JPS60110839A - Composite sintered structure body consisting of sintered hard material and high speed steel and production thereof - Google Patents

Composite sintered structure body consisting of sintered hard material and high speed steel and production thereof

Info

Publication number
JPS60110839A
JPS60110839A JP21504383A JP21504383A JPS60110839A JP S60110839 A JPS60110839 A JP S60110839A JP 21504383 A JP21504383 A JP 21504383A JP 21504383 A JP21504383 A JP 21504383A JP S60110839 A JPS60110839 A JP S60110839A
Authority
JP
Japan
Prior art keywords
powder
sintering
speed steel
sintered
hard
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21504383A
Other languages
Japanese (ja)
Inventor
Tatsuro Kuratomi
倉富 龍郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP21504383A priority Critical patent/JPS60110839A/en
Publication of JPS60110839A publication Critical patent/JPS60110839A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To produce a composite sintered structure body consisting of a sintered hard material and high speed steel having excellent high temp. hardness and toughness by mixing alloy powder of the sintered hard material and high speed steel powder at a specific ratio and sintering the mixture in the temp. range corresponding to the hardening temp. of the high speed steel. CONSTITUTION:A powder mixture prepd. by adding metallic powder as a sintering assistant to sintered hard material powder is sintered and the resultant sintered hard material alloy is pulverized. The powder obtd. by mixing 80-40wt% such sintered hard material alloy powder and 20-60% high speed steel powder is sintered in the temp. range of about 1,170-1,300 deg.C corresponding to the hardening temp. of the high speed steel by an ordinary temp. or high temp. compression sintering method, by which the sintered structure body is obtd. The sintered structure body consists of the sintered hard material part dispersed and bonded in the metal part-high speed steel sintered alloy structure of the above-mentioned sintered hard material alloy. Carbide, boride, nitride, silicide, oxide, etc. are used as the above-mentioned sintered hard material and >=1 kind among Co, Ni, Cr, Mo, W, Ti, Zr, Hf, V, Nb, Ta, Mn and Si are used as the sintering assistant metal.

Description

【発明の詳細な説明】 本発明は、超硬質物と高速度鋼との複合焼結組織体およ
びその製造法をこ関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a composite sintered structure of ultra-hard material and high-speed steel, and a method for producing the same.

本発明は、超硬質炭化物と高速度鋼および超硬質硼化物
と高速度鋼および超硬質窒化物と高速度鋼および超硬質
珪化物と高速度鋼および超硬質酸化物と高速度鋼の夫々
の複合焼結組織体およびその製造法に関するものである
The present invention relates to ultra-hard carbides and high-speed steel, ultra-hard borides and high-speed steel, ultra-hard nitrides and high-speed steel, ultra-hard silicides and high-speed steel, and ultra-hard oxides and high-speed steel, respectively. The present invention relates to a composite sintered tissue and a method for manufacturing the same.

本発明の超硬質物高速度鋼複合焼結組織体を製造する場
合Gこ超硬質物を生ずる累月には超硬質物の粉末と焼結
助剤とする金属の粉末との混合粉末を焼結した焼結合金
の粉末を使用するものであって、超硬質物粉末G二添加
する焼結助剤金属粉末&こはコバルト・ニッケル・鉄・
クロム・モリブデン・タングステン・チタン・ジルコニ
ウム・ハフニウム・バナジウム・ニオブ・タンタル・マ
ンガン・珪素・アルミニウム・銅のうちより選択した1
種の金属の粉末または2種以上の金属の混合粉末または
2種以上の金属の合金の粉末を使用する。斯様な焼結助
剤の粉末を超硬質物粉末Oこ添加した混合粉末を焼結し
て生成した超硬質物−金属焼結合金である超硬質物合金
を粉末化した状態をこて使用することを特徴とするもの
である。斯様な状態を成している超硬質物合金粉末裔こ
高速度鋼粉末を加えた混合粉末を焼結用原料として使用
するものである。斯様な焼結用原料を焼結する作業にお
いては、焼結用原料の構成材料である超硬質物合金粉末
の個々の粒子における金属部分である焼結助剤と □高
速度鋼粉末の個々の高速度鋼粒子とが金属焼結を行うも
のであって、其の焼結作業をこおいて使用する焼結温度
には、高速度鋼の焼入温度に相当する温度範囲である1
、 170℃乃至1.300℃の範囲内の温度を使用す
ることを特徴とするものである。其の焼結作業において
使用する焼結用温度に高速度鋼の焼入温度ζこ相当する
温度を使用することによって高速度鋼の焼結体における
納品の粗大化を防止しようとするものである。上記した
ようにして製造する超硬質物高速度鋼複合焼結組織体は
、超硬質物粉末に焼結助剤とする金属粉末を添加した混
合粉末を焼結して生成した超硬質物−金属焼結合金であ
る超硬質物合金を粉末化した超硬質物合金粉末Qこ高い
靭性と強い機械的強度を備えている高速度鋼の粉末を加
えた混合粉末を高速度鋼の焼入温度昏こ相当する温度を
焼入温度として焼結作業を行って生成する超硬質物高速
度鋼複合焼結組織体である。本発明の目的は、高速度鋼
より著しく高い高温硬さを備えていると共をこ超硬質物
合金よりはるかに高い靭性を備えている超硬質物高速度
鋼複合焼結組織体を高性能工J!月として提供すると共
Oこ、斯様な高性能を備えている超硬質物高速度fIA
複合焼結組織体を製造する工業的に有効な方法を提供し
ようとするものである0次【こ本発明の方法により超硬
質物高速度鋼複合焼結組織体を製造する作業を説明する
と共に製造して得られる本発明の超硬質物高速度銅複合
焼結組織体について説明する。
When producing the ultra-hard high-speed steel composite sintered structure of the present invention, a mixed powder of ultra-hard powder and metal powder used as a sintering aid is sintered in order to produce the ultra-hard material. It uses sintered alloy powder, and the sintering aid metal powder and cobalt, nickel, iron,
1 selected from chromium, molybdenum, tungsten, titanium, zirconium, hafnium, vanadium, niobium, tantalum, manganese, silicon, aluminum, and copper
Powders of different metals, mixed powders of two or more metals, or powders of alloys of two or more metals are used. A trowel is used to use a powdered super-hard material alloy, which is a super-hard material-metal sintered alloy, produced by sintering a mixed powder in which such a sintering aid powder is added to a super-hard material powder. It is characterized by: A mixed powder obtained by adding high-speed steel powder to ultra-hard alloy powder descendants in such a state is used as a raw material for sintering. In the work of sintering such raw materials for sintering, the sintering aid, which is the metal part of each particle of the ultra-hard alloy powder, which is the constituent material of the raw material for sintering, and the individual particles of high-speed steel powder. The high-speed steel particles are used to perform metal sintering, and the sintering temperature used during the sintering operation is within a temperature range equivalent to the quenching temperature of high-speed steel.
, characterized in that a temperature within the range of 170°C to 1.300°C is used. By using a temperature corresponding to the quenching temperature of high-speed steel as the sintering temperature used in the sintering process, it is possible to prevent the delivery of sintered bodies of high-speed steel from becoming bulky. . The ultra-hard material high-speed steel composite sintered structure manufactured as described above is produced by sintering a mixed powder in which ultra-hard material powder is added with metal powder as a sintering aid. Ultra-hard alloy powder, which is made by pulverizing an ultra-hard alloy that is a sintered alloy. This is an ultra-hard high-speed steel composite sintered body produced by performing sintering at a temperature corresponding to this temperature as the quenching temperature. The object of the present invention is to create a high-performance ultra-hard high-speed steel composite sintered structure that has a high-temperature hardness significantly higher than that of high-speed steel and a toughness that is much higher than that of ultra-hard alloys. Engineering J! We offer ultra-hard material high-speed fIA with such high performance as the moon.
This article aims to provide an industrially effective method for producing a composite sintered body. The ultra-hard material high-speed copper composite sintered structure of the present invention obtained by manufacturing will be explained.

