JPH03243735A - Whisker combined diamond sintered body and its manufacture - Google Patents
Whisker combined diamond sintered body and its manufactureInfo
- Publication number
- JPH03243735A JPH03243735A JP2039640A JP3964090A JPH03243735A JP H03243735 A JPH03243735 A JP H03243735A JP 2039640 A JP2039640 A JP 2039640A JP 3964090 A JP3964090 A JP 3964090A JP H03243735 A JPH03243735 A JP H03243735A
- Authority
- JP
- Japan
- Prior art keywords
- weight
- diamond
- powder
- mixture
- sintering
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 229910003460 diamond Inorganic materials 0.000 title claims abstract description 50
- 239000010432 diamond Substances 0.000 title claims abstract description 50
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 8
- 239000000843 powder Substances 0.000 claims abstract description 41
- 239000000203 mixture Substances 0.000 claims abstract description 40
- 238000005245 sintering Methods 0.000 claims abstract description 30
- 239000006185 dispersion Substances 0.000 claims abstract description 24
- OJMOMXZKOWKUTA-UHFFFAOYSA-N aluminum;borate Chemical compound [Al+3].[O-]B([O-])[O-] OJMOMXZKOWKUTA-UHFFFAOYSA-N 0.000 claims abstract description 21
- 239000000835 fiber Substances 0.000 claims abstract description 21
- 239000000463 material Substances 0.000 claims abstract description 21
- 229910045601 alloy Inorganic materials 0.000 claims abstract description 17
- 239000000956 alloy Substances 0.000 claims abstract description 17
- 239000002245 particle Substances 0.000 claims abstract description 16
- 239000007791 liquid phase Substances 0.000 claims abstract description 13
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 8
- 239000002798 polar solvent Substances 0.000 claims abstract description 4
- 239000002904 solvent Substances 0.000 claims abstract description 4
- 239000007788 liquid Substances 0.000 claims abstract 2
- 238000003756 stirring Methods 0.000 claims abstract 2
- 239000002131 composite material Substances 0.000 claims description 46
- 238000002844 melting Methods 0.000 claims description 10
- 230000008018 melting Effects 0.000 claims description 10
- 239000002994 raw material Substances 0.000 claims description 10
- 239000000126 substance Substances 0.000 claims description 5
- 229910000531 Co alloy Inorganic materials 0.000 claims description 4
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 claims 6
- 229910000640 Fe alloy Inorganic materials 0.000 claims 2
- 229910000990 Ni alloy Inorganic materials 0.000 claims 2
- 238000005520 cutting process Methods 0.000 abstract description 16
- 238000000034 method Methods 0.000 abstract description 3
- 238000002156 mixing Methods 0.000 abstract description 2
- 230000002301 combined effect Effects 0.000 abstract 1
- 230000000087 stabilizing effect Effects 0.000 abstract 1
- 230000007547 defect Effects 0.000 description 7
- MTPVUVINMAGMJL-UHFFFAOYSA-N trimethyl(1,1,2,2,2-pentafluoroethyl)silane Chemical compound C[Si](C)(C)C(F)(F)C(F)(F)F MTPVUVINMAGMJL-UHFFFAOYSA-N 0.000 description 5
- 229910001347 Stellite Inorganic materials 0.000 description 4
- 239000011230 binding agent Substances 0.000 description 4
- AHICWQREWHDHHF-UHFFFAOYSA-N chromium;cobalt;iron;manganese;methane;molybdenum;nickel;silicon;tungsten Chemical compound C.[Si].[Cr].[Mn].[Fe].[Co].[Ni].[Mo].[W] AHICWQREWHDHHF-UHFFFAOYSA-N 0.000 description 4
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 4
- 239000010419 fine particle Substances 0.000 description 3
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- 239000010941 cobalt Substances 0.000 description 2
- 229910017052 cobalt Inorganic materials 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- NFFIWVVINABMKP-UHFFFAOYSA-N methylidynetantalum Chemical compound [Ta]#C NFFIWVVINABMKP-UHFFFAOYSA-N 0.000 description 2
- 239000011812 mixed powder Substances 0.000 description 2
- 229910003468 tantalcarbide Inorganic materials 0.000 description 2
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 238000004220 aggregation Methods 0.000 description 1
- 230000002776 aggregation Effects 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 229910052738 indium Inorganic materials 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 239000012071 phase Substances 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 230000035939 shock Effects 0.000 description 1
- 229910010271 silicon carbide Inorganic materials 0.000 description 1
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 1
- 239000007790 solid phase Substances 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
Landscapes
- Manufacture Of Alloys Or Alloy Compounds (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明の製造法によって製造した本発明のウィスカー複
合ダイヤモンド焼結体は、従来製造されているダイヤモ
ンド焼結体と同じ分野において利用されるものである。[Detailed Description of the Invention] [Industrial Application Field] The whisker composite diamond sintered body of the present invention produced by the production method of the present invention is used in the same field as conventionally produced diamond sintered bodies. It is.
