JPH0567690B2 - - Google Patents
Info
- Publication number
- JPH0567690B2 JPH0567690B2 JP1335140A JP33514089A JPH0567690B2 JP H0567690 B2 JPH0567690 B2 JP H0567690B2 JP 1335140 A JP1335140 A JP 1335140A JP 33514089 A JP33514089 A JP 33514089A JP H0567690 B2 JPH0567690 B2 JP H0567690B2
- Authority
- JP
- Japan
- Prior art keywords
- hard
- carbide
- weight
- powder
- mixture
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000002131 composite material Substances 0.000 claims description 57
- 239000000203 mixture Substances 0.000 claims description 44
- 239000000843 powder Substances 0.000 claims description 41
- 239000006185 dispersion Substances 0.000 claims description 31
- 238000005245 sintering Methods 0.000 claims description 30
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical class [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 claims description 28
- 239000000463 material Substances 0.000 claims description 23
- 239000002245 particle Substances 0.000 claims description 21
- 229910052751 metal Inorganic materials 0.000 claims description 20
- 239000002184 metal Substances 0.000 claims description 20
- UONOETXJSWQNOL-UHFFFAOYSA-N tungsten carbide Chemical compound [W+]#[C-] UONOETXJSWQNOL-UHFFFAOYSA-N 0.000 claims description 19
- 239000000126 substance Substances 0.000 claims description 18
- MTPVUVINMAGMJL-UHFFFAOYSA-N trimethyl(1,1,2,2,2-pentafluoroethyl)silane Chemical compound C[Si](C)(C)C(F)(F)C(F)(F)F MTPVUVINMAGMJL-UHFFFAOYSA-N 0.000 claims description 18
- 239000011230 binding agent Substances 0.000 claims description 16
- 239000000835 fiber Substances 0.000 claims description 15
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 claims description 14
- 229910010271 silicon carbide Inorganic materials 0.000 claims description 14
- 239000007791 liquid phase Substances 0.000 claims description 13
- 239000002994 raw material Substances 0.000 claims description 13
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 claims description 12
- 238000000034 method Methods 0.000 claims description 10
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 10
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims description 9
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 8
- 150000001247 metal acetylides Chemical class 0.000 claims description 8
- 150000002739 metals Chemical class 0.000 claims description 8
- 229910017052 cobalt Inorganic materials 0.000 claims description 6
- 239000010941 cobalt Substances 0.000 claims description 6
- 239000010419 fine particle Substances 0.000 claims description 6
- 239000002798 polar solvent Substances 0.000 claims description 6
- 239000002904 solvent Substances 0.000 claims description 5
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 claims description 4
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 claims description 4
- 229910052804 chromium Inorganic materials 0.000 claims description 4
- 239000011651 chromium Substances 0.000 claims description 4
- 229910052742 iron Inorganic materials 0.000 claims description 4
- 229910052750 molybdenum Inorganic materials 0.000 claims description 4
- 239000011733 molybdenum Substances 0.000 claims description 4
- 229910052759 nickel Inorganic materials 0.000 claims description 4
- 238000004519 manufacturing process Methods 0.000 claims description 3
- 239000007788 liquid Substances 0.000 claims description 2
- 238000004220 aggregation Methods 0.000 claims 1
- 230000002776 aggregation Effects 0.000 claims 1
- 239000012071 phase Substances 0.000 claims 1
- NFFIWVVINABMKP-UHFFFAOYSA-N methylidynetantalum Chemical compound [Ta]#C NFFIWVVINABMKP-UHFFFAOYSA-N 0.000 description 8
- 229910003468 tantalcarbide Inorganic materials 0.000 description 8
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 6
- 230000007547 defect Effects 0.000 description 5
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 3
- 238000005520 cutting process Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 238000010438 heat treatment Methods 0.000 description 3
- 239000011812 mixed powder Substances 0.000 description 3
- 238000000465 moulding Methods 0.000 description 3
- 229910052581 Si3N4 Inorganic materials 0.000 description 2
- UFGZSIPAQKLCGR-UHFFFAOYSA-N chromium carbide Chemical compound [Cr]#C[Cr]C#[Cr] UFGZSIPAQKLCGR-UHFFFAOYSA-N 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 239000012188 paraffin wax Substances 0.000 description 2
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 2
- 229910003470 tongbaite Inorganic materials 0.000 description 2
- 238000003825 pressing Methods 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
Landscapes
- Ceramic Products (AREA)
- Powder Metallurgy (AREA)
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明の製造法によりて製造した本発明のウイ
スカー複合硬質炭化物焼結体は、従来から市販さ
れている炭化タングステン・炭化チタン等の炭化
物焼結体と同じ分野において利用される材料であ
る。[Detailed Description of the Invention] [Industrial Application Field] The whisker composite hard carbide sintered body of the present invention produced by the production method of the present invention can be used in conjunction with conventionally commercially available carbide sintered bodies such as tungsten carbide and titanium carbide. It is a material used in the same field as solids.