実施例 1 炭化タングステン粉末を75重量%とコバルト粉末を2
5重量%との割合の混合粉末を焼結してV!)た炭化タ
ングステン合金を粉末化した炭化タングステン合金粉末
を70重量%と、高速度鋼粉末を30重量%との割合(
・こて混合した混合粉末を焼結用原料とした。次いで、
常温圧縮焼結法により、其の焼結用原料をB ton 
/ caの圧力を用いて圧縮成形体を形成し、次いで、
其の圧縮成形体を真空炉の「1コで1,250℃の温度
Oこて焼結作業を行って焼結体を1(Iた。其の1:)
た焼結体は、焼結用原料中の構成要素として使用した炭
化タングステン合金の個々の粒子をこおける金属部分で
あるコバルト部分の多数個と、高速度鋼粉末における粒
子の多数個とが混合状態にて焼結して生成した金属焼結
組織体が炭化タングステン合金の個々の粒子昏こおける
炭化タングステン部分の多数個と結合して焼結組織体を
構成した超硬質炭化タングステン高速度鋼複合焼結組織
体であった。上記の本発明の方法によって製造した超硬
質炭化タングステン高速度鋼複合焼結組織体は硬度が炭
化タングステン合金と高速度鋼との中間にあって炭化タ
ングステンOこ近い硬度を備えており、且っ抗張力も高
速度鋼と炭化タングステン合金との中間にあって炭化タ
ングステン合金より強い抗張力を備えている焼結体であ
って、高性能の工具材として充分に使用できる材料であ
る。
Example 1 75% by weight of tungsten carbide powder and 2% of cobalt powder
By sintering the mixed powder with a ratio of 5% by weight, V! ) The ratio of 70% by weight of tungsten carbide alloy powder obtained by powdering tungsten carbide alloy and 30% by weight of high speed steel powder (
- The mixed powder mixed with a trowel was used as a raw material for sintering. Then,
By the cold compression sintering method, the raw material for sintering is B ton
A compression molding was formed using a pressure of /ca, and then
The compression molded body was sintered in a vacuum furnace at a temperature of 1,250°C to form a sintered body.
The sintered body is a mixture of a large number of cobalt parts, which are the metal parts that separate the individual particles of the tungsten carbide alloy used as a component in the raw material for sintering, and a large number of particles of high-speed steel powder. An ultra-hard tungsten carbide high-speed steel composite in which a metal sintered structure produced by sintering in a sintered state is combined with a large number of tungsten carbide parts in individual particles of a tungsten carbide alloy to form a sintered structure. It was a sintered structure. The ultra-hard tungsten carbide high-speed steel composite sintered body produced by the method of the present invention has a hardness between that of tungsten carbide alloy and high-speed steel, and has a hardness close to that of tungsten carbide O, and has a tensile strength. It is a sintered body that is between high-speed steel and tungsten carbide alloy, and has a tensile strength stronger than tungsten carbide alloy, and is a material that can be fully used as a high-performance tool material.