従来製造されているダイヤモンド焼結体の基本的製造技
術は、ダイヤモンド粉末が85重量%乃至95重量%と
、結合金属とするコバlシト粉末を15重量%乃至5重
量%と、の割合範囲内より選定した割合にて混合した混
合粉末を50,000Ky/−乃至60.000 Kp
/−の範囲内より選定した圧力にて加圧すると同時に1
,400℃乃至1,600℃の範囲内より選定した温度
にて加熱して焼結体を製造する技術である。斯様な基本
的技術においては、使用するダイヤモンド粉末に少量の
炭化チタン其の他の硬質物の粉末を添加して焼結体を製
造する技術も行われている。The basic manufacturing technology for conventionally manufactured diamond sintered bodies is to use diamond powder in a proportion range of 85% to 95% by weight and cobalt powder as a bonding metal in a proportion range of 15% to 5% by weight. 50,000 Ky/- to 60,000 Kp of mixed powder mixed in a ratio selected from
At the same time, pressurize at a pressure selected from within the range of /-.
, 400°C to 1,600°C. In such basic technology, a technology is also used in which a small amount of powder of titanium carbide or other hard material is added to the diamond powder used to produce a sintered body.
前項にて説明したように、従来製造されているダイヤモ
ンド焼結体は、基本的にはダイヤモンド粉末が85重量
%乃至95重量%と結合金属とするコバルト粉末が15
重量%乃至5重量φとの割合範囲内より選定した割合に
て混合した混合粉末を50,000Kg1cr&乃至6
0,000Kg/−の範囲内より選定した圧力にて加圧
すると同時に1,400乃至1,600℃の範囲内より
選定した温度にて加熱して焼結して成る焼結体であって
、其の焼結体を構成している多数個のダイヤモンド粒子
とコノ(ルト焼結組織との焼結体においては、ダイヤモ
ンド粒子の体積膨脹率とコバルト焼結組織の体積膨脹率
とが異なるために焼結体の内部に歪を内蔵している0従
って斯様に歪を内蔵しているダイヤモンド焼結体を用い
て製作した切削工具にて切削作業を行うときは、其の切
削作業による衝撃によって切削工具を形成しているダイ
ヤモンド焼結体には大小の亀裂あるいは大小の欠損が発
生する。上述のように切削工具を製作するために用いた
ダイヤモンド焼結体においては大小の亀裂あるいは大小
の欠損が発生する現象があり、其の現象を解決すること
が問題点である。As explained in the previous section, conventionally manufactured diamond sintered bodies basically contain 85% to 95% by weight of diamond powder and 15% by weight of cobalt powder as a binding metal.
50,000Kg1cr&~6 of mixed powder mixed at a ratio selected from within the ratio range of weight% to 5weightφ
A sintered body formed by pressurizing at a pressure selected from within the range of 0,000 Kg/- and simultaneously heating and sintering at a temperature selected from within the range of 1,400 to 1,600°C, In a sintered body consisting of a large number of diamond particles constituting the sintered body and a cobalt sintered structure, the coefficient of volumetric expansion of the diamond particles is different from that of the cobalt sintered structure. The sintered body has built-in strain.Therefore, when performing cutting work with a cutting tool manufactured using a diamond sintered body that has such built-in strain, the shock caused by the cutting work may Large and small cracks or large and small defects occur in the diamond sintered compact that forms cutting tools.As mentioned above, large and small cracks or large and small defects occur in the diamond sintered compact used to manufacture cutting tools. There is a phenomenon that occurs, and the problem is to solve that phenomenon.