従来市販されている炭化タングステン焼結体或
いは炭化チタン焼結体等の炭化物焼結体の基本的
製造技術は、炭化タングステン粉末または炭化チ
タン粉末等の硬質炭化物の粉末に結合材とするコ
バルト粉末を添加した混合粉末を、ボールミルに
て水素ガス或はベンゼン等を加えて混合粉砕す
る。次いで、混合粉末にパラフイン等の結合剤を
添加し混合して3ton/cm2程度の圧力にて加圧成形
する。次いで成形体を水素ガス中にて900℃程度
の温度に加熱して予備焼結体を生成する。次い
で、予備焼結体を真空炉中にて1000℃程度の温度
に加熱して真空焼結体を生成する。次いで、真空
焼結体を熱間静水圧プレス装置にて1.5ton/cm2程
度の圧力にて静水圧加圧すると共に1470℃程度の
温度に加熱して本焼結を行う方法である。具体的
には、硬質炭化物粉末としては2種以上の硬質炭
化物粉末が使用され、また結合材粉末としてはニ
ツケル粉末等も使用されている。
The basic manufacturing technology for conventionally commercially available carbide sintered bodies such as tungsten carbide sintered bodies and titanium carbide sintered bodies is to add cobalt powder as a binder to hard carbide powder such as tungsten carbide powder or titanium carbide powder. The added mixed powder is mixed and pulverized in a ball mill by adding hydrogen gas, benzene, or the like. Next, a binder such as paraffin is added to the mixed powder, mixed, and pressure molded at a pressure of about 3 tons/cm 2 . Next, the compact is heated to a temperature of about 900°C in hydrogen gas to produce a pre-sintered body. Next, the preliminary sintered body is heated to a temperature of about 1000° C. in a vacuum furnace to produce a vacuum sintered body. Next, the vacuum sintered body is hydrostatically pressed at a pressure of about 1.5 ton/cm 2 using a hot isostatic press device and heated to a temperature of about 1470° C. to perform main sintering. Specifically, two or more kinds of hard carbide powders are used as the hard carbide powder, and nickel powder or the like is also used as the binder powder.
前項にて説明したように、従来の炭化タングス
テン焼結体或いは炭化チタン焼結体は、炭化タン
グステン・炭化チタン等の粉末とコバルト等の結
合材金属の粉末との混合粉末を1350℃以上の温度
にて加熱すると共に1ton/cm2以上の圧力にて加圧
する高温高圧下で焼結して製造されている。其の
焼結体を構成している炭化タングステン・炭化チ
タン等の硬質炭化物と、コバルト等の結合材金属
とは夫々に固有の体積膨脹率を有していることに
より、夫々が相互に異なる体積膨脹度を生成して
いて、其の焼結体の内部に歪を生じているのであ
る。斯様に焼結体の内部に歪が生成していること
により其の焼結体は脆性を内蔵していることにな
る。即ち、焼結体の内部に歪に基く脆性を内蔵し
ていることが其の焼結体を工具として使用する場
合に於ける衝撃により大小の亀裂あるいは大小の
欠損が誘発される原因となつており、其の原因の
発生を抑制する方法が開発されていないことが本
発明が解決しようとする問題点である。
As explained in the previous section, conventional tungsten carbide sintered bodies or titanium carbide sintered bodies are made by heating a mixed powder of tungsten carbide, titanium carbide, etc. powder and binder metal powder such as cobalt at a temperature of 1350°C or higher. It is manufactured by sintering at high temperature and high pressure by heating at 1 ton/cm 2 or more and pressing at a pressure of 1 ton/cm 2 or more. Hard carbides such as tungsten carbide and titanium carbide, which make up the sintered body, and binder metals such as cobalt each have their own specific coefficients of volumetric expansion, so they have different volumes. This creates a degree of expansion, which causes strain inside the sintered body. Since strain is generated inside the sintered body in this way, the sintered body has built-in brittleness. In other words, the built-in strain-based brittleness inside the sintered body causes large and small cracks or large and small chips to be induced by impact when the sintered body is used as a tool. The problem to be solved by the present invention is that no method has been developed to suppress the occurrence of this cause.
