JPS5918855B2 - 3-Method for forming selective impurity diffusion regions in V group compound semiconductors - Google Patents

3-Method for forming selective impurity diffusion regions in V group compound semiconductors

Info

Publication number
JPS5918855B2
JPS5918855B2 JP52087151A JP8715177A JPS5918855B2 JP S5918855 B2 JPS5918855 B2 JP S5918855B2 JP 52087151 A JP52087151 A JP 52087151A JP 8715177 A JP8715177 A JP 8715177A JP S5918855 B2 JPS5918855 B2 JP S5918855B2
Authority
JP
Japan
Prior art keywords
impurity diffusion
mask
group compound
compound semiconductor
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP52087151A
Other languages
Japanese (ja)
Other versions
JPS5422157A (en
Inventor
秀穂 斉藤
眼蔵 岩根
紘一 脇田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP52087151A priority Critical patent/JPS5918855B2/en
Publication of JPS5422157A publication Critical patent/JPS5422157A/en
Publication of JPS5918855B2 publication Critical patent/JPS5918855B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Led Devices (AREA)

Description

【発明の詳細な説明】 本発明は、■−V族化合物半導体上に、不純物拡散用マ
スクを付し、その不純物拡散用マスクをマスクとした■
−V族化合物半導体に対する選択的不純物拡散処理を行
なつて、■−V族化合物半導体内に、その主面側から、
不純物拡散領域を形成する■−V族化合物半導体内への
選択的不純物拡散領域形成法の改良に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention provides the following method: ■--A mask for impurity diffusion is attached on a group V compound semiconductor, and the mask for diffusion of impurities is used as a mask.
- Performing selective impurity diffusion treatment on the V group compound semiconductor, ■ - Into the V group compound semiconductor from its main surface side,
The present invention relates to an improvement in a method for forming a selective impurity diffusion region in a ①-V group compound semiconductor for forming an impurity diffusion region.

このような■−V族化合物半導体内への選択的不純物拡
散領域形成法は、例えば、電流狭窄型ダブルヘテロ接合
半導体発光装置の製法に、第、図を伴なつて以下述べる
ように、適用されている。
Such a method of selectively forming an impurity diffusion region in a -V group compound semiconductor is applied, for example, to a method of manufacturing a current confinement type double heterojunction semiconductor light emitting device, as described below with reference to FIGS. ing.

すなわち、第1図Aに示すように、GaAsでなるN型
の基板1上に、AlXGa、−xAs(但し0<X<1
)でなるN型の閉込用層2、Ga−AsまたはAlyG
al−yAs(但しY≦x≦一0、25)でなる活性層
3、AIXGa1×xAsでなるP型の閉込用層4、及
びGaAsでなるN型の電極付用層5をそれらの順を付
してなる積層体6が予め得られているものとして、その
上面上に、第1図Bに示すように、不純物拡散用マスク
材でなる層Tを付す。次に、この層Tに、フォトリング
ラフィ法によつて、第1図Cに示すように、ストライフ
状の窓8を形成して、層Tから、不純物拡散用マスク9
を形成する。
That is, as shown in FIG. 1A, on an N-type substrate 1 made of GaAs, AlXGa, -xAs (where 0<X<1
) N-type confinement layer 2 consisting of Ga-As or AlyG
An active layer 3 made of al-yAs (where Y≦x≦10,25), a P-type confinement layer 4 made of AIXGa1×xAs, and an N-type electrode attachment layer 5 made of GaAs are formed in that order. As shown in FIG. 1B, a layer T made of a mask material for impurity diffusion is applied on the upper surface of the laminate 6 which has been obtained in advance. Next, as shown in FIG. 1C, a stripe-shaped window 8 is formed in this layer T by photolithography, and an impurity diffusion mask 9 is formed from the layer T.
form.

次に、この不純物拡散用マスク9をマスクとしたP型不
純物の拡散処理を行なつて、第1図Dに示すょぅに、積
層体6内に、その上面側から、閉込用層4に達する深さ
のストライプ状(その延長方向は紙面と垂直方向)のP
型不純物拡散領域11を形成する。
Next, using this impurity diffusion mask 9 as a mask, a P-type impurity diffusion process is performed to form a confinement layer 4 into the laminate 6 from the upper surface side, as shown in FIG. 1D. A striped P with a depth of
A type impurity diffusion region 11 is formed.