実施例 2 炭化チタン粉末を75重量%とニッケル粉末を22.5
重量%とモリブデン粉末を2.5重量%との割合の混合
粉末を焼結して得た炭化チタン合金を粉末化した炭化チ
タン合金粉末を60重fil %と高速度鋼粉末を40
重量%との割合にて混合した混合粉末を焼結用原料とし
た。次いで常温圧縮焼結法Gこより、其の焼結用原料を
8 ton/crixの圧力を用いて圧縮成形体を成形
し、次いで其の圧縮成形体を真空炉の中で1,260℃
の温度にて焼結作業を行って焼結体を得た。其の得た焼
結体は、焼結用原料中の構成要素として使用した炭化チ
タン芥金の個々の粒子における金属部分であるニッケル
ークロム合金部分の多数個と、高速度鋼粉末Oこおける
粒子の多数個とが混合状態にて焼結して生成した金属焼
結組織体が、炭化チタン合金の個々の粒子における炭化
チタン部分の多数個と結合して焼結組織体を構成した超
硬質炭化チタン高速度鋼複合焼結組織体であった。」−
記の本発明の方法Qこよって製造した超硬質炭化チタン
高速度鋼複合焼結組織体は、硬度が炭化チタン合金と高
速度鋼との中間にあって炭化チタン合金に近い硬度を備
えており且つ抗張力も高速度鋼と炭化チタン合金との中
間にあって炭化チタン合金より強い抗張力を備えている
焼結体であって高性能の工具材として充分に使用できる
材料であった。
Example 2 75% by weight of titanium carbide powder and 22.5% of nickel powder
Titanium carbide alloy powder obtained by sintering a mixed powder of 2.5 wt % molybdenum powder and 60 w fil % titanium carbide alloy powder and 40 w fil % high speed steel powder.
The mixed powder mixed in the ratio of % by weight was used as a raw material for sintering. Next, using the cold compression sintering method G, the raw material for sintering is molded into a compression molded body using a pressure of 8 tons/crix, and then the compression molded body is heated at 1,260°C in a vacuum furnace.
A sintered body was obtained by performing the sintering operation at a temperature of . The obtained sintered body contains a large number of nickel-chromium alloy parts, which are the metal parts of individual particles of titanium carbide gold used as a component in the raw material for sintering, and high-speed steel powder O. An ultra-hard metal sintered structure formed by sintering a large number of particles in a mixed state, and a sintered structure formed by combining a large number of titanium carbide parts in individual particles of a titanium carbide alloy. It was a titanium carbide high speed steel composite sintered structure. ”−
The ultra-hard titanium carbide high-speed steel composite sintered structure produced by the method Q of the present invention has a hardness that is between that of titanium carbide alloy and high-speed steel and is close to that of titanium carbide alloy. The tensile strength of this sintered body was between that of high-speed steel and titanium carbide alloy, and stronger than that of titanium carbide alloy, making it a material that could be fully used as a high-performance tool material.

実施例3 硼化チタン粉末を70重量%とニッケル粉末を20重量
%とクロム粉末を10重量%との割合の混合粉末を焼結
して得た硼化チタン合金を粉末化した硼化チタン合金粉
末を60重′量チと高速度鋼粉末を40重量%との割合
にて混合した混合粉末を焼結用原料とした。次いで、常
温圧縮焼結法により其の焼結用原料を8ton / a
dの圧力を用いて圧縮成形体を成形し、其の圧縮成形体
を真空炉中心こて1,270℃の温度にて焼結作業を行
って焼結体を1:Iた。其の焼結体は焼結川原オ;:1
中の411j成要素として使用した窒化チタン合金の個
々の粒子Oこおける金属部分であるニッケルークロム合
金HylH分の多数個と、高速度鋼粉末の粒子−の多数
個とが混合状態をこで焼結して生成した金属焼結組織体
が、硼化チタン合金の個々の粒子・+こおける硼化チタ
ン部分の多数個と結合して焼結組織体を構成した超硬質
硼化チタン高速度鋼複合焼結組織体であった。上記の本
発明の方法Qこよって製造した超硬質硼化チタン高速度
鋼複合焼結組織体は、硬度が硼化チタン合金と高速度鋼
との中間にあって硼化チタン合金に近い硬度を備えてい
て且つ抗張力も高速度鋼と硼化チタン合金との中間にあ
り、硼化チタン合金より強い抗張力を備えている焼結体
であって高性能の工具材として充分に使用できる材料で
あった。
Example 3 A titanium boride alloy obtained by sintering a mixed powder of 70% by weight of titanium boride powder, 20% by weight of nickel powder, and 10% by weight of chromium powder. A mixed powder obtained by mixing 60% by weight of powder and 40% by weight of high speed steel powder was used as a raw material for sintering. Next, the raw material for sintering was 8 tons/a by the cold compression sintering method.
A compression molded body was molded using a pressure of d, and the compression molded body was sintered in a vacuum furnace at a temperature of 1,270° C. to obtain a sintered body of 1:1. The sintered body is sintered Kawahara O;:1
A large number of individual particles of the titanium nitride alloy used as the 411j component in the nickel-chromium alloy HylH, which is the metal part, and a large number of particles of the high-speed steel powder are brought into a mixed state. The metal sintered structure produced by sintering is combined with individual particles of titanium boride alloy and a large number of titanium boride parts in the sintered structure to form an ultra-hard titanium boride high speed structure. It was a steel composite sintered structure. The ultra-hard titanium boride high-speed steel composite sintered structure produced by the method Q of the present invention has a hardness that is between that of titanium boride alloy and high-speed steel and is close to that of titanium boride alloy. It is a sintered body with a tensile strength that is between high-speed steel and titanium boride alloy, and has stronger tensile strength than titanium boride alloy, making it a material that can be fully used as a high-performance tool material. .

実施例4 硼化ジルコニウム粉末を70重量%とニッケル粉末を2
0重量%とクロム粉末を10重量%との割合の混合粉末
を焼結して11jた硼化ジルコニウム合金を粉末化した
硼化ジルコニウム合金粉末を65重量%と、高速度鋼粉
末を35重量%との割合にて混合した混合粉末を焼結用
原料とした。次いで、常温圧縮焼結法により、其の焼結
用原料をB ton / caの圧力を用いて圧縮成形
体を成形し、其の圧縮成形体を真空炉の中で1.270
℃の温度にて焼結作業を行って焼結体を得た。其の焼結
体は、焼結用原料中の構成要素として使用した硼化ジル
コニウム合金の個々の粒子における金属部分であるニッ
ケルークロム合金部分の多数個と、高速度鋼粉末の粒子
の多数個とが混合状態にて焼焼して生成した金属焼結組
織体が硼化ジルコニウム合金の個々の粒子における硼化
ジルコニウム部分の多数個を結合して焼結組織体を構成
した超硬質硼化ジルコニウム高速度鋼複合焼結組織体で
あった。」1記の本発明の方法によって製造した超硬質
硼化ジルコニウム高速度鋼複合焼結組織体は、硬度が硼
化ジルコニウム合金と高速度鋼との中間にあって硼化ジ
ルコニウム合金をこ近い硬度を備えていて且つ抗張力も
高速度鋼と硼化ジルコニウム合金との中間Qこあって硼
化ジルコニウム合金より強い抗張力を備えている焼結体
であって、高性能の」二基4Aとして充分Qこ使用でき
る材料であった。
Example 4 70% by weight of zirconium boride powder and 2% of nickel powder
65% by weight of zirconium boride alloy powder, which is made by sintering a mixed powder of 0% by weight and 10% by weight of chromium powder, and 35% by weight of high-speed steel powder. The mixed powder mixed in the ratio of Next, by the cold compression sintering method, the sintering raw material is molded into a compression molded body using a pressure of B ton / ca, and the compression molded body is heated to 1.270 mm in a vacuum furnace.
A sintered body was obtained by performing a sintering operation at a temperature of °C. The sintered body consists of a large number of nickel-chromium alloy parts, which are the metal parts of the individual particles of the zirconium boride alloy used as a component in the raw material for sintering, and a large number of particles of high-speed steel powder. Ultra-hard zirconium boride, which is a metal sintered structure produced by sintering in a mixed state, is a sintered structure formed by bonding a large number of zirconium boride moieties in individual particles of a zirconium boride alloy. It was a high speed steel composite sintered structure. The ultra-hard zirconium boride high-speed steel composite sintered structure produced by the method of the present invention described in 1. has a hardness between that of zirconium boride alloy and high-speed steel, and has a hardness close to that of zirconium boride alloy. It is a sintered body with a tensile strength between high-speed steel and zirconium boride alloy, which is stronger than that of zirconium boride alloy, and it has a tensile strength that is sufficient for a high-performance double-unit 4A. It was a usable material.