前項にて説明したような問題点を解決するため
に、本発明においては、炭化珪素ウイスカー其の
他の硬質物ウイスカーのうちより分散複合材とし
て選択した硬質物ウイスカーの集合物と炭化珪素
微粉末、其の他の硬質物微粉末のうちより分散複
合助材として選択した硬質物微粉末との混合物を
極性の高い水またはメチルアルコール等の溶媒の
中に投入し撹拌して分散混合液を生成し、次い
で、其の分散混合液を加熱して溶媒を気化させて
分散混合物を生成し、次いで其の分散混合物を炭
化タングステン・炭化チタン・炭化珪素・炭化ク
ロム・其の他の硬質炭化物のうちより選択した1
種または2種以上の硬質炭化物の粉末を混合する
と共にコバルト・ニツケル・鉄・クロム・モリブ
デン・其の他の金属のうちより結合材として選択
した1種または2種以上の金属の粉末を混合して
焼結用原料を生成し、次いで、其の焼結用原料を
従来公知の方法によつて焼結して硬質物ウイスカ
ー単繊維の多数個が分散混合しているウイスカー
複合硬質炭化物焼結体を生成し、其の生成した焼
結体においては、結合材金属粉末の液相焼結組織
が個々の硬質物ウイスカー単繊維および個々の硬
質炭化物粒子および個々の硬質物微粒子に液相焼
結してウイスカー複合硬質炭化物焼結体を構成し
ていて、其のウイスカー複合硬質炭化物焼結体を
用いて形成した工具を使用して切削作業等を行う
場合に、其の工具を形成しているウイスカー複合
硬質炭化物焼結体の中に均等に分散している硬質
物ウイスカー単繊維の多数個が工具内に発生せん
とする大小の亀裂あるいは大小の欠損の発生を抑
制する機能を利用して問題点を解決しようとする
ものである。
In order to solve the problems as explained in the previous section, in the present invention, an aggregate of hard substance whiskers selected from silicon carbide whiskers and other hard substance whiskers as a dispersed composite material and silicon carbide fine powder are used. , and a hard material fine powder selected from among other hard material fine powders as a dispersion composite auxiliary material, is poured into a highly polar solvent such as water or methyl alcohol, and stirred to produce a dispersion mixture. Then, the dispersion mixture is heated to vaporize the solvent to produce a dispersion mixture, and then the dispersion mixture is mixed with tungsten carbide, titanium carbide, silicon carbide, chromium carbide, and other hard carbides. 1 selected from
Mixing seeds or powders of two or more hard carbides, and mixing powders of one or more metals selected as a binder from among cobalt, nickel, iron, chromium, molybdenum, and other metals. to produce a sintering raw material, and then sintering the sintering raw material by a conventionally known method to produce a whisker composite hard carbide sintered body in which a large number of hard substance whisker single fibers are dispersed and mixed. In the resulting sintered body, the liquid phase sintered structure of the binder metal powder is liquid phase sintered into individual hard substance whisker single fibers, individual hard substance particles, and individual hard substance fine particles. When a tool formed using the whisker composite hard carbide sintered body is used for cutting work, etc., the whisker composite hard carbide sintered body is A large number of hard substance whisker single fibers evenly distributed in the composite hard carbide sintered body are used to suppress the occurrence of large and small cracks or large and small defects that occur in the tool. This is an attempt to solve the problem.
高い抗張力を有する炭化珪素ウイスカーまたは
窒化珪素ウイスカー等の硬質物ウイスカーのうち
より分散複合材として選択した硬質物ウイスカー
の2次凝集物の集合物と、炭化珪素微粉末または
窒化珪素微粉末等のうちより分散複合助材として
選択した硬質物微粉末と、を混合した混合物を極
性の高い水またはメチルアルコール等の溶媒の中
に投入し混合し撹拌し解繊して分散混合液を生成
し、次いで、其の分散混合液を加熱して溶媒を気
化させて除いて分散混合物を生成し、次いで其の
分散混合物を炭化タングステン・炭化チタン・炭
化クロム・炭化珪素・其の他の硬質炭化物のうち
より選択した1種または2種以上の硬質炭化物の
粉末とコバルト・ニツケル・鉄・クロム・モリブ
デン・其の他の金属のうちより結合材として選択
した1種または2種以上の金属の粉末との混合粉
末に加えて入念に撹拌して混合物を生成し、其の
混合物をウイスカー複合硬質炭化物焼結体を製造
する焼結用原料とする。斯様に生成した焼結用原
料を従来公知の方法により、焼結用原料にパラフ
イン等の結合剤を添加混合した混合物を3ton/cm2
以上の圧力にて加圧成形する。次いで、其の成形
体を水素ガス中にて900℃程度の温度にて加熱し
て予備焼結体を生成する。次いで、予備焼結体を
真空炉中にて1000℃程度の温度にて加熱して真空
焼結体を生成する。次いで、真空焼結体を熱間静
水圧プレス装置にて1.5ton/cm2程度の圧力にて静
水圧加圧すると共に、1470℃程度の温度にて加熱
して本焼結を行う。其の焼結作業を行つて得られ
る焼結体は、焼結作業において生成した結合材金
属粉末焼結組織が個々の硬質炭化物粒子および分
散複合材である個々の硬質物ウイスカー単繊維お
よび分散複合助材である個々の硬質物微粒子に液
相焼結して複合焼結組織体を構成しているウイス
カー複合硬質炭化物焼結体を生成する。斯様にし
て生成したウイスカー複合硬質炭化物焼結体を構
成している硬質炭化物粒子の多数個と、分散複合
材である硬質物ウイスカー単繊維と分散複合助材
である硬質物微粒子と結合材金属粉末焼結組織と
は夫々に固有の体積膨脹率を有しているので、其
のウイスカー複合硬質炭化物焼結体の内部に歪を
内蔵している。斯様に歪を内蔵している焼結体を
もつて製作した工具を用いて切削作業等の作業を
行うときは上記の歪が其の焼結体に大小の亀裂あ
るいは大小の欠損を誘発せんとするのであるが、
本焼結体であるウイスカー複合硬質炭化物焼結体
においては、其の焼結体の内部に抗張力の高い硬
質物ウイスカー単繊維の多数個が均等に分散し結
合していて大小の亀裂あるいは大小の欠損の発生
を抑制する機能を発揮させるように作用すること
となる。
A collection of secondary aggregates of hard whiskers selected as a dispersed composite material from hard whiskers such as silicon carbide whiskers or silicon nitride whiskers having high tensile strength, and fine silicon carbide powder or fine silicon nitride powder, etc. A mixture of hard material fine powder selected as a more dispersed composite auxiliary material is poured into highly polar water or a solvent such as methyl alcohol, mixed, stirred, and defibrated to produce a dispersed mixed liquid. , the dispersion mixture is heated to vaporize and remove the solvent to form a dispersion mixture, and then the dispersion mixture is mixed with tungsten carbide, titanium carbide, chromium carbide, silicon carbide, and other hard carbides. Mixing of one or more selected hard carbide powders with one or more metal powders selected as a binder from among cobalt, nickel, iron, chromium, molybdenum, and other metals. It is added to the powder and carefully stirred to form a mixture, and the mixture is used as a sintering raw material for producing a whisker composite hard carbide sintered body. A mixture obtained by adding a binder such as paraffin to the sintering raw material thus produced was mixed by a conventionally known method at 3 tons/cm 2 .
