JPS59169999A - Gaseous phase growth of epitaxial growth - Google Patents

Gaseous phase growth of epitaxial growth

Info

Publication number
JPS59169999A
JPS59169999A JP4553083A JP4553083A JPS59169999A JP S59169999 A JPS59169999 A JP S59169999A JP 4553083 A JP4553083 A JP 4553083A JP 4553083 A JP4553083 A JP 4553083A JP S59169999 A JPS59169999 A JP S59169999A
Authority
JP
Japan
Prior art keywords
susceptor
single crystal
growth
crystal
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4553083A
Other languages
Japanese (ja)
Inventor
Akio Yoshikawa
昭男 吉川
Masaru Kazumura
数村 勝
Naoko Okabe
岡部 尚子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP4553083A priority Critical patent/JPS59169999A/en
Publication of JPS59169999A publication Critical patent/JPS59169999A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • C30B25/12Substrate holders or susceptors

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

PURPOSE:In subjecting crystal of semiconductor on a substrate of single crystal by vapor phase growth, making thickness of a semconductor layer of vapor phase epitaxial growth uniform in the whole surface, and to prevent autodoping from a susceptor, by putting a crystal plate between the susceptor and the substrate of single crystal. CONSTITUTION:The susceptor 2 is put in the upright reaction pipe 1, and the crystal plate 4 of GaAs is put between it and the substrate 3 of GaAs single crystal on it. In this state a semiconductor material in a gaseous phase is fed to them in the A direction and subjected to gaseous phase epitaxial growth at 700 deg.C for 1hr. The formed semiconductor has no thick ends as the conventional method, shows uniform thickness and flat state, and it will not receive autodoping from the susceptor 2, so it has no deterioration in electrical and optical characteristics.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、半導体結晶材料を気相にて送り、単結晶基板
上にエピタキシャル成長させるエピタキシャル層の気相
成長方法に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a method for vapor phase growth of an epitaxial layer in which a semiconductor crystal material is transported in a vapor phase and epitaxially grown on a single crystal substrate.

従来例の構成とその問題点 気相成長方法を用いて作製した半導体エピタキシャル層
は、半導体レーザやEFTの作製の上で重要なものであ
る。例えば、前者は光通信、光情報処理、 DAI) 
、 VD、レーザプリンタ等の光源として、後者は高速
成は、マイクロ波、高周波用回路部品として幅広い用途
に用いられている。
Conventional Structure and Its Problems A semiconductor epitaxial layer produced using a vapor phase growth method is important in the production of semiconductor lasers and EFTs. For example, the former is optical communication, optical information processing, DAI)
The latter is used in a wide range of applications as a light source for , VD, laser printers, etc., and as a high-speed formation circuit component for microwaves and high frequencies.

従来、かかる半導体エピタキシャル層は、第1図に示さ
れるような装置を用いた気相成長方法によって作製され
ている。すなわち、反応’1nn)の内部で、サセプタ
(2〕上に直接単結晶基板(3)を配設し、矢印(ハ)
で示すように、半導体結晶材料を気相にて反応管+1)
に流して、単結晶基板(3)上に目的の結晶層をエピタ
キシャル成長させている。しかしながら、このような装
置を用いた従来の方法には次のような欠点がある。
Conventionally, such a semiconductor epitaxial layer has been produced by a vapor phase growth method using an apparatus as shown in FIG. That is, inside the reaction '1nn), the single crystal substrate (3) is placed directly on the susceptor (2), and the arrow (c)
As shown in , the semiconductor crystal material is heated in the gas phase in a reaction tube +1)
A desired crystal layer is epitaxially grown on the single crystal substrate (3). However, conventional methods using such devices have the following drawbacks.

■単結晶系板(3)上に形成される結晶層は、膜厚がノ
11辺部においての方が、他の部分においてより大きく
なる。
(2) The crystal layer formed on the single crystal board (3) is thicker at the 11th side than at other parts.

