phase sintered dense composite bodies and method for producing the same
JP2699316B2 (en) Electrode material, method for manufacturing electrode material, and method for manufacturing electrode
JPS61221303A (en) Production of oxide dispersed fe high alloy
US3150975A (en) Method of making intermetallic compound-composition bodies
JPH0633166A (en) Manufacture of oxide dispersion-strengthened heat resistant alloy sintered compact
JP2932538B2 (en) Manufacturing method of alloy material for molding bullets
US3331685A (en) Sparking plug electrodes
JPH03120324A (en) Manufacture of alloy for compacted bullet
JPH0565568B2 (en)
JP2731857B2 (en) Alloy for forming bullet and method for producing the same
EP0533745B1 (en) Method of manufacturing compound products
US3667942A (en) Method of powder rolling nickeliron-cobalt alloys