実施例 5 窒化チタン粉末を75重量%とコバルト粉末を25重量
−との割合の混合粉末を焼結1−て得た窒化チタン合金
を粉末化した窒化チタン合金粉末を65 、jTC量チ
と、高速度鋼粉末を35重量%との割合にて混合した混
合粉末を焼結用原料とした。次いで、常温圧縮焼結法に
より其の焼結用原料を8 ton / caの圧力を用
いて圧縮成形体を成形し、其の圧縮成形体を真空炉の中
で1.26.0℃の温度昏こて焼結作業を行って焼結体
を得た。其の焼結体は、焼結用原料中の414成要素と
して使用した窒化チタン合金の個々の粒子における金属
部分であるコバルト部分の多数個と、高速度鋼粉末の粒
子の多数個とが混合状態にて焼結して生成した金属焼結
組織体が窒化チタン合金の個々の粒子における窒化チタ
ン部分の多数個を結合して焼結組織体を構成した超硬質
窒化チタン高速度鋼複合焼結組織体であった。
Example 5 A titanium nitride alloy powder obtained by powdering a titanium nitride alloy obtained by sintering a mixed powder of 75% by weight of titanium nitride powder and 25% by weight of cobalt powder, and a jTC amount of 65%, A mixed powder obtained by mixing high-speed steel powder at a ratio of 35% by weight was used as a raw material for sintering. Next, the raw material for sintering is molded into a compression molded body using a pressure of 8 tons/ca by a cold compression sintering method, and the compression molded body is heated at a temperature of 1.26.0°C in a vacuum furnace. A sintered body was obtained by performing a trowel sintering operation. The sintered body is a mixture of a large number of cobalt parts, which are the metal parts of individual particles of the titanium nitride alloy used as the 414 component in the raw material for sintering, and a large number of particles of high-speed steel powder. Ultra-hard titanium nitride high-speed steel composite sintered body formed by sintering a metal sintered body in a state where a large number of titanium nitride parts in individual particles of titanium nitride alloy are combined to form a sintered body. It was an organized body.

」−記の本発明の方法昏こまって製造した超硬質窒化チ
ターン高速蔗鋼複合焼結組織体は、硬度が窒化チタン合
金と高速度鋼との中間にあって窒化チタンに近い硬度を
備えていて且つ抗張力も高速度鋼と窒化チタン合金との
中間昏こあって窒化チタン合金より強い抗張力を備えて
いる焼結体であって、高性能の工具材として使用できる
4A料であった。
The ultra-hard titanium nitride high-speed steel composite sintered structure produced by the method of the present invention described in ``--has a hardness between that of titanium nitride alloy and high-speed steel, and close to that of titanium nitride. In addition, the sintered body had a tensile strength between that of high-speed steel and a titanium nitride alloy, and had a tensile strength stronger than that of a titanium nitride alloy, and was a 4A material that could be used as a high-performance tool material.

実施例 6 窒化珪素(四窒化三珪素)粉末を75重量%とコバルト
粉末が25重量%との割合の混合粉末を焼結して得た窒
化珪素合金を粉末化した窒化珪素合金粉末を60重量%
と、高速度鋼粉末を40重jjF、 %との割合Qこて
混合した混合粉末を焼結用原料とした。次いで、高温圧
縮焼結法により5 ton / cnfの圧力を加える
と同時に1,250℃の温度Qこて加熱して焼結体を得
た。其の焼結体は、焼結川原1:;l中の41η成要素
として使用した窒化珪素合金の個々の粒子※こおける金
属部分であるコバルト部分の多数個と、高速度鋼粉末の
拉r・の多数個とが混合状態Qこて焼結して生成した金
属焼結組織体が、窒化珪素合金の個々の粒子−における
窒化珪素部分の多数個を結合して焼結組織体を構成した
超硬質窒化珪素高速度鋼複合焼結組織体であった。」二
記の本発明の方法によつ−(製造した超硬質窒化珪素高
速度鋼複合焼結組織体は、硬度が窒化珪素合金と高速度
鋼との中間にあって窒化珪素に近い硬度を備えていて且
つ抗張力も高速度鋼と窒化珪素合金との中間にあって窒
化珪素合金より強い抗張力を備えている焼結体であって
、高性能の工具材として使用できる材料であった。
Example 6 60% by weight of silicon nitride alloy powder obtained by pulverizing a silicon nitride alloy obtained by sintering a mixed powder of 75% by weight of silicon nitride (trisilicon tetranitride) powder and 25% by weight of cobalt powder %
A mixed powder obtained by mixing high-speed steel powder with 40 weight jjF, % in a proportion Q trowel was used as a raw material for sintering. Next, a sintered body was obtained by applying a pressure of 5 ton/cnf and simultaneously heating with a Q trowel at a temperature of 1,250°C using a high temperature compression sintering method. The sintered body consists of individual particles of the silicon nitride alloy used as the 41η component in the sintered Kawahara 1. A metal sintered structure generated by trowel sintering in a mixed state Q with a large number of . It was an ultra-hard silicon nitride high-speed steel composite sintered structure. The ultra-hard silicon nitride high-speed steel composite sintered structure produced by the method of the present invention described in 2. It is a sintered body with a tensile strength that is between high-speed steel and silicon nitride alloy, and stronger than silicon nitride alloy, and can be used as a high-performance tool material.