Pressure molding is performed at the above pressure. Next, the molded body is heated in hydrogen gas at a temperature of about 900° C. to produce a pre-sintered body. Next, the preliminary sintered body is heated in a vacuum furnace at a temperature of about 1000° C. to produce a vacuum sintered body. Next, the vacuum sintered body is hydrostatically pressed at a pressure of about 1.5 ton/cm 2 using a hot isostatic press device and heated at a temperature of about 1470° C. to perform main sintering. The sintered body obtained by performing the sintering operation is composed of individual hard substance whiskers single fibers and dispersed composites in which the binder metal powder sintered structure generated in the sintering operation is composed of individual hard carbide particles and dispersed composites. A whisker composite hard carbide sintered body constituting a composite sintered structure is produced by liquid-phase sintering of individual hard particles as auxiliary materials. A large number of hard carbide particles constituting the whisker composite hard carbide sintered body thus produced, hard whisker single fibers as a dispersed composite material, hard particles as a dispersed composite auxiliary material, and a binder metal. Since each powder sintered structure has its own volumetric expansion coefficient, the whisker composite hard carbide sintered body has built-in strain. When performing cutting work or other work using a tool made from a sintered body that has built-in strain in this way, the above-mentioned strain will not induce large and small cracks or large and small defects in the sintered body. However,
In the whisker composite hard carbide sintered body, which is the main sintered body, a large number of hard whisker single fibers with high tensile strength are evenly distributed and bonded inside the sintered body, so that large and small cracks or small and large cracks occur. It acts to exert the function of suppressing the occurrence of defects.
〔実施例〕
実施例 1
分散複合材とする硬質物ウイスカーとして炭化
珪素ウイスカー2次凝集物の集合物を50重量%
と、分散複合助材とする炭化珪素微粉末を50重量
%と、の割合にて混合した混合物を、極性の高い
溶媒である水の中に投入し混合し撹拌し解繊して
分散混合液を生成し、次いで其の分散混合液を加
熱して水を気化させて除いて分散混合物を生成し
た。次いで其の分散混合物を12重量%と、炭化タ
ングステン粉末を74重量%と、炭化チタン粉末を
6重量%と、コバルト粉末を8重量%と、の割合
にて混合して混合物を生成し、其の混合物を焼結
用原料とした。次いで、斯様に配合した焼結用原
料を成形プレス装置を用いて5ton/cm2の圧力にて
加圧成形した。次いで其の成形体を水素ガス中に
て900℃の温度にて加熱して予備焼結体を生成し
た。次いで予備焼結体を真空炉中にて1000℃の温
度にて加熱して真空焼結体を生成した。次いで真
空焼結体を熱間静水圧プレス装置にて1.5ton/cm2
の圧力にて静水圧加圧すると共に、1480℃の温度
にて加熱して本焼結を行つた。得た本焼結体は、
焼結作業において生成したコバルト粉末の液相焼
結組織が個々の炭化タングステン粒子および個々
の炭化チタン粒子および個々の炭化珪素ウイスカ
ー単繊維および個々の炭化珪素微粒子に液相焼結
して複合焼結組織体を構成している炭化珪素ウイ
スカー複合炭化タングステン・炭化チタン・炭化
珪素焼結体であるウイスカー複合硬質炭化物焼結
体であつた。[Example] Example 1 50% by weight of aggregate of secondary aggregates of silicon carbide whiskers was used as hard substance whisker to make a dispersed composite material
A mixture of 50% by weight of silicon carbide fine powder as a dispersion composite auxiliary material is poured into water, which is a highly polar solvent, mixed, stirred, and defibrated to form a dispersion mixture. was produced, and the dispersion mixture was then heated to vaporize and remove the water to produce a dispersion mixture. Then, 12% by weight of the dispersion mixture, 74% by weight of tungsten carbide powder, 6% by weight of titanium carbide powder, and 8% by weight of cobalt powder are mixed to form a mixture, and The mixture was used as a raw material for sintering. Next, the sintering raw materials blended in this manner were press-molded using a forming press at a pressure of 5 tons/cm 2 . The compact was then heated in hydrogen gas at a temperature of 900°C to produce a pre-sintered body. Next, the preliminary sintered body was heated in a vacuum furnace at a temperature of 1000°C to produce a vacuum sintered body. The vacuum sintered body was then pressed to 1.5ton/cm 2 using a hot isostatic press machine.