次に、第1図Eに示すように、不純物拡散用マスク9を
除去する。
Next, as shown in FIG. 1E, the impurity diffusion mask 9 is removed.

しかる後、第1図Fに示すように、基板1の閉込用層2
側とは反対側、及び電極付用層5の閉込用層4側とは反
対側に、それぞれ電極11及び12を付す。
Thereafter, as shown in FIG. 1F, the confinement layer 2 of the substrate 1 is
Electrodes 11 and 12 are respectively attached to the side opposite to the confinement layer 4 side and the side of the electrode attachment layer 5 opposite to the confinement layer 4 side.

以上により1目的とする電流狭窄型ダブルヘテ口接合半
導体発光装置を製造する。
As described above, a current confinement type double heterojunction semiconductor light emitting device having one purpose is manufactured.

ところで、上述した従来の電流狭窄型ダブルヘテロ接合
半導体発光装置の製法においては、そのP型不純物拡散
領域10を得るために適用される不純物拡散用マスク9
が、二酸化珪素、一酸化珪素などの酸化物、または四窒
化三珪素などの窒化物で構成されているのを普通として
いた。
By the way, in the above-described conventional method for manufacturing a current confinement type double heterojunction semiconductor light emitting device, the impurity diffusion mask 9 used to obtain the P-type impurity diffusion region 10 is
However, it was usually composed of oxides such as silicon dioxide and silicon monoxide, or nitrides such as trisilicon tetranitride.

しかしながら、本発明者などの種々の実験の結果、不純
物拡散用マスク9が、上述した酸化物でなる場合、その
酸化物を構成している酸素が、不純物拡散処理時に、積
層体6内に侵入し、これによつて、この酸素の導入され
た層に欠陥を生ぜしめることが解つた。
However, as a result of various experiments conducted by the present inventors, it has been found that when the impurity diffusion mask 9 is made of the above-mentioned oxide, oxygen constituting the oxide invades into the stack 6 during the impurity diffusion process. However, it has been found that this causes defects in the layer into which oxygen is introduced.

また、積層体6上に、不純物拡散用マスク9が付される
ことのために、積層体6に結晶歪が与えられることは否
めないとしても、不純物拡散用マスク9が酸化物でなる
場合、積層体6内に、結晶歪が無視し得ないものとして
生ずることも解つた。
Further, although it is undeniable that crystal distortion is imparted to the laminate 6 because the impurity diffusion mask 9 is attached on the laminate 6, when the impurity diffusion mask 9 is made of oxide, It has also been found that crystal strain occurs within the laminate 6, which cannot be ignored.

さらに、不純物拡散用マスク9が、上述した窒化物でな
る場合も、上述した結晶歪が、積層体6内に無視し得な
いものとして生ずることも解つた。一方、本発明者など
は、不純物拡散処理時の不純物に、酸素が含まれていれ
ば、その酸素が、不純物拡散領域10に含まれ、さらに
は、このように含まれた酸素が、積層体6の不純物拡散
領域以外の領域にも含まれることとなb1何れにしても
、積層体6に欠陥が生ずることとなb1また、積層体6
に、酸素が含まれていれば、積層体6に欠陥が生じてい
るものであるから、不純物拡散処理時の不純物に、酸素
が含まれていても、また、積層体6に酸素が含まれてい
ても、それが除去されれば、上述した欠陥が生じない、
ということを想起するに卸つた。また、本発明者などは
、このような想起に基き、種々の実験の結果、不純物拡
散用マスク9がアルミニウム金属でなる場合、それが易
酸化性を有するので、その不純物拡散用マスク9によつ
て、不純物に含まれている酸素及び積層体6に含まれて
いる酸素が効果的に除去される、ということを確認する
に到つた。
Furthermore, it has been found that even when the impurity diffusion mask 9 is made of the above-mentioned nitride, the above-mentioned crystal strain occurs in the stacked body 6 in a non-negligible manner. On the other hand, the present inventors believe that if oxygen is included in the impurities during the impurity diffusion process, the oxygen will be included in the impurity diffusion region 10, and furthermore, the oxygen thus included will be absorbed into the stack. In any case, defects will occur in the stacked body 6.
If oxygen is included in the laminate 6, it means that the laminate 6 has a defect. However, if it is removed, the above-mentioned defects will not occur.
It took me a while to remember that. In addition, based on this idea, the present inventors have conducted various experiments and found that when the impurity diffusion mask 9 is made of aluminum metal, it is easily oxidized. As a result, it has been confirmed that oxygen contained in impurities and oxygen contained in the laminate 6 can be effectively removed.