実施例7 珪化モリブデン粉末を70重量%とニッケル粉末を15
重量%とクロム粉末を15重11 %との割合の混合粉
末を焼結して得た珪化モリブデン合金を粉末化した珪化
モリブデン合金粉末を60重量%と、高速度鋼粉末を4
0重量%との割合にて混合した混合粉末を焼結用原料と
した。
Example 7 70% by weight of molybdenum silicide powder and 15% by weight of nickel powder
60% by weight of molybdenum silicide alloy powder obtained by sintering a mixed powder with a ratio of 15% by weight and 11% by weight of chromium powder, and 4% by weight of high-speed steel powder.
The mixed powder mixed at a ratio of 0% by weight was used as a raw material for sintering.

次いで、高温圧縮焼結法により其の焼結川原1:1を5
 ton / crlの圧力を用いて圧縮すると同時に
1.250℃の温度にて加熱して焼結体を得た。
Next, the sintered Kawahara 1:1 was 5
A sintered body was obtained by compressing using a pressure of ton/crl and simultaneously heating at a temperature of 1.250°C.

其の焼結体は、焼結用原料中の構成要素として使用した
珪化モリブデン合金粉末の個々の拉f−Qこおける金属
部分であるニッケルークロム合金部分の多数個と、高速
度鋼粉末の粒子の多数個とが混合状態Oこて焼結して生
成した金属焼結組織体が、珪化モリブデン合金の個々の
粒子における珪化モリブデン部分の多数個を結合して焼
結組織体を構成した超硬質珪化モリブデン高速度鋼複合
焼結組織体であった。上記の本発明の方法によって製造
した超硬質珪化モリブデン高速度鋼複合焼結組織体は、
硬度が珪化モリブデン合金と高速度鋼との中間にあって
窒化モリブデン合金に近い硬度を備えていて且つ抗張力
も高速度鋼と珪化モリブデン合金との中間)こあつ−(
珪化モリブデン合金より強い抗張力を備えている焼結体
であって、高性能の工具材として使用できる月利であっ
た。
The sintered body consists of a large number of nickel-chromium alloy parts, which are the metal parts of the molybdenum silicide alloy powder used as constituent elements in the raw material for sintering, and high-speed steel powder. A metal sintered structure produced by trowel sintering in a mixed state with a large number of particles is a superstructure in which a large number of molybdenum silicide moieties in individual particles of a molybdenum silicide alloy are combined to form a sintered structure. It was a hard molybdenum silicide high speed steel composite sintered structure. The ultra-hard molybdenum silicide high-speed steel composite sintered body produced by the method of the present invention described above is
The hardness is between molybdenum silicide alloys and high-speed steels, and the hardness is close to molybdenum nitride alloys, and the tensile strength is also between high-speed steels and molybdenum silicide alloys.
The sintered body has a tensile strength stronger than that of molybdenum silicide alloys, and can be used as a high-performance tool material.

実施例 8 アルミナ粉末を70重量%とニッケル粉末を10 、、
i7j :Pll: %とクロム粉末を20重量%との
割合の混合粉末を焼結して得たアルミナ合金を粉末化し
たアルミナ合金粉末を60重量%と、高速度鋼粉末を4
0重量%との割合Gこて混合した混合粉末を焼結用原料
とした。次いで、高温圧縮焼結法により其の焼結用原料
を5 ton / cnlの圧力を用いて圧縮すると同
時Gこ1.270℃の温度にて加熱して焼結体を得た。
Example 8 70% by weight of alumina powder and 10% by weight of nickel powder.
i7j: Pll: 60% by weight of alumina alloy powder obtained by sintering a mixed powder of 20% by weight of chromium powder and 4% by weight of high speed steel powder.
The mixed powder mixed with 0% by weight using a trowel was used as a raw material for sintering. Next, the raw material for sintering was compressed using a pressure of 5 tons/cnl and simultaneously heated at a temperature of 1.270° C. to obtain a sintered body.

其の焼結体は、焼結用原料中の構成要素として使用した
アルミナ合金粉末の個々の粒子をこおける金属171(
分であるニッケルークロム合−金t21S分の多数個と
、高速度鋼粉末の粒子の多数個とが混合状態にて焼結し
て生成した金属焼結組織体が、アルミナ合金の個々の粒
子におけるアルミナ部分の多数個を結合して焼結組織体
を構成した超硬質アルミナ高速度鋼複合焼結組a体であ
った。I−記の本発明の製造法蚤こよって製造した超硬
質アルミナ高速度鋼複合焼結組織体は、硬度がアルミナ
合金と高速度鋼との中間にあってアルミナ合金に近い硬
度を備えていて且つ抗張力も高速度鋼とアルミナ合金と
の中間にあってアルミナ合金より強い抗張力を備えてい
る焼結体であって、高性能の工具材として使用Jできる
月利であった。
The sintered body consists of metal 171 (
A metal sintered structure produced by sintering a large number of nickel-chromium alloy T21S particles and a large number of high-speed steel powder particles in a mixed state is made up of individual particles of alumina alloy. This was an ultra-hard alumina high-speed steel composite sintered assembly A, in which a large number of alumina parts were combined to form a sintered body. The ultra-hard alumina high-speed steel composite sintered structure produced by the production method of the present invention described in I- has a hardness that is between that of alumina alloy and high-speed steel, and that is close to that of alumina alloy. The sintered body had a tensile strength between that of high-speed steel and an alumina alloy, and a tensile strength stronger than that of an alumina alloy, and had a monthly yield that allowed it to be used as a high-performance tool material.