前項にて説明したように、従来のダイヤモンド焼結体を
用いて成る切削工具における大小の亀裂あるいは大小の
欠損の発生を抑制するために本発明においては、ダイヤ
モンド焼結体を製造する焼結用原料として、ダイヤモン
ド粉末と結合材とするコバルト系合金等の合金粉末との
混合物に分散複合材とする抗張力の高い硼酸アルミニウ
ムウィスカー単繊維の多数個と、分散複合助材とする炭
化チタン・炭化珪素等の各種硬質物のうちより選択した
1種または2種以上の硬質物の粉末とを混合した混合物
を使用するものである。斯様にダイヤモンド焼結体製造
用ダイヤモンド粉末と結合材合金粉末との混合物に、分
散複合材とする硼酸アルミニウムウィスカー単繊維の多
数個と分散複合助材とする1種または数種の硬質物粉末
とを混合した混合物を、ダイヤモンドの安定条件を満足
する焼結用温度と焼結用圧力とのもとに曝らしてウィス
カー複合ダイヤモンド焼結体を生成する。其のウィスカ
ー複合ダイヤモンド焼結体を用いて製作した切削用工具
を使用して切削作業を行うときに、其の切削用工具を形
成しているウィスカー複合ダイヤモンド焼結体の中に分
散している多数個の硼酸アルミニウムウィスカー単繊維
をして其の焼結体の中に内蔵している歪による大小の亀
裂あるいは大小の欠損の発生を抑制させることを問題解
決の手段とするものである。As explained in the previous section, in order to suppress the occurrence of large and small cracks or large and small defects in cutting tools made using conventional diamond sintered compacts, in the present invention, a sintering tool for producing diamond sintered compacts is used. As raw materials, a large number of single fibers of aluminum borate whiskers with high tensile strength are dispersed in a mixture of diamond powder and alloy powder such as cobalt-based alloy as a binder, and titanium carbide and silicon carbide are dispersed as composite materials. A mixture of powders of one or more hard materials selected from among various hard materials such as the following is used. In this way, a large number of aluminum borate whisker single fibers as a dispersed composite material and one or more types of hard substance powder as a dispersed composite auxiliary material are added to the mixture of diamond powder for producing a diamond sintered body and binder alloy powder. A whisker composite diamond sintered body is produced by exposing the mixture to a sintering temperature and a sintering pressure that satisfy the stability conditions of diamond. When a cutting tool manufactured using the whisker composite diamond sintered body is used for cutting work, the whisker composite diamond sintered body that forms the cutting tool is dispersed. The problem is solved by suppressing the occurrence of large and small cracks or large and small defects caused by the built-in strain in the sintered body of a large number of aluminum borate whisker single fibers.
分散複合材とする融点が1,420℃である硼酸アルシ
ミニウムウィスカー単wt維の集合物50重量%乃至7
0重重量上、各種硬質物粉末のうちより分散複合助材と
して選択した1種または2種以上の硬質物粉末50重量
%乃至30重量%と、の割合範囲内より選定した割合に
混合した混合物を、水・メチフレアルコール等の極性の
高い溶媒の中に投入し攪拌し分散混合して分散混合液を
生成し、次いで、其の分散混合液を加熱して溶媒を気化
させて分散混合物を生成し、次いで生成した分散混合物
を5重量多乃至30重量嘩と、ダイヤモンド粉末を80
重量%乃至55重量%と、硼酸アルミニウムウィスカー
の融点である1420℃より低い温度にて溶融するコバ
ルト系合金・ニノグル系合金・鉄系合金のうちより選択
した合金の粉末を15重量算乃至5重j1に%と、の割
合範囲内より選定した割合にて混合した混合物を焼結用
原料とした。次いで、斯様に配合した焼結用原料を1,
400℃以下の温度範囲内より選定した焼結用温度にて
加熱すると共に其の選定した焼結用温度に対応してダイ
ヤモンドの安定条件を満足する60,000に? /
crA以下の温度範囲内より選定した焼結用圧力にて加
圧して焼結作業を行い、其の焼結作業において焼結用原
料中の合金粉末が液相焼結して合金粉末焼結組織な生成
すると共に其の生成した合金粉末焼結組織が個々のダイ
ヤモンド粒子および個々の分散複合材である硼酸アルミ
ニウムウィスカー単繊維および個々の分散複合助材であ
る硬質物微粒子にも液相焼結して液相複合焼結組織体を
生成し、次いで加えた圧力は保持したままで加熱のみを
停止し、更に冷却して固相複合焼結組織体を生成し、次
いで保持していた圧力を常圧にもどして安定した同相複
合焼結組織体を溝底したウィスカー複合ダイヤモンド焼
結体を生成する。生成したウィスカー複合ダイヤモンド
焼結体の中に分散している多数個の硼酸アlレミニウム
ウイスカー単繊維が焼結体の中に内蔵している歪による
大小の亀裂あるいは大小の欠損の発生を抑制することに
役立つのである。以上に説明した本発明において使用す
るウィスカーは、融点が1,420℃である硼酸アルミ
ニウムウィスカーの単繊維の多数個より成る集合物であ
って、出願日平或1年10月5日、出願番号1−258
740の特許願「ウィスカー複合ダイヤモンド焼結体お
よびその製造法」において使用したウィスカーが高融点
の硬質物ウィスカーの単繊維の多数個が相互に凝集状態
を成している2次凝集物の集合物であるのに対し、本発
明において使用するウィスカーが硼酸アルミニウムウィ
スカーの単繊維の多数個の集合物である点に於いて異る
ものである。Aggregate of aluminum borate whisker single wt fibers having a melting point of 1,420° C. 50% by weight to 7% to be used as a dispersed composite material
A mixture of 50% to 30% by weight of one or more types of hard material powder selected as a dispersion composite auxiliary material from among various hard material powders in a ratio selected from within the ratio range of 0 weight. is poured into a highly polar solvent such as water or Metifle alcohol, stirred and dispersed to form a dispersion mixture, and then the dispersion mixture is heated to vaporize the solvent to form a dispersion mixture. and then add 5 to 30 parts by weight of the resulting dispersion mixture and 80 parts by weight of diamond powder.