さらに、本発明者などの種々の実験の結果、不純物拡散
用マスク9としてアルミニウム金属でなる不純物拡散用
マスクを用いる場合、それが、酸化物でないので、不純
物拡散処理時に、酸素が積層体6内に侵入することがな
く、このため、不純物拡散用マスク9が酸化物である場
合に生ずる前述した欠陥が生ぜず、また、積層体6に結
晶歪が与えられることが否めないとしても、不純物拡散
用マスク9が酸化物または窒化物でなる場合に比し、前
述した結果歪が格段的に軽減されて、それが無視される
ものとなる、ことを勘認するに到つた。
Furthermore, as a result of various experiments conducted by the present inventors, when an impurity diffusion mask made of aluminum metal is used as the impurity diffusion mask 9, since it is not an oxide, oxygen is not absorbed into the stacked body 6 during the impurity diffusion process. Therefore, the above-mentioned defects that occur when the impurity diffusion mask 9 is made of oxide do not occur, and even though it is undeniable that crystal strain is imparted to the laminate 6, the impurity diffusion does not occur. We have come to the conclusion that as a result of the above, the distortion is significantly reduced and can be ignored compared to when the mask 9 is made of oxide or nitride.

なおさらに、本発明者などの種々の実験の結果、アルミ
ニウム金属でなる不純物拡散用マスクを適用して半導体
に対する選択的不純物拡散処理を行なつて、その半導体
内に不純物拡散領域を選択的に形成する場合、その半導
体が−V族化合物半導体である限D1上述した不純物拡
散用マスクがアルミニウム金属でなる場合の利益が得ら
れる、ことを確認するに到つた。
Furthermore, as a result of various experiments conducted by the present inventors, it has been found that an impurity diffusion mask made of aluminum metal is applied to perform selective impurity diffusion processing on a semiconductor, and impurity diffusion regions are selectively formed within the semiconductor. In this case, it has been confirmed that, as long as the semiconductor is a -V group compound semiconductor, the advantages of the above-mentioned impurity diffusion mask made of aluminum metal can be obtained.

よつて、本発明者などは、特許請求の範囲に記載してい
る発明を、本発明による発明として提案するに到つた。
Therefore, the present inventors have proposed the invention described in the claims as an invention according to the present invention.

次に、本発明を、第1図で上述した電流狭窄型ダブルヘ
テロ接合半導体発光装置の製法に適用した場合の、その
実施例を述べれば、次の通bである。
Next, an example in which the present invention is applied to the method for manufacturing the current confinement type double heterojunction semiconductor light emitting device described above with reference to FIG. 1 will be described as follows.

すなわち、第1図Aに示す予め得られた積層体6の上面
上に、第1図Bに示すように、不純物拡散用マスク材で
なる層7を付すにつき、その不純物拡散用マスク材とし
て、アルミニウム金属を用い、従つて、第1図Cに示す
ように不純物拡散用マスク9を、アルミニウム金属でな
る不純物拡散用マスクで得る。
That is, as shown in FIG. 1B, a layer 7 made of a masking material for impurity diffusion is attached on the upper surface of the laminate 6 obtained in advance as shown in FIG. 1A, and as a masking material for impurity diffusion, Therefore, as shown in FIG. 1C, an impurity diffusion mask 9 made of aluminum metal is obtained.

しかして、このアルミニウム金属でなる不純物拡散用マ
スク9を用いて、P型不純物の拡散処理を行なつて、第
1図Dに示すように、P型不純物拡散領域10を形成す
る。
Then, using this impurity diffusion mask 9 made of aluminum metal, a P-type impurity diffusion process is performed to form a P-type impurity diffusion region 10 as shown in FIG. 1D.

次に、第1図Eに示すように、不純物拡散用マスク9を
除去する。
Next, as shown in FIG. 1E, the impurity diffusion mask 9 is removed.

しかる後、第1図Fに示すように、電極11及び12を
付して、目的とする電流狭窄型ダブルヘテロ接合半導体
発光装置を得る。
Thereafter, as shown in FIG. 1F, electrodes 11 and 12 are attached to obtain the desired current confinement type double heterojunction semiconductor light emitting device.