実施例 9 酸化ジルコニウムが92重量%とイツトリアが8重量%
との割合組成を成せる安定化ジルコニア粉末を70重量
%とニッケル粉末を15重量%とクロム粉末を15重量
%との割合の混合粉末を焼結してイ:)た安定化ジルコ
ニア合金を粉末化した安定化ジルコニア粉末を65重量
%と高速度鋼粉末を35重量%との割合にて混合した混
合粉末を焼結用原料とした。次いで、高温圧縮焼結法に
より其の焼結用原料を5 ton / cr!の圧力を
用いて圧縮すると同時に]、、 260℃の温度にて加
熱して焼結体を得た。其の焼結体は焼結用原料中の構成
要素として使用した安定化シ)L/ −1=ア合金粉末
の個々の粒子における金属)711分であるニッケルー
クロム合金部分の多数個と、高速度鋼粉末の粒子の多数
個とが混合状態にて焼結して生成した金属焼結組織体が
、安定化ジルコニア合金粉末の個々の粒子における安定
化ジルコニア部分の多数個を結合して焼結組織体を41
4成した超硬質安定化ジルコニア高速度′M複合焼結組
織体であった。」1記の本発明の製造法によって製造し
た超硬質安定化ジルコニア高速度鋼複合焼結組織体は、
硬度が安定化ジルコニア合金と高速度鋼との中間にあっ
て安定化ジルコニア合金をこ近い硬度を備えていて且つ
抗張力も高速度鋼と安定化ジルコニア合金との中間にあ
って安定化ジルコニア合金より強い抗張力を備えている
焼結体であって、高性能の工具材として使用できる材料
であった。
Example 9 92% by weight of zirconium oxide and 8% by weight of ittria
Stabilized zirconia alloy powder is obtained by sintering a mixed powder of 70% by weight of stabilized zirconia powder, 15% by weight of nickel powder, and 15% by weight of chromium powder, which has the following composition: A mixed powder obtained by mixing 65% by weight of the stabilized zirconia powder and 35% by weight of high-speed steel powder was used as a raw material for sintering. Next, 5 tons/cr! of the raw material for sintering was produced using a high-temperature compression sintering method. A sintered body was obtained by compressing using a pressure of 260°C and heating at a temperature of 260°C. The sintered body contains a large number of stabilized nickel-chromium alloy parts used as constituents in the raw material for sintering, where L/-1 = metal in the individual particles of the alloy powder) 711; A metal sintered structure produced by sintering a large number of particles of high-speed steel powder in a mixed state binds a large number of stabilized zirconia parts in individual particles of stabilized zirconia alloy powder and sinters. 41 connective tissue bodies
It was a super-hard stabilized zirconia high speed 'M composite sintered structure made of four materials. The ultra-hard stabilized zirconia high-speed steel composite sintered structure produced by the production method of the present invention described in 1.
It has a hardness that is between that of stabilized zirconia alloys and high-speed steel, and is close to that of stabilized zirconia alloys, and a tensile strength that is between that of high-speed steels and stabilized zirconia alloys, and is stronger than stabilized zirconia alloys. The material was a sintered body that had the following characteristics and could be used as a high-performance tool material.

Claims (1)