15% to 55% by weight of powder of an alloy selected from among cobalt-based alloys, Ninoglu-based alloys, and iron-based alloys that melt at a temperature lower than 1420°C, which is the melting point of aluminum borate whiskers. A mixture obtained by mixing j1 and % in a proportion selected from within the proportion range was used as a raw material for sintering. Next, the raw materials for sintering mixed in this way were mixed into 1,
It is heated at a sintering temperature selected from within the temperature range of 400°C or less, and the temperature is increased to 60,000 to satisfy the diamond stability conditions corresponding to the selected sintering temperature. /
Sintering is performed by applying pressure at a sintering pressure selected within the temperature range below crA, and during the sintering process, the alloy powder in the sintering raw material undergoes liquid phase sintering to form a sintered alloy powder structure. At the same time, the resulting alloy powder sintered structure is liquid-phase sintered into individual diamond particles, individual aluminum borate whisker single fibers which are individual dispersed composite materials, and hard material fine particles which are individual dispersed composite auxiliary materials. to generate a liquid phase composite sintered structure, then only the heating is stopped while the applied pressure is maintained, and a solid phase composite sintered structure is generated by further cooling, and then the maintained pressure is constantly maintained. A whisker composite diamond sintered body with a stable in-phase composite sintered structure at the bottom of the groove is produced by returning to pressure. A large number of aluminum borate whisker single fibers dispersed in the generated whisker composite diamond sintered body suppresses the occurrence of large and small cracks or large and small defects caused by the built-in strain in the sintered body. It is useful to do. The whisker used in the present invention described above is an aggregate consisting of a large number of single fibers of aluminum borate whiskers having a melting point of 1,420° C. 1-258
The whiskers used in the patent application No. 740, "Whisker composite diamond sintered body and method for producing the same," are a collection of secondary aggregates in which a large number of single fibers of whiskers are a hard substance with a high melting point and are in an agglomerated state. However, the whiskers used in the present invention are different from each other in that the whiskers used in the present invention are an aggregate of a large number of single fibers of aluminum borate whiskers.
実施例 1゜
本実施例において分散複合材として使用するウィスカー
は融点が1,420℃である硼酸アルミニウムウィスカ
ー単繊維の集合物であって、其の硼酸アルミニウムウィ
スカーの集合物(四国化成工業社製)を50重量%と、
分散複合助材とする炭化チタン粉末(日本新金属社製)
を50重量優と、の割合にて混合した混合物を準備した
。次いで其の混合物を水の中に投入し入念に攪拌して分
散混合液を生成し、次いで其の分散混合液を加熱して水
を気化させて除いて分散混合物を生成した。Example 1゜The whiskers used as the dispersed composite material in this example are an aggregate of aluminum borate whisker single fibers with a melting point of 1,420°C. ) with 50% by weight,
Titanium carbide powder used as a dispersion composite auxiliary material (manufactured by Nippon Shinkinzoku Co., Ltd.)
A mixture was prepared in which approximately 50 parts by weight of the following were mixed. The mixture was then poured into water and carefully stirred to form a dispersion mixture, and then the dispersion mixture was heated to vaporize and remove the water to form a dispersion mixture.