Main sintering was carried out by applying isostatic pressure at a pressure of 1,480°C and heating at a temperature of 1,480°C. The obtained main sintered body is
The liquid-phase sintered structure of the cobalt powder generated during the sintering process is liquid-phase sintered into individual tungsten carbide particles, individual titanium carbide particles, individual silicon carbide whisker single fibers, and individual silicon carbide fine particles, resulting in composite sintering. The structure was a whisker composite hard carbide sintered body, which was a silicon carbide whisker composite tungsten carbide/titanium carbide/silicon carbide sintered body.
実施例 2
分散複合材とする硬質物ウイスカーとして炭化
珪素ウイスカー2次凝集物の集合物を55重量%
と、分散複合助材とする炭化珪素微粉末を45重量
%と、の割合にて混合した混合物を極性の高い溶
媒である水の中に投入し混合し撹拌し解繊して分
散混合液を生成し、次いで、其の分散混合液を加
熱して水を気化させて除いて分散混合物を生成し
た。次いで、其の分散混合物を12重量%と、炭化
タングステン粉末を65重量%と、炭化チタン粉末
を9重量%と、炭化タンタル粉末を6重量%と、
コバルト粉末を8重量%と、の割合にて混合して
混合物を生成した。其の混合物を焼結用原料とし
た。次いで斯様に配合した焼結用原料を成形プレ
ス装置を用いて6ton/cm2の圧力にて加圧成形し、
次いで其の成形体を水素ガス中にて900℃の温度
にて加熱して予備焼結体を生成した。次いで其の
予備焼結体を真空炉中にて1000℃の温度にて加熱
して真空焼結体を生成した。次いで其の真空焼結
体を熱間静水圧プレス装置を用いて1.7ton/cm2の
圧力にて静水圧加圧すると共に1480℃の温度にて
加熱して本焼結を行つた。得た本焼結体は、焼結
作業において生成したコバルト粉末の液相焼結組
織が個々の炭化タングステン粒子および個々の炭
化タンタル粒子および個々の炭化珪素ウイスカー
単繊維および個々の炭化珪素微粒子に液相焼結し
て複合焼結組織体を構成している炭化珪素ウイス
カー複合炭化タングステン・炭化チタン・炭化タ
ンタル・炭化珪素焼結体であるウイスカー複合硬
質炭化物焼結体であつた。Example 2 55% by weight of aggregate of secondary aggregates of silicon carbide whiskers as hard substance whiskers to be used as a dispersed composite material
A mixture of 45% by weight of silicon carbide fine powder as a dispersion composite auxiliary material is poured into water, which is a highly polar solvent, mixed, stirred, and defibrated to form a dispersion mixture. The dispersion mixture was then heated to vaporize and remove the water to form a dispersion mixture. Next, 12% by weight of the dispersion mixture, 65% by weight of tungsten carbide powder, 9% by weight of titanium carbide powder, and 6% by weight of tantalum carbide powder,
A mixture was prepared by mixing 8% by weight of cobalt powder. The mixture was used as a raw material for sintering. Next, the sintering raw materials blended in this way were pressure-molded using a molding press machine at a pressure of 6 tons/cm 2 .
The compact was then heated in hydrogen gas at a temperature of 900°C to produce a pre-sintered body. Next, the preliminary sintered body was heated in a vacuum furnace at a temperature of 1000°C to produce a vacuum sintered body. Next, the vacuum sintered body was hydrostatically pressed at a pressure of 1.7 ton/cm 2 using a hot isostatic press device and heated at a temperature of 1480° C. to perform main sintering. The resulting sintered body has a liquid-phase sintered structure of cobalt powder generated during the sintering process, in which the liquid-phase sintered structure of the cobalt powder generated during the sintering process is dissolved into individual tungsten carbide particles, individual tantalum carbide particles, individual silicon carbide whisker single fibers, and individual silicon carbide fine particles. It was a whisker composite hard carbide sintered body, which was a silicon carbide whisker composite tungsten carbide/titanium carbide/tantalum carbide/silicon carbide sintered body that was phase-sintered to constitute a composite sintered body.