このような本発明による電流狭窄型ダブルヘテ口接合半
導体発光装置の製法によれば、積層体6内に、不純物拡
散領域10を、前述したところから明らかなように、積
層体6内に、酸素に基く欠陥や、不純物拡散用マスクを
用いることに基く結晶歪を生ぜしめることなしに、容易
に形成することができる、という特徴を有する。
According to the method for manufacturing the current confinement type double heterojunction semiconductor light emitting device according to the present invention, the impurity diffusion region 10 is formed in the stacked body 6 by oxygen, as is clear from the above. It has the feature that it can be easily formed without causing any underlying defects or crystal distortion due to the use of an impurity diffusion mask.

なお、上述においては、本発明の適用された第1図に示
す電流狭窄型ダブルヘテロ接合半導体発光装置の製法が
、不純物拡散用マスク9を除去する工程(第1図E)を
含んでいる場合につき述べた。
In the above description, if the manufacturing method of the current confinement type double heterojunction semiconductor light emitting device shown in FIG. 1 to which the present invention is applied includes the step of removing the impurity diffusion mask 9 (FIG. 1E) I talked about this.

しかしながら、詳細説明は省略するが、第1図で上述し
た製法において、不純物拡散用マスク9を除去する工程
(第1図E)を省略して、第2図に示すように、積層体
6上に、不純物拡散用マスク9が残され、しかして、電
極12が、不純物拡散用マスク9の窓8を通じて、不純
物拡散領域10にオーミツクに連結している構成を得る
こともできる。
However, although a detailed explanation will be omitted, in the manufacturing method described above in FIG. In addition, it is also possible to obtain a structure in which the impurity diffusion mask 9 is left and the electrode 12 is ohmicly connected to the impurity diffusion region 10 through the window 8 of the impurity diffusion mask 9.

また、詳細説明は省略するが、積層体6として、そのN
型の電極付用層5がP型の電極付用層に置換されてなる
積層体を用い、また、不純物拡散処理による不純物拡散
領域10を、P型の電極付用層内で終絡する不純物拡散
領域として得、そして、不純物拡散用マスク9を除去す
る工程を省略して、第3図に示すように、電極付用層5
がP型であり1且つ不純物拡散領域10が電極付用層5
内で終絡している構成を有する積層体6上に、第2図の
場合と同様に、不純物拡散用マスク9が残され、しかし
て、電極12が、不純物拡散領域10にオーミツクに連
結している構成を得ることもできる。
Further, although detailed explanation is omitted, as the laminate 6, the N
A laminate in which the P-type electrode attachment layer 5 is replaced with a P-type electrode attachment layer is used, and an impurity that terminates the impurity diffusion region 10 in the P-type electrode attachment layer by impurity diffusion treatment is used. As shown in FIG.
is P type, and the impurity diffusion region 10 is the electrode attachment layer 5.
As in the case of FIG. 2, the impurity diffusion mask 9 is left on the stacked body 6 having a structure where the circuit is terminated within the impurity diffusion region 10, so that the electrode 12 is ohmicly connected to the impurity diffusion region 10. It is also possible to obtain a configuration with

また、上述においては、本発明を、電沖狭窄型ダブルヘ
テロ接合半導体発光装置を製造する場合に適用した場合
につき述べたが、−V族化合物半導体である限D1その
内に、不純物拡散領域を形成する場合に、本発明を適用
し得ることは明らかであろう。
Further, in the above description, the present invention has been applied to the case of manufacturing an electric field confinement type double heterojunction semiconductor light emitting device. It will be clear that the invention can be applied when forming

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明による−V族化合物半導体内への選択
的不純物拡散領域形成法の適用される電流狭窄型ダブル
ヘテロ接合半導体発光装置の製法の一例の順次の工程の
路線的断面図である。 第2図及び第3図は、それぞれ本発明を適用して得られ
た電流狭窄型ダブルヘテロ接合半導体発光装置の実施例
を示す路線的断面図である。1・・・・・・基板、2,
4・・・・・・閉込用層、3・・・・・・活性層、5・
・・・・・電極付用層、6・・・・・・積層体、7・・
・・・・不純物拡散用マスク材の層、8・・・・・・窓
、9・・・・・・不純物拡散用マスク、10・・・・・
・不純物拡散領域、11,12・・・・・・電極。
FIG. 1 is a cross-sectional view showing the sequential steps of an example of a method for manufacturing a current confinement type double heterojunction semiconductor light emitting device to which the method of forming a selective impurity diffusion region in a -V group compound semiconductor according to the present invention is applied. be. FIGS. 2 and 3 are cross-sectional views showing examples of current confinement type double heterojunction semiconductor light emitting devices obtained by applying the present invention, respectively. 1...Substrate, 2,
4...Confinement layer, 3...Active layer, 5.
... layer for electrode attachment, 6 ... laminate, 7 ...
... Layer of mask material for impurity diffusion, 8 ... Window, 9 ... Mask for impurity diffusion, 10 ...
- Impurity diffusion region, 11, 12... electrode.