次いでダイヤモンド粉末を78重量優と、分散混合物を
12重量多と、ステライト施6粉末(神戸製鋼社製)を
10重量φと、の割合にて混合した混合物を焼結用原料
とした。次いで其の焼結用原料を高温高圧発生装置を使
用して1,390℃の温度にて加熱すると共に55、
OOOK? / ctdの圧力にて加圧して焼結作業を
行った。得た焼結体はステライト46粉末の液相焼結組
織が個々のダイヤモンド粒子および分散複合材とした個
々の硼酸アルミニウムウィスカー単繊維および分散複合
助材とした個々の炭化チタン粒子に液相焼結して複合焼
結組織体を構成しているウィスカー複合ダイヤモンド焼
結体であった。Next, a mixture of 78% by weight of diamond powder, 12% by weight of the dispersion mixture, and 10% by weight of Stellite 6 powder (manufactured by Kobe Steel) was used as a raw material for sintering. Next, the raw material for sintering is heated at a temperature of 1,390°C using a high temperature and high pressure generator, and 55,
OOOK? The sintering work was performed under pressure of /ctd. In the obtained sintered body, the liquid phase sintered structure of Stellite 46 powder was liquid phase sintered into individual diamond particles, individual aluminum borate whisker single fibers as a dispersed composite material, and individual titanium carbide particles as a dispersed composite material. It was a whisker composite diamond sintered body that constituted a composite sintered body.
実施例 2゜
本実施例において分散複合材として使用するウィスカー
は融点が1,420℃である硼酸アルミニウムウィスカ
ーの単繊維の多数個の集合物であって、其の硼酸アルミ
ニウムウィスカー単繊維の多数個の集合物(四国化成工
業社製)を50重重量上、分散複合助材とする炭化タン
タル粉末(日本新金属社製)を30重量多と炭化チタン
粉末(日本新金属社製)を20重量多と、の割合にて混
合した混合物を準備した。次いで、其の混合物を水の中
に投入し入念に攪拌して分散混合液を生成し、次いで其
の分散混合液を加熱して水を気化させて除いて分散混合
物を生成した。次いで、ダイヤモンド粉末を76重量多
と、分散混合物を12重量俤と、ステライト46粉末(
神戸製鋼社製)を12重量予と、の割合にて混合した混
合物を焼結用原料とした。次いで其の焼結用原料を高温
高圧発生装置を使用して1.390℃の温度にて加熱す
ると同時に、55.000に9/−の圧力にて加圧して
焼結作業を行った。得た焼結体はステライト施6粉末の
液相焼結組織が個々のダイヤモンド粒子および分散複合
材とした個々の硼酸アルミニウムウィスカー単繊維およ
び分散複合助材とした個々の炭化タンタル粒子および個
々の炭化チタン粒子に液相焼結して複合焼結組織体を構
成しているウィスカー複合ダイヤモンド焼結体であった
。Example 2 The whisker used as the dispersed composite material in this example is an aggregation of multiple single fibers of aluminum borate whiskers having a melting point of 1,420°C; (manufactured by Shikoku Kasei Kogyo Co., Ltd.), 30 parts by weight of tantalum carbide powder (manufactured by Japan Shinkinzoku Co., Ltd.) as a dispersion composite additive, and 20 parts by weight of titanium carbide powder (manufactured by Japan Shinkinzoku Co., Ltd.) A mixture was prepared in which the following ratios were mixed: Next, the mixture was poured into water and carefully stirred to form a dispersion mixture, and then the dispersion mixture was heated to vaporize and remove water to form a dispersion mixture. Next, 76 parts by weight of diamond powder, 12 parts by weight of the dispersion mixture, and Stellite 46 powder (
A mixture of 12 parts by weight (manufactured by Kobe Steel, Ltd.) was used as a raw material for sintering. Next, the raw material for sintering was heated at a temperature of 1.390° C. using a high-temperature and high-pressure generator, and simultaneously pressurized at a pressure of 9/- to 55,000 to perform a sintering operation. The obtained sintered body has a liquid phase sintered structure of Stellite-coated 6 powder, individual diamond particles, individual aluminum borate whisker filaments as a dispersed composite material, individual tantalum carbide particles as a dispersed composite auxiliary material, and individual carbonized particles. It was a whisker composite diamond sintered body that was liquid-phase sintered to titanium particles to form a composite sintered structure.