実施例 3
分散複合材とする硬質物ウイスカーとして炭化
珪素ウイスカー2次凝集物の集合物を55重量%
と、分散複合助材とする炭化珪素微粉末を45重量
%と、の割合にて混合した混合物を極性の高い溶
媒である水の中に投入し混合して撹拌し解繊して
分散混合液を生成し、次いで其の分散混合物を加
熱して水を気化させて除いて分散混合物を生成し
た。次いで其の分散混合物を12重量%と、炭化タ
ングステン粉末を50重量%と、炭化チタン粉末を
18重量%と、炭化タンタル粉末を12重量%と、コ
バルト粉末を8重量%と、の割合にて混合して混
合物を生成し、其の混合物を焼結用原料とした。
次いで、斯様に配合した焼結用原料を成形プレス
装置を用いて7ton/cm2の圧力にて加圧成形し、次
いで其の成形体を水素ガス中にて900℃の温度に
て加熱して予備焼結体を生成した。次いで其の予
備焼結体を真空炉中にて1000℃の温度に加熱して
真空焼結体を生成した。次いで其の真空焼結体を
熱間静水圧プレス装置を用いて1.6ton/cm2の圧力
にて静水圧加圧すると共に1480℃の温度にて加熱
して本焼結を行つた。得た本焼結体は、焼結作業
において生成したコバルト粉末の液相焼結組織が
個々の炭化タングステン粒子および個々の炭化チ
タン粒子および個々の炭化タンタル粒子および
個々の炭化珪素ウイスカー単繊維および個々の炭
化珪素微粒子に液相焼結して複合焼結組織体を構
成している炭化珪素ウイスカー複合炭化タングス
テン・炭化チタン・炭化タンタル・炭化珪素焼結
体であるウイスカー複合硬質炭化物焼結体であつ
た。Example 3 55% by weight of aggregate of silicon carbide whisker secondary aggregates as hard substance whiskers to be used as a dispersed composite material
A mixture of 45% by weight of silicon carbide fine powder as a dispersion composite auxiliary material is poured into water, which is a highly polar solvent, mixed, stirred, and defibrated to form a dispersion mixture. The dispersion mixture was then heated to vaporize and remove the water to form a dispersion mixture. Then, 12% by weight of the dispersion mixture, 50% by weight of tungsten carbide powder, and titanium carbide powder were added.
A mixture was produced by mixing 18% by weight of tantalum carbide powder, 12% by weight of tantalum carbide powder, and 8% by weight of cobalt powder, and the mixture was used as a raw material for sintering.
Next, the raw materials for sintering blended in this way were pressure-molded using a molding press machine at a pressure of 7 tons/cm 2 , and then the formed body was heated at a temperature of 900°C in hydrogen gas. A preliminary sintered body was produced. Next, the preliminary sintered body was heated to a temperature of 1000°C in a vacuum furnace to produce a vacuum sintered body. Next, the vacuum sintered body was hydrostatically pressed at a pressure of 1.6 ton/cm 2 using a hot isostatic press device and heated at a temperature of 1480° C. to perform main sintering. The resulting sintered body has a liquid-phase sintered structure of cobalt powder produced in the sintering process that is composed of individual tungsten carbide particles, individual titanium carbide particles, individual tantalum carbide particles, individual silicon carbide whiskers, single fibers, and individual particles of tantalum carbide. It is a whisker composite hard carbide sintered body which is a composite tungsten carbide/titanium carbide/tantalum carbide/silicon carbide sintered body. Ta.
以上に説明したように、本発明の方法により製
造した本発明のウイスカー複合硬質炭化物焼結体
は、各種硬質炭化物粒子の多数個と分散複合材と
する硬質物ウイスカー単繊維の多数個と分散複合
助材とする硬質物微粒子の多数個との混合体にお
ける個々の粒子および個々の単繊維に結合材とす
る金属粉末の液相焼結組織が液相焼結して複合焼
結組織体を構成して成るものであつて其の複合焼
結組織体を構成している各種炭化物粒子の多数個
と分散複合材である硬質物ウイスカー単繊維の多
数個と分散複合助材である硬質物微粒子の多数個
と結合材である金属粉末の焼結組織とが夫々の固
有の体積膨脹率を有していることにより、斯様な
複合焼結組織体より成る焼結体を用いて製作した
工作を形成している焼結体の内部には歪が生成し
ているので、其の工具の内部は切削作業時の衝撃
に伴う大小の亀裂あるいは大小の欠損が発生する
直前の状態にある。本発明に係るウイスカー複合
硬質炭化物焼結体を用いた斯様な状態にある工具
においては、工具の内部に均等に分散している高
い抗張力を有する硬質物ウイスカー単繊維の多数
個が、工具を形成している複合焼結組織体におけ
る個々の各種粒子および金属焼結組織に結合して
いるので、其の工具を形成している複合焼結組織
体の内部に大小の亀裂あるいは大小の欠損が発生
することが抑制される。従つて、本発明のウイス
カー複合硬質炭化物焼結体はこれを用いて製作し
た工具における亀裂や欠損の発生を少なくし工具
の有効利用率を著しく高める効果を奏するもので
ある。
As explained above, the whisker composite hard carbide sintered body of the present invention produced by the method of the present invention is a composite of a large number of various hard carbide particles, a large number of hard substance whisker single fibers as a dispersed composite material, and a dispersed composite material. A liquid phase sintered structure of metal powder used as a binder is liquid phase sintered to individual particles and individual single fibers in a mixture with a large number of hard particles used as an auxiliary material to form a composite sintered structure. It consists of a large number of various carbide particles constituting the composite sintered structure, a large number of hard substance whisker single fibers which are a dispersed composite material, and a large number of hard substance fine particles which are a dispersed composite auxiliary material. Because the large number of particles and the sintered structure of the metal powder that is the binder have their own specific coefficients of volumetric expansion, it is Since strain is generated inside the formed sintered body, the inside of the tool is in a state where large and small cracks or large and small defects are about to occur due to the impact during the cutting operation. In a tool in such a state using the whisker composite hard carbide sintered body according to the present invention, a large number of hard whisker single fibers having high tensile strength and evenly distributed inside the tool Since it is bonded to each individual particle and metal sintered structure in the composite sintered structure forming the tool, large and small cracks or large and small defects may occur inside the composite sintered structure forming the tool. occurrence is suppressed. Therefore, the whisker composite hard carbide sintered body of the present invention has the effect of reducing the occurrence of cracks and chips in tools manufactured using the same and significantly increasing the effective utilization rate of the tools.