■単結晶基板(3)上に形成される結晶層が、サセプタ
(2)からのオートドーピングを受ける。
(2) The crystal layer formed on the single crystal substrate (3) receives autodoping from the susceptor (2).

上記■の欠点は、デバイス作製上、切結晶基板(3)の
周辺部におけるエピタキシャル層を利用できないという
問題)こつながる。一方、上記■の欠点は、形成された
エピタキシャル層のεd気的、光学的特性を劣化させる
という問題につながる。
The above-mentioned drawback (1) is connected to the problem that the epitaxial layer in the peripheral area of the cut crystal substrate (3) cannot be used for device fabrication. On the other hand, the above drawback (2) leads to the problem of deteriorating the εd mechanical and optical characteristics of the formed epitaxial layer.

発明の目的 本発明は、このような従来の欠点を解消するもので、サ
セプタからのオートドーピングを受けることがなく、均
一なk Et’−の結酩層を得ることができるエピタキ
シャル層の気相成長方法を提供することを目的とする。
OBJECTS OF THE INVENTION The present invention solves these conventional drawbacks, and aims to improve the vapor phase of an epitaxial layer, which does not undergo autodoping from a susceptor and can obtain a uniform k Et'- doped layer. The purpose is to provide a way to grow.

発明の構成 本発明は、上記目的を達成するために、単結晶基板とサ
セプタとの間に、?I’Q記単結記載結晶基板くともは
み出さない大きさの上面を有する結晶板を配設し、結晶
材11を気相にて送り、前記L+i結晶基板上に結晶成
長させるようにしたエピタキシャル層の気相成長方法を
提供するものである。。
Structure of the Invention In order to achieve the above-mentioned object, the present invention provides ? An epitaxial method in which a crystal plate having an upper surface of a size that does not protrude beyond the single crystal substrate described in I'Q is provided, and the crystal material 11 is sent in a vapor phase to grow crystals on the L+i crystal substrate. A method for vapor phase growth of layers is provided. .

実施例の説明 以下、本発明の実施例を第2図ないし第5図に基づいて
説明する。
DESCRIPTION OF EMBODIMENTS Hereinafter, embodiments of the present invention will be described with reference to FIGS. 2 to 5.

第2図に示すように、本発明の一実施例によれば、縦型
反応管+11の内部において、サセプタ(幻と単結晶基
板(3)との間に、単結晶基板13)がはみ出さない大
きさの上面を有する結・品板(4)を配設し、反応w(
1)に半導体結晶材料を気相にて矢印(2)方向に流し
て、700°Cの温度で1時間結晶成長を行なった。な
お、単結晶基板(3)及び結晶板(4)の材料としては
、双方ともGaAsを用いた。また、単結晶基板(3)
は、−辺が1−511の正方形のものとした。
As shown in FIG. 2, according to one embodiment of the present invention, the susceptor (single crystal substrate 13 between the phantom and the single crystal substrate (3)) protrudes inside the vertical reaction tube +11. Arrange the knot plate (4) with a top surface of a size that is not large, and react w (
In step 1), a semiconductor crystal material was flowed in a vapor phase in the direction of arrow (2), and crystal growth was performed at a temperature of 700° C. for 1 hour. Note that GaAs was used as the material for both the single crystal substrate (3) and the crystal plate (4). In addition, single crystal substrate (3)
is a square with − sides of 1-511.