Claims (1)

【特許請求の範囲】[Claims] 1 III−V族化合物半導体上に不純物拡散用マスクを
付し、該不純物拡散用マスクをマスクとした上記III−
V族化合物半導体に対する選択的不純物拡散処理を行な
つて、当該III−V族化合物半導体内に、その主面側か
ら、不純物拡散領域を選択的に形成するIII−V族化合
物半導体内への選択的不純物拡散領域形成法において、
上記不純物拡散用マスクとして、アルミニウム金属でな
る不純物拡散用マスクを用いることを特徴とするIII−
V族化合物半導体内への選択的不純物拡散領域形成法。
1. An impurity diffusion mask is attached on the III-V group compound semiconductor, and the above III-
Selection into a III-V compound semiconductor in which an impurity diffusion region is selectively formed in the III-V compound semiconductor from its main surface side by performing selective impurity diffusion treatment on the V group compound semiconductor. In the impurity diffusion region formation method,
III- characterized in that an impurity diffusion mask made of aluminum metal is used as the impurity diffusion mask.
A method for forming a selective impurity diffusion region in a group V compound semiconductor.
JP52087151A 1977-07-20 1977-07-20 3-Method for forming selective impurity diffusion regions in V group compound semiconductors Expired JPS5918855B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP52087151A JPS5918855B2 (en) 1977-07-20 1977-07-20 3-Method for forming selective impurity diffusion regions in V group compound semiconductors

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP52087151A JPS5918855B2 (en) 1977-07-20 1977-07-20 3-Method for forming selective impurity diffusion regions in V group compound semiconductors

Publications (2)

Publication Number Publication Date
JPS5422157A JPS5422157A (en) 1979-02-19
JPS5918855B2 true JPS5918855B2 (en) 1984-05-01

Family

ID=13906969

Family Applications (1)

Application Number Title Priority Date Filing Date
JP52087151A Expired JPS5918855B2 (en) 1977-07-20 1977-07-20 3-Method for forming selective impurity diffusion regions in V group compound semiconductors

Country Status (1)

Country Link
JP (1) JPS5918855B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4868633A (en) * 1986-10-22 1989-09-19 Texas Instruments Incorporated Selective epitaxy devices and method

Also Published As

Publication number Publication date
JPS5422157A (en) 1979-02-19

Similar Documents

Publication Publication Date Title
JP3157690B2 (en) Method for manufacturing pn junction element
JPH03166734A (en) Hetero-junction bipolar transistor and manufacture thereof
JPS5918855B2 (en) 3-Method for forming selective impurity diffusion regions in V group compound semiconductors
US6933181B2 (en) Method for fabricating semiconductor device
JPS6262457B2 (en)
JP4546051B2 (en) Manufacturing method of semiconductor device
JPH0969611A (en) Semiconductor device and its manufacturing method
JPH0555141A (en) Creation of semiconductor quantum microline
JP3246196B2 (en) Method of forming quantum wire device
JPH077846B2 (en) Method of manufacturing light emitting device
JP2592277B2 (en) Manufacturing method of bipolar semiconductor device
KR0151607B1 (en) A field oxide film forming method of a semiconductor device
JPS60128635A (en) Forming process of element isolation region
JPH09213993A (en) Led array manufacturing method
JPH04739A (en) Manufacture of semiconductor device
JPH01225177A (en) Field effect transistor
JPH0513780A (en) Manufacture of semiconductor device
JPH04230034A (en) Element separation method of semiconductor device
JPH0621080A (en) Manufacture of semiconductor device
JPS6118348B2 (en)
JPS6194338A (en) Semiconductor device and manufacture thereof
JPH067573B2 (en) Semiconductor device and manufacturing method thereof
JPS63192224A (en) Manufacture of semiconductor device
JPH0695499B2 (en) Method for manufacturing semiconductor device
JPS6340341A (en) Manufacture of semiconductor device