Claims (1)
ーのうちより分散複合材として選択した硬質物ウ
イスカーの2次凝集物の集合物を30重量%乃至70
重量%と、炭化珪素微粉末其の他の硬質物微粉末
のうちより分散複合助材として選択した硬質物微
粉末を70重量%乃至30重量%と、の割合範囲内よ
り選定した割合にて混合した混合物を、極性の高
い水またはメチルアルコール等の溶媒の中に投入
し混合し撹拌し解繊して分散混合液を生成し、次
いで、其の分散混合液を加熱して溶媒を気化させ
て除いて分散混合物を生成し、次いで其の分散混
合物を30重量%乃至5重量%と炭化タングステ
ン・炭化チタン・炭化珪素其の他の硬質炭化物の
うちより選択した1種または2種以上の硬質炭化
物の粉末を50重量%乃至90重量%と、結合材金属
とするコバルト・ニツケル・鉄・クロム・モリブ
デン・其の他の金属のうちより選択した1種の金
属または2種以上の金属の粉末を20重量%乃至5
重量%と、の割合範囲内より選択した割合にて混
合した混合物を焼結用原料とし、其の焼結用原料
を従来公知の方法で焼結して生成した焼結体にお
いて、結合材金属粉末の液相焼結組織が個々の硬
質炭化物粒子および分散複合材である個々の硬質
物ウイスカー単繊維および分散複合助材である
個々の硬質物微粒子に液相焼結して複合焼結組織
体を構成していることを特徴とするウイスカー複
合硬質炭化物焼結体。 2 炭化珪素ウイスカー其の他の硬質物ウイスカ
ーのうちより分散複合材として選択した硬質物ウ
イスカーの2次凝集物の集合物を30重量%乃至70
重量%と、炭化珪素微粉末その他の硬質物微粉末
のうちより分散複合助材として選択した硬質物微
粉末を70重量%乃至30重量%と、の割合範囲内よ
り選定した割合にて混合した混合物を、極性の高
い水またはメチルアルコール等の溶媒の中に投入
し混合し撹拌し解繊して分散混合液を生成し、次
いで、其の分散混合液を加熱して溶媒を気化させ
て除いて分散混合物を生成し、次いで其の分散混
合物を30重量%乃至5重量%と炭化タングステ
ン・炭化チタン・炭化珪素・其の他の硬質炭化物
のうちより選択した1種または2種以上の硬質炭
化物の粉末を50重量%乃至90重量%と、結合材金
属とするコバルト・ニツケル・鉄・クロム・モリ
ブデン其の他の金属のうちより選択した1種の金
属または2種以上の金属の粉末を20重量%乃至5
重量%と、の割合範囲内より選定した割合にて混
合した混合物を焼結用原料とし、其の焼結用原料
を従来公知の方法によつて焼結して生成した結合
材金属粉末の液相焼結組織が個々の硬質炭化物粒
子および分散複合材である個々の硬質物ウイスカ
ー単繊維および分散複合助材である個々の硬質物
微粒子に液相焼結して複合焼結組織体を生成する
ことを特徴とするウイスカー複合硬質炭化物焼結
体の製造法。[Scope of Claims] 1. 30% to 70% by weight of aggregation of secondary aggregates of hard material whiskers selected as a dispersed composite material from silicon carbide whiskers and other hard material whiskers.