以上に説明した本発明の方法により製造した本発明のウ
ィスカー複合ダイヤモンド焼結体は、ダイヤモンド粒子
の多数個と分散複合材とする硼酸アルミニウムウィスカ
ー単繊維の多数個と分散複合助材とする硬質物微粒子の
多数個との混合体における個々の粒子および個々の単繊
維に結合材とする合金の粉末の液相焼結組織が液相焼結
して複合焼結組織体を構成して成るものであって、其の
複合焼結組織体を構成しているダイヤモンド粒子の多数
個と分散複合材である硼酸アルミニウムウィスカー単繊
維の多数個と分散複合助材である硬質物微粒子の多数個
と結合材である合金の焼結組織とが夫々の固有の体積膨
脂率を有していることにより、斯様な複合焼結組織は歪
を内蔵しているので斯様な複合焼結体をもって製作した
切削工具は大小の亀裂あるいは大小の欠損を発生する直
前の状態にある。従って斯様な状態にある切削工具を使
用して切削作業を行うときには、其の切削作業の衝撃に
よって其の切削工具に大小の亀裂あるいは大小の欠損を
発生する現象が生ずる可能性がある。然るに、本発明の
ウィスカー複合ダイヤモンド焼結体をもって製作した切
削工具においては、其の内部に分散している硼酸アルミ
ニウムウィスカーの単繊維の多数個が亀裂あるいは欠損
の発生を抑制している。従って本発明のウィスカー複合
ダイヤモンド焼結体は、工具の有効利用率を著しく高め
る効果を奏するものである。The whisker composite diamond sintered body of the present invention produced by the method of the present invention described above consists of a large number of diamond particles, a large number of aluminum borate whisker single fibers as a dispersed composite material, and a hard material as a dispersed composite auxiliary material. A composite sintered structure is formed by liquid phase sintering of a liquid phase sintered structure of an alloy powder used as a binder to individual particles and individual single fibers in a mixture with a large number of fine particles. A large number of diamond particles constituting the composite sintered structure, a large number of aluminum borate whisker single fibers that are a dispersed composite material, a large number of hard substance fine particles that are a dispersed composite auxiliary material, and a binder. Since each sintered structure of the alloy has its own specific volumetric expansion coefficient, such a composite sintered structure has built-in distortion, so The cutting tool is in a state where it is about to develop large and small cracks or large and small defects. Therefore, when cutting work is performed using a cutting tool in such a state, there is a possibility that the impact of the cutting work may cause large and small cracks or large and small defects in the cutting tool. However, in the cutting tool manufactured using the whisker composite diamond sintered body of the present invention, the large number of single fibers of aluminum borate whiskers dispersed inside the tool suppresses the occurrence of cracks or chips. Therefore, the whisker composite diamond sintered body of the present invention has the effect of significantly increasing the effective utilization rate of tools.
Claims (2)
アルミニウムウィスカー単繊維の集合物を30重量%乃
至70重量%と、各種硬質物のうちより選択した1種ま
たは2種以上の硬質物の粉末を70重量%乃至30重量
%と、の割合範囲内より選定した割合にて混合した混合
物を水・メチルアルコール等の極性の高い溶媒の中に投
入し攪拌し分散混合して分散混合液を生成し、次いで其
の分散混合液を加熱して溶媒を気化させて除いた分散混
合物を生成し、次いで生成した分散混合物を5重量%乃
至30重量%と、ダイヤモンド粉末を80重量%乃至5
5重量%と、融点が1,420℃以下であるコバルト系
合金・ニッケル系合金・鉄系合金のうちより選択した合
金粉末を15重量%乃至5重量%と、の割合範囲内より
選定した割合にて混合した混合物を1,420℃以下の
温度範囲内より選定した焼結用温度と其の選定した焼結
用温度に対応し、ダイヤモンドの安定条件を満足する圧
力範囲内より選定した焼結用圧力とのもとに曝らして生
成した焼結体において合金粉末の液相焼結組織が個々の
ダイヤモンド粒子および分散複合材である個々の硼酸ア
ルミニウムウィスカー単繊維および分散複合助材である
個々の硬質物粒子に液相焼結して複合焼結組織体を構成
していることを特徴とするウィスカー複合ダイヤモンド
焼結体。(1) 30% to 70% by weight of an aggregate of aluminum borate whisker single fibers with a melting point of 1,420°C to be used as a dispersed composite material, and one or more hard materials selected from among various hard materials. A mixture of 70% by weight to 30% by weight of powder of a substance selected from within the ratio range is poured into a highly polar solvent such as water or methyl alcohol, stirred, and dispersed. A liquid is generated, and then the dispersion mixture is heated to vaporize and remove the solvent to generate a dispersion mixture, and then the generated dispersion mixture is 5% to 30% by weight, and the diamond powder is 80% to 80% by weight. 5
5% by weight, and 15% to 5% by weight of an alloy powder selected from among cobalt alloys, nickel alloys, and iron alloys with a melting point of 1,420°C or less. The mixture mixed at The liquid phase sintered structure of the alloy powder in the sintered body produced by exposure to the pressure of A whisker composite diamond sintered body is formed by liquid-phase sintering with hard material particles to form a composite sintered body.