【特許請求の範囲】 (1)超硬質物の粉末Gこ焼結助剤とする金属の粉末を
加えた混合粉末を焼結した超硬質物−金属焼結物である
超硬質物合金を粉末化した超硬質物合金粉末を、高速度
鋼粒子に加えた混合粉末を焼結した焼結組織体であって
、超硬質物合金粉末を構成している多数個の粒子の個々
勿粒子における金属部分と、高速度鋼粉末ζこおける多
数個の高速度鋼粒子とが焼結して形成している金属部分
−高速度鋼焼結合金組織の内部に、超硬質物合金粉末を
構成している多数個の粒子の個々の粒子における超硬質
物部分が分散して結合している焼結組織体を構成してい
ることを特徴とする超硬質物高速度鋼複合焼結組織体。 (2)超硬質物粉末に焼結助剤とする金属粉末を加えた
混合粉末を焼結して生成した超硬質物−金属焼結合金で
ある超硬質物合金を粉末化した超硬質物合金粉末を80
重1%乃至40[1と、高速度鋼粉末を20重量%乃至
60重量%との割合範囲内より選定した割合にて混合し
た混合粉末を焼結用原料とし、其の焼結用原料を常温圧
縮焼結法または高温圧縮焼結法をこより高速度鋼の焼入
温度に相当する温度を焼結用温度として焼結作業を行っ
て焼結組織体を生成することを特徴とする超硬質物高速
度鋼複合焼結組織体の製造法。 (3)超硬質物炭化物の粉末に焼結助剤とするコバルト
・ニッケル拳クロム・モリフ゛デン・タングステン・チ
タン・ジルコニウム・ハフニウム・バナジウム−ニオブ
−タンクル・マンガン・珪素のうちより選択した1種の
金属の粉末または2種以上の金属の混合粉末を加えた混
合粉末を焼結して生成した超硬質炭化物−金属焼結合金
である超硬質炭化物合金を粉未化した超硬質炭化物粉末
を80重量%乃至40重量%と、高速度鋼粉末を20重
量%乃至60重量%との割合範囲内より選定した割′合
にて混合した混合粉末を焼結用原料とし、具の焼結用原
料を常温圧縮焼結法または高温圧縮焼結法により高速度
鋼の焼入温度に相当する温度を焼軸用温度として焼結作
業を行って焼結組織体を生成することを特徴とする超硬
質炭化物高速度鋼複合焼結組織体の製造法d(4)超硬
質硼化物の粉末に焼結助剤とするコノ(ルト・ニッケル
・鉄・クロム・モリブデンータングヌテン・チタン・ジ
ルコニウム奢71フニ・ンム・バナジウム・二オフ゛・
タンタル・マンガン・珪素のうちより選択した1種の金
属の粉末または2種以上の金属の混合粉末または2種以
−にの金属の合金の粉末を加えた混合粉末を焼結して生
成した超硬質硼化物−金属焼結合金である超硬質硼化物
合金を粉末化した超硬質硼化物合金粉末を80重量%乃
至40重量%と、高速度鋼粉末を20重量%乃至40重
量%と、高速度鋼粉末を20重量%乃至60重量%との
割合範囲内より選定した割合にて混合した混合−粉末を
焼結川原4’lとし、其の焼結用原料を常温圧縮焼結法
または高温圧縮焼結法Oこより高速度鋼の焼入温度Qこ
相当する温度を焼結用温度として焼結作業を行って焼結
組織体を生成することを特徴とする超硬質硼化物高速度
鋼複合焼結組織体の製造法。 (5)超硬質窒化物の粉末昏こ焼結助剤とするコバル1
゛・ニッケル・鉄・クロム・モリブテン・タングステン
・チタン・ジルコニウム・ハフニウム・バナジウム・ニ
オブ・タンタル・マンガン・珪素のうちより選択した1
種の金1.・式の粉末または2種以上の金属の混合粉末
または2種以」二の金属の合金の粉末を加えた混合粉末
を焼結して生成した超硬質窒化物−金属焼結合金である
超硬質窒化物合金を粉末化した超硬質窒化物合金粉末を
80重量%乃至40重量%と、高速度鋼粉末を20重量
%乃至60重量%との割合範囲内より選定した割i′r
 Gこて混合した混合粉末を焼結用原料とし、其の焼結
用原料を常温圧縮焼結法または高温圧縮焼結法により高
速度鋼の焼入温度に相当する温度を焼結用温度として焼
結作業を行って焼結組織体を生成することを特徴とする
超硬質窒化物高速度鋼複合焼結組織体の製造法。 (6)超硬質珪化物の粉末0こ、焼結助剤とするコバル
ト・ニッケル・鉄・クロム・モリブテン・タングステン
・チタン・ジルコニウム・ハフニウム・バナジウム・ニ
オブ−タンタル・マンガン・珪素・アルミニウム・銅の
うちより選択した1種の金属の粉末または2種以上の金
属の混合粉末または2種以」二の金属の合金の粉末を加
えた混合粉末を焼結して生成した超硬質珪化物−金属焼
結合金である超硬質珪化物合金を粉末化した超硬質珪化
物合金粉末を80重量%乃至40重量%と、高速度鋼粉
末を20重量%乃至40重量%との割合範囲内より選定
した割合にて混合した混合粉末を焼結用原料とし、其の
焼結用原料を常温圧縮焼結法または高温圧縮焼結法9こ
より高速度鋼の焼入温度に相当する温度を焼結用温度と
して焼結作業を行って焼結組織体を生成することを特徴
とする超硬質珪化物高速度鋼複合焼結組織体の製造法。 (7)超硬質酸化物の粉末に、焼結助剤とするコバ)L
y )・ニッケル・鉄・クロム・モリブテン・タングス
テン・チタン・ジルコニウム・ハフニウム・バナジウム
・ニオブ・タンタル・マンガン・珪素・アルミニウム・
銅のうちより選択した1種の金属の粉末または2種以」
−の金属の混合粉末または2種以」二の金属の合金の粉
末を加えた混合粉末を焼結して生成した超硬質酸化物−
金属焼結合金である超硬質酸化物合金を粉末化した超硬
質酸化物合金粉末を80重量%乃至40重量%と、高速
度鋼粉末を20重量%乃至60重量%との割合範囲内よ
り選定した割合にて混合した混合粉末を焼結用原料とし
、其の焼結用原料を常温圧縮焼結法または高温圧縮焼結
法Qこより高速度鋼の焼入温度に相当する温度を焼結用
温度として焼結作業を行って焼結組織体を生成すること
を特徴とする超硬質酸化物高速度鋼複合焼結組織体の製
造法。
[Scope of Claims] (1) Powder of a super-hard material G A super-hard material obtained by sintering a mixed powder containing a metal powder as a sintering aid - A super-hard material alloy which is a metal sintered material is powdered. It is a sintered structure obtained by sintering a mixed powder of ultra-hard alloy powder added to high-speed steel particles, and the metal in each individual particle of the large number of particles constituting the ultra-hard alloy powder is sintered. and a large number of high-speed steel particles in the high-speed steel powder ζ are sintered to form a metal part - a super-hard material alloy powder is formed inside the high-speed steel sintered alloy structure. An ultra-hard material high-speed steel composite sintered structure comprising a sintered structure in which ultra-hard material portions in individual particles of a large number of particles are dispersed and bonded. (2) A superhard material produced by sintering a mixed powder of superhard material powder and metal powder as a sintering aid - a superhard material produced by pulverizing a superhard material alloy that is a metal sintered alloy 80 powder
The raw material for sintering is a mixed powder obtained by mixing 1% to 40[1% by weight] and high speed steel powder at a ratio selected from within the ratio range of 20% to 60% by weight, and the raw material for sintering is An ultra-hard material characterized by producing a sintered structure by performing sintering using a cold compression sintering method or a high-temperature compression sintering method at a sintering temperature that corresponds to the quenching temperature of high-speed steel. A method for producing a high-speed steel composite sintered structure. (3) One metal selected from among cobalt, nickel, chromium, molybdenum, tungsten, titanium, zirconium, hafnium, vanadium-niobium-tankle, manganese, and silicon as a sintering aid in the ultra-hard carbide powder. 80% by weight of ultra-hard carbide powder, which is an unpulverized ultra-hard carbide alloy, which is an ultra-hard carbide-metal sintered alloy, produced by sintering a powder or a mixed powder of two or more metals. The raw material for sintering is a mixed powder in which 40% by weight and high speed steel powder are mixed at a ratio selected from within the ratio range of 20% to 60% by weight. An ultra-hard carbide material characterized in that a sintering process is performed using a compression sintering method or a high-temperature compression sintering method at a temperature equivalent to the quenching temperature of high-speed steel to produce a sintered structure. Manufacturing method of speed steel composite sintered structure d (4) Adding sintering aid to ultra-hard boride powder (rut, nickel, iron, chromium, molybdenum, tungnuten, titanium, zirconium)・Vanadium・Nioph・
Super produced by sintering a powder of one metal selected from tantalum, manganese, and silicon, a mixed powder of two or more metals, or a mixed powder of an alloy of two or more metals. The ultra-hard boride alloy powder, which is a hard boride-metal sintered alloy, is powdered from 80% to 40% by weight, and the high-speed steel powder is from 20% to 40% by weight. A mixed powder prepared by mixing speed steel powder in a ratio selected from within the ratio range of 20% by weight to 60% by weight is used as sintering Kawahara 4'l, and the raw material for sintering is sintered by cold compression sintering method or high temperature compression sintering method. An ultra-hard boride high-speed steel composite characterized by performing a sintering operation at a temperature corresponding to the sintering temperature of the high-speed steel using the compression sintering method O to produce a sintered structure. Method for manufacturing sintered tissue. (5) Kobal 1 as ultra-hard nitride powder sintering aid
1 selected from among nickel, iron, chromium, molybdenum, tungsten, titanium, zirconium, hafnium, vanadium, niobium, tantalum, manganese, and silicon.
Seed money 1.・Ultra-hard nitride produced by sintering a powder of the formula or a mixed powder of two or more metals or a mixed powder of two or more metal alloys - an ultra-hard metal sintered alloy A proportion i'r selected from within the ratio range of 80% to 40% by weight of ultra-hard nitride alloy powder obtained by pulverizing nitride alloy and 20% to 60% by weight of high speed steel powder.
The mixed powder mixed with the G trowel is used as a raw material for sintering, and the raw material for sintering is heated to a temperature equivalent to the quenching temperature of high-speed steel using a cold compression sintering method or a high temperature compression sintering method. A method for producing an ultra-hard nitride high-speed steel composite sintered structure, which comprises performing a sintering operation to generate a sintered structure. (6) Ultra-hard silicide powder, sintering aids of cobalt, nickel, iron, chromium, molybdenum, tungsten, titanium, zirconium, hafnium, vanadium, niobium-tantalum, manganese, silicon, aluminum, and copper. Ultra-hard silicide-metal sintered material produced by sintering a powder of one metal selected from among these, a mixed powder of two or more metals, or a mixed powder of an alloy of two or more metals. A ratio selected from within the ratio range of 80% to 40% by weight of superhard silicide alloy powder obtained by pulverizing the superhard silicide alloy that is the binder, and 20% to 40% by weight of high speed steel powder. The mixed powder mixed in is used as the raw material for sintering, and the raw material for sintering is subjected to the cold compression sintering method or the high temperature compression sintering method. A method for producing an ultra-hard silicide high-speed steel composite sintered body, the method comprising performing a sintering operation to generate a sintered body. (7) Addition of ultra-hard oxide powder as a sintering aid) L
y)・Nickel, iron, chromium, molybdenum, tungsten, titanium, zirconium, hafnium, vanadium, niobium, tantalum, manganese, silicon, aluminum,
One metal powder or two or more metals selected from copper.
An ultra-hard oxide produced by sintering a mixed powder of metals or a mixed powder of two or more metals.
Select from a ratio range of 80% to 40% by weight of superhard oxide alloy powder, which is a powdered superhard oxide alloy that is a metal sintered alloy, and 20% to 60% by weight of high speed steel powder. The mixed powder mixed at the same ratio is used as the raw material for sintering, and the raw material for sintering is sintered at a temperature equivalent to the quenching temperature of high-speed steel. A method for producing an ultra-hard oxide high-speed steel composite sintered body, the method comprising producing a sintered body by performing a sintering operation at a certain temperature.
JP21504383A 1983-11-17 1983-11-17 Composite sintered structure body consisting of sintered hard material and high speed steel and production thereof Pending JPS60110839A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21504383A JPS60110839A (en) 1983-11-17 1983-11-17 Composite sintered structure body consisting of sintered hard material and high speed steel and production thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21504383A JPS60110839A (en) 1983-11-17 1983-11-17 Composite sintered structure body consisting of sintered hard material and high speed steel and production thereof