% by weight, and 70% to 30% by weight of the hard material fine powder selected as the dispersion composite auxiliary material from among the silicon carbide fine powder and other hard material fine powders. The mixed mixture is poured into a highly polar solvent such as water or methyl alcohol, mixed, stirred, and defibrated to produce a dispersion mixture, and then the dispersion mixture is heated to vaporize the solvent. The dispersed mixture is then mixed with 30% to 5% by weight and one or more hard carbides selected from tungsten carbide, titanium carbide, silicon carbide, and other hard carbides. 50% to 90% by weight of carbide powder and powder of one or more metals selected from cobalt, nickel, iron, chromium, molybdenum, and other metals as a binder metal. 20% by weight to 5
The sintered body is produced by sintering the raw material for sintering using a mixture mixed in a ratio selected from within the ratio range of % by weight and by a conventionally known method. The liquid phase sintered structure of the powder is liquid phase sintered into individual hard carbide particles, individual hard substance whisker single fibers which are a dispersed composite material, and individual hard substance fine particles which are a dispersed composite auxiliary material to form a composite sintered structure. A whisker composite hard carbide sintered body comprising: 2 30% to 70% by weight of an aggregate of secondary aggregates of silicon carbide whiskers and other hard whiskers selected as a dispersed composite material
and 70% to 30% by weight of a hard material fine powder selected as a dispersion composite auxiliary material from silicon carbide fine powder and other hard material fine powders at a ratio selected from within the ratio range. The mixture is poured into a highly polar solvent such as water or methyl alcohol, mixed, stirred, and defibrated to produce a dispersion mixture, and then the dispersion mixture is heated to vaporize and remove the solvent. to produce a dispersion mixture, and then the dispersion mixture is mixed with 30% to 5% by weight and one or more hard carbides selected from tungsten carbide, titanium carbide, silicon carbide, and other hard carbides. 50% to 90% by weight of powder, and powder of one metal or two or more metals selected from cobalt, nickel, iron, chromium, molybdenum, and other metals as a binder metal. Weight% to 5
A liquid of binder metal powder produced by sintering the sintering raw material by a conventionally known method using a mixture mixed in a ratio selected from within the ratio range of % by weight as a sintering raw material. The phase sintered structure is liquid-phase sintered into individual hard carbide particles, individual hard substance whisker single fibers which are a dispersed composite material, and individual hard substance fine particles which are a dispersed composite auxiliary material to produce a composite sintered structure. A method for producing a whisker composite hard carbide sintered body, characterized by:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1335140A JPH03264627A (en) | 1989-12-26 | 1989-12-26 | Whisker-hard carbide composite sintered body and production thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1335140A JPH03264627A (en) | 1989-12-26 | 1989-12-26 | Whisker-hard carbide composite sintered body and production thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH03264627A JPH03264627A (en) | 1991-11-25 |
JPH0567690B2 true JPH0567690B2 (en) | 1993-09-27 |
Family
ID=18285209
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1335140A Granted JPH03264627A (en) | 1989-12-26 | 1989-12-26 | Whisker-hard carbide composite sintered body and production thereof |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH03264627A (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4526343B2 (en) * | 2004-09-27 | 2010-08-18 | 秋田県 | WC-SiC sintered body with high hardness, high Young's modulus, and high fracture toughness |
JP6392324B2 (en) * | 2013-04-25 | 2018-09-19 | ユナイテッド テクノロジーズ コーポレイションUnited Technologies Corporation | Additional production of ceramic turbine components by partial transient liquid phase bonding using metal binder |
-
1989
- 1989-12-26 JP JP1335140A patent/JPH03264627A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPH03264627A (en) | 1991-11-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN108823478B (en) | Ultra-fine high-entropy alloy binding phase metal ceramic and preparation method thereof | |
DE3588005T2 (en) | Process for sintering ceramic bodies with a distributed metal reinforcement. | |
CN107794430B (en) | A kind of ultra-fine crystal particle cermet and preparation method thereof | |
CN104630664B (en) | A kind of preparation method of carbon fiber-reinforced Ti (C, N) base metal-ceramic material | |
DE69032117T2 (en) | METHOD FOR PRODUCING SINTERED CERAMIC MATERIALS | |
CN110218928A (en) | A kind of high-strength tenacity Mo2FeB2Based ceramic metal and preparation method thereof | |
CN106756599A (en) | The preparation method of cBN High Speed Steel Composites and cBN High Speed Steel Composites | |
US2802748A (en) | Hot strength corrosion-resistant cemented refractory boride materials and their production | |
US2270607A (en) | Ceramic cutting tool | |
DE69709251T2 (en) | Ceramic-bound compact body made of cubic boron nitride | |
JPH05209248A (en) | High hardness and wear-resistant material | |
JPH0567690B2 (en) | ||
CN110576176A (en) | Preparation method of high-performance diamond tool | |
JPS5939766A (en) | Alumina-silicon carbide complex sintered body | |
DE69218944T2 (en) | BORCARBIDE COPPER CERMETS AND METHOD FOR THEIR PRODUCTION | |
US2806800A (en) | Boron and carbon containing hard cemented materials and their production | |
JPH03243735A (en) | Whisker combined diamond sintered body and its manufacture | |
US2124020A (en) | Metal alloy | |
RU2788686C1 (en) | Composition for high-temperature ceramics and method for production of high-temperature ceramics based on silicon carbide and molybdenum silicide | |
JP3111709B2 (en) | Production method of fine composite carbide powder for production of tungsten carbide based cemented carbide | |
JPH07216492A (en) | Hard material and its production | |
JPH03122051A (en) | Sintered material of whisker-compounded diamond and production thereof | |
RU2730092C1 (en) | Composition with carbon nanotubes for producing carbon billet for high-density sic/c/si ceramics and method of producing articles from sic/c/si ceramics | |
JPS62260027A (en) | Manufacture of sintered composite material | |
JPH0397671A (en) | Low-temperature sintered diamond and its production |