アルミニウムウィスカー単繊維の集合物を30重量%乃
至70重量%と、各種硬質物のうちより選択した1種ま
たは2種以上の硬質物の粉末を70重量%乃至30重量
%と、の割合範囲内より選定した割合にて混合した混合
物を水・メチルアルコール等の極性の高い溶媒の中に投
入し攪拌し分散混合した分散混合液を生成し、次いで其
の分散混合液を加熱して溶媒を気化させて除き分散混合
物を生成し、次いで生成した分散混合物を5重量%乃至
30重量%と、ダイヤモンド粉末を80重量%乃至55
重量%と、融点が1,420℃より低いコバルト系合金
・ニッケル系合金・鉄系合金のうちより選択した合金の
粉末を15重量%乃至5重量%との割合範囲内より選定
した割合にて混合した混合物を焼結用原料とし、其の焼
結用原料を1,420℃以下の温度範囲内より選定した
焼結用温度と其の選定した焼結用温度に対応してダイヤ
モンドの安定条件を満足する圧力範囲内より選定した焼
結用圧力に曝らして生成した焼結体において合金粉末の
液相焼結組織が個々のダイヤモンド粒子および分散複合
材である個々の硼酸アルミニウムウィスカー単繊維およ
び分散複合助材である個々の硬質物粒子に液相焼結して
複合焼結組織体を構成することを特徴とするウィスカー
複合ダイヤモンド焼結体の製造法。(2) 30% to 70% by weight of an aggregate of aluminum borate whisker single fibers with a melting point of 1,400°C to be used as a dispersed composite material, and one or more types of hard materials selected from among various hard materials. A dispersion mixture obtained by adding a mixture of powdered substances at a ratio selected from within the ratio range of 70% to 30% by weight into a highly polar solvent such as water or methyl alcohol, stirring, and dispersing the mixture. Then, the dispersion mixture is heated to vaporize and remove the solvent to produce a dispersion mixture, and then the resulting dispersion mixture is 5% to 30% by weight and the diamond powder is 80% to 55% by weight.
% by weight, and powder of an alloy selected from among cobalt alloys, nickel alloys, and iron alloys with a melting point lower than 1,420°C in a ratio selected from within the ratio range of 15% by weight to 5% by weight. The mixed mixture is used as the raw material for sintering, and the sintering temperature of the raw material for sintering is selected from within a temperature range of 1,420°C or less, and the stability conditions of diamond are determined according to the selected sintering temperature. In the sintered body produced by exposing the alloy powder to a sintering pressure selected within a pressure range satisfying A method for producing a whisker composite diamond sintered body, which comprises liquid-phase sintering individual hard particles as a dispersed composite auxiliary material to form a composite sintered body.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2039640A JPH03243735A (en) | 1990-02-22 | 1990-02-22 | Whisker combined diamond sintered body and its manufacture |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2039640A JPH03243735A (en) | 1990-02-22 | 1990-02-22 | Whisker combined diamond sintered body and its manufacture |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH03243735A true JPH03243735A (en) | 1991-10-30 |
Family
ID=12558692
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2039640A Pending JPH03243735A (en) | 1990-02-22 | 1990-02-22 | Whisker combined diamond sintered body and its manufacture |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH03243735A (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7695542B2 (en) * | 2006-11-30 | 2010-04-13 | Longyear Tm, Inc. | Fiber-containing diamond-impregnated cutting tools |
US8590646B2 (en) | 2009-09-22 | 2013-11-26 | Longyear Tm, Inc. | Impregnated cutting elements with large abrasive cutting media and methods of making and using the same |
AU2011226850B2 (en) * | 2006-11-30 | 2014-02-27 | Longyear Tm, Inc. | Fibre-containing diamond-impregnated cutting tools |
US8828899B2 (en) | 2010-02-12 | 2014-09-09 | Element Six Limited | Superhard element, method of using same and method of making same |
US9267332B2 (en) | 2006-11-30 | 2016-02-23 | Longyear Tm, Inc. | Impregnated drilling tools including elongated structures |
US9540883B2 (en) | 2006-11-30 | 2017-01-10 | Longyear Tm, Inc. | Fiber-containing diamond-impregnated cutting tools and methods of forming and using same |
US10702975B2 (en) | 2015-01-12 | 2020-07-07 | Longyear Tm, Inc. | Drilling tools having matrices with carbide-forming alloys, and methods of making and using same |
-
1990