Publications (1)

Publication Number Publication Date
JPS60110839A true JPS60110839A (en) 1985-06-17

Family

ID=16665805

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21504383A Pending JPS60110839A (en) 1983-11-17 1983-11-17 Composite sintered structure body consisting of sintered hard material and high speed steel and production thereof

Country Status (1)

Country Link
JP (1) JPS60110839A (en)

Similar Documents

Publication Publication Date Title
US8936665B2 (en) Diamond metal composite
TWI284677B (en) Hybrid cemented carbide composites
JPH06500601A (en) Method for producing metal carbide objects and composites containing metal carbides
JPH0583514B2 (en)
JP2001089823A (en) Double boride sintered hard alloy, and screw for resin processing machine using the alloy
JPS60110839A (en) Composite sintered structure body consisting of sintered hard material and high speed steel and production thereof
JP3837332B2 (en) In-situ powder metallurgy manufacturing method for wear-resistant composite materials
JP3303186B2 (en) Method for producing heat-resistant tungsten carbide-based cemented carbide having high strength
JP3297535B2 (en) Cubic boron nitride sintered body
JP3626378B2 (en) TiB2-Ti (CN) -based composite and production method thereof
JPH1053823A (en) Manufacture of tungsten carbide-base cemented carbide with high strength
JPH09316589A (en) Aluminum oxide-tungsten carbide-cobalt composite material having high toughness, high strength, and high hardness
JPS63143236A (en) Composite boride sintered body
JP2004107691A (en) High strength titanium alloy and its production method
JPH02274827A (en) Production of powder for producing compact of anisotropic sintered hard alloy or compact using same
JP3481702B2 (en) Cubic boron nitride sintered body using hard alloy as binder and method for producing the same
JPH0353039A (en) Diamond-high speed steel composite sintered compact and its production
JP2564857B2 (en) Nickel-Morbuden compound boride sintered body
JPS59199569A (en) Formation of ceramic sintered body
JP3603318B2 (en) Double boride based sintered alloy
JPH0567690B2 (en)
JP2677287B2 (en) Nickel-molybdenum compound boride-based sintered body
JPS6067644A (en) Sintered high speed steel
JPH05201769A (en) Combined ceramic material and its production
JPS6119593B2 (en)