以上の構成の装置で、上記条件下で結晶成長を行なった
結果を第3図のXに示す。比較のために、第1図の装置
を用いて、同一条件下で結晶成長行なつ、た結果も、同
じ第8図にYにて示す。第8図から分るように、第1図
の構成では、単結晶基板(3)に形成されたエピタキシ
ャル層の膜厚が中央部において平均6μmであるが、周
辺部名2WMにおいては、約1.3倍程度厚く成長して
いる。これに対し、第2図の構成の場合、エピタキシャ
ル層の平均膜厚は54μmと僅かに小さくなるが、面内
均一性は非常に良く、最大膜厚と最小膜厚との差は約0
.8μmと極めて小さくなると同時に、サセプタ(2)
からのオートドーピングによるエピタキシャル層の電気
的、光学的特性の劣化も認められなかった。
The results of crystal growth performed under the above conditions using the apparatus having the above configuration are shown in X in FIG. For comparison, crystal growth was carried out under the same conditions using the apparatus shown in FIG. 1, and the results are also shown in FIG. 8 by Y. As can be seen from FIG. 8, in the configuration shown in FIG. 1, the epitaxial layer formed on the single crystal substrate (3) has an average thickness of 6 μm in the central portion, but the thickness of the epitaxial layer in the peripheral portion 2WM is approximately 1 μm. .It has grown about three times as thick. On the other hand, in the case of the structure shown in Figure 2, the average thickness of the epitaxial layer is slightly smaller at 54 μm, but the in-plane uniformity is very good, and the difference between the maximum and minimum thickness is about 0.
.. At the same time, the susceptor (2) becomes extremely small at 8 μm.
No deterioration of the electrical or optical properties of the epitaxial layer due to autodoping was observed.

本発明をより正確に評価するために、エピタキシャル層
の成長速度を、0.01μm/分〜1μm/分と変え、
成長膜厚6μm〜10μmのエピタキシャル層を多数作
製してみたが、全てについて同様の結果が得られた。す
なわち、第2図の構成を用(Aると、成長膜厚の面内バ
ラツキが±5%以下の均一性の高いエピタキシャル層を
得られ、その電気的、光学的特性の搬上も認められなか
った。
In order to more accurately evaluate the present invention, the growth rate of the epitaxial layer was varied from 0.01 μm/min to 1 μm/min.
A large number of epitaxial layers having a growth thickness of 6 μm to 10 μm were fabricated, and similar results were obtained for all of them. That is, using the configuration shown in Figure 2 (A), a highly uniform epitaxial layer with an in-plane variation in the grown film thickness of ±5% or less was obtained, and improvements in its electrical and optical properties were also observed. There wasn't.

なお、第211の構成では、縦型反応管(1〕を用(・
だが、第4図に示すように、横型反応管を用いることも
可能である。また、単結晶基板(3)及び結晶板(4)
の材料として、GaAsを用いたが、InP、GaSb
In addition, in the 211th configuration, the vertical reaction tube (1) is used (・
However, as shown in FIG. 4, it is also possible to use a horizontal reaction tube. In addition, a single crystal substrate (3) and a crystal plate (4)
GaAs was used as the material, but InP, GaSb
.

GaP 、 ZuSe 、 ZnS等の他の化合物半導
体や、Si。
Other compound semiconductors such as GaP, ZuSe, ZnS, and Si.

Ge等を含む全ての半導体材料を用いることができる。All semiconductor materials can be used, including Ge and the like.

発明の効果 以上述べたように、本発明の気相成長方法によれば、サ
セプタと単結晶基板との間に結晶板を介装することによ
り、均一で電気的、光学的特性劣化のないエピタキシャ
ル層が得ることができる。
Effects of the Invention As described above, according to the vapor phase growth method of the present invention, by interposing a crystal plate between a susceptor and a single crystal substrate, uniform epitaxial growth without deterioration of electrical and optical properties can be achieved. layers can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はエピタキシャル層を気相成長させるのに用いら
れた従来の装置を示す断面図、第2図は本発明の一実施
例に係る構成を示す断面図、第3図は基板上の位置と形
成されるエピタキシャル層の膜厚との関係を示すグラフ
、第4図は本発明の他の実施例を示す断面図である。 (2)・・・サセプタ、(3)・・・単結晶基板、(4
)・・・結晶板(8)・・・結晶材料のガス流れ 代理人  森 本 義 弘
FIG. 1 is a sectional view showing a conventional apparatus used for vapor phase growth of an epitaxial layer, FIG. 2 is a sectional view showing a configuration according to an embodiment of the present invention, and FIG. 3 is a sectional view showing the position on a substrate. FIG. 4 is a graph showing the relationship between the thickness of the epitaxial layer and the thickness of the epitaxial layer formed, and FIG. 4 is a cross-sectional view showing another embodiment of the present invention. (2)...Susceptor, (3)...Single crystal substrate, (4
)...Crystal plate (8)...Gas flow agent of crystal material Yoshihiro Morimoto

Claims (1)

【特許請求の範囲】[Claims] 1、 単結晶基板とサセプタとの間に、前記単結晶基板
が少なくともはみ出さない大きさの上面を有する稙晶板
を配設し、結晶材料を気相にて送り、前記単結晶基板上
に結晶成長させるようにしたエピタキシャル層の気相成
長方法。−
1. A crystal plate having an upper surface large enough not to protrude at least the single crystal substrate is disposed between the single crystal substrate and the susceptor, and the crystal material is delivered in a vapor phase onto the single crystal substrate. A vapor phase growth method for epitaxial layers that allows crystal growth. −
JP4553083A 1983-03-17 1983-03-17 Gaseous phase growth of epitaxial growth Pending JPS59169999A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4553083A JPS59169999A (en) 1983-03-17 1983-03-17 Gaseous phase growth of epitaxial growth

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4553083A JPS59169999A (en) 1983-03-17 1983-03-17 Gaseous phase growth of epitaxial growth

Publications (1)

Publication Number Publication Date
JPS59169999A true JPS59169999A (en) 1984-09-26

Family

ID=12721956

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4553083A Pending JPS59169999A (en) 1983-03-17 1983-03-17 Gaseous phase growth of epitaxial growth

Country Status (1)

Country Link
JP (1) JPS59169999A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50110769A (en) * 1974-02-09 1975-09-01
JPS52133884A (en) * 1976-05-06 1977-11-09 Hitachi Ltd Gas phase chemical reactor
JPS5595700A (en) * 1979-01-11 1980-07-21 Nec Corp Vapor phase growing jig

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50110769A (en) * 1974-02-09 1975-09-01
JPS52133884A (en) * 1976-05-06 1977-11-09 Hitachi Ltd Gas phase chemical reactor
JPS5595700A (en) * 1979-01-11 1980-07-21 Nec Corp Vapor phase growing jig

Similar Documents

Publication Publication Date Title
US5735949A (en) Method of producing electronic, electrooptical and optical components
JPH06140346A (en) Manufacture of heteroepitaxial thin layer and of electronic device
US5279687A (en) Preparing substrates by annealing epitaxial layers in the form of nesas and substrates so prepared
US4789421A (en) Gallium arsenide superlattice crystal grown on silicon substrate and method of growing such crystal
JP3007971B1 (en) Method of forming single crystal thin film
JPS59169999A (en) Gaseous phase growth of epitaxial growth
JPH04290423A (en) Manufacture of semiconductor substrate and semiconductor device
JPS6066811A (en) Manufacture of compound semiconductor device
JPS62222626A (en) Semiconductor wafer
JPS6398120A (en) Crystal growth method
JPS61189619A (en) Compound semiconductor device
JPS63184320A (en) Semiconductor device
JPS5910573B2 (en) Method for manufacturing self-aligned crystals
JPS61220321A (en) Selective vapor growth method
JPH02152221A (en) Manufacture of soi substrate
JP2894917B2 (en) Semiconductor manufacturing method on fluorine compound
JPS6190426A (en) Method for gas-phase epitaxal growth of organic metal
JPH0419700B2 (en)
JPS62291909A (en) Gaas epitaxial growth method
JPH0423471A (en) Manufacture of vertical superplattice element
JPS6053011A (en) Manufacture of semiconductor laminated construction
JPH0430578A (en) Manufacture of semiconductor quantum box structure
JPS6325295