- 1990-02-22 JP JP2039640A patent/JPH03243735A/en active Pending
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7695542B2 (en) * | 2006-11-30 | 2010-04-13 | Longyear Tm, Inc. | Fiber-containing diamond-impregnated cutting tools |
AU2007342231B2 (en) * | 2006-11-30 | 2011-06-23 | Longyear Tm, Inc. | Fiber-containing diamond-impregnated cutting tools |
AU2011226850B2 (en) * | 2006-11-30 | 2014-02-27 | Longyear Tm, Inc. | Fibre-containing diamond-impregnated cutting tools |
US8783384B2 (en) | 2006-11-30 | 2014-07-22 | Longyear Tm, Inc. | Fiber-containing diamond-impregnated cutting tools and methods of forming and using same |
EP2092155A4 (en) * | 2006-11-30 | 2015-09-23 | Longyear Tm Inc | Fiber-containing diamond-impregnated cutting tools |
US9267332B2 (en) | 2006-11-30 | 2016-02-23 | Longyear Tm, Inc. | Impregnated drilling tools including elongated structures |
US9404311B2 (en) | 2006-11-30 | 2016-08-02 | Longyear Tm, Inc. | Fiber-containing diamond-impregnated cutting tools and methods of forming and using same |
US9540883B2 (en) | 2006-11-30 | 2017-01-10 | Longyear Tm, Inc. | Fiber-containing diamond-impregnated cutting tools and methods of forming and using same |
US8590646B2 (en) | 2009-09-22 | 2013-11-26 | Longyear Tm, Inc. | Impregnated cutting elements with large abrasive cutting media and methods of making and using the same |
US8828899B2 (en) | 2010-02-12 | 2014-09-09 | Element Six Limited | Superhard element, method of using same and method of making same |
US10702975B2 (en) | 2015-01-12 | 2020-07-07 | Longyear Tm, Inc. | Drilling tools having matrices with carbide-forming alloys, and methods of making and using same |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5030519A (en) | Tungsten carbide-containing hard alloy that may be processed by melting | |
JPH01116002A (en) | Production of composite metal powder from base iron powder and alloying component and composite metal powder | |
JPH06500601A (en) | Method for producing metal carbide objects and composites containing metal carbides | |
US5045278A (en) | Dual processing of aluminum base metal matrix composites | |
JPH03243735A (en) | Whisker combined diamond sintered body and its manufacture | |
JPS62120412A (en) | Production of dispersion hardened metal alloy | |
CN106591665A (en) | Preparation method of VC-VN medium alloy hot work die steel-based steel bond hard alloy | |
CN106498207B (en) | In-situ preparation contains Ni3The preparation method of the cermet of Al Binder Phase | |
CN107838416B (en) | A kind of iron-binding agent diamond tool and preparation method thereof | |
CN106591674A (en) | Preparation method for high-strength high-toughness heat-resistant TiN steel-bonded hard alloy | |
US2124020A (en) | Metal alloy | |
JPH03122051A (en) | Sintered material of whisker-compounded diamond and production thereof | |
JPH0563434B2 (en) | ||
JPH04144966A (en) | Whisker complex cubic boron nitride sintered compact and production thereof | |
JPS61136605A (en) | Joining method of sintered hard material and metallic material | |
JPH03264627A (en) | Whisker-hard carbide composite sintered body and production thereof | |
JPH03164475A (en) | Sintered body of whisker combined cubic born nitride and production thereof | |
JPS6141873B2 (en) | ||
JP2002361479A (en) | Diffusion-brazing filler powder for part made of alloy based on nickel, cobalt or iron | |
CN106591664A (en) | Preparation method of VC-VN matrix steel-based steel bond hard alloy | |
JPH0353039A (en) | Diamond-high speed steel composite sintered compact and its production | |
JPH01219102A (en) | Fe-ni-b alloy powder as additive for sintering and sintering method thereof | |
JPS60138044A (en) | Composite sintered structural body of cubic boron nitride and cermet and production thereof | |
JPS63203743A (en) | Titanium nitride cermet | |
JPS60208446A (en) | Diamond sintered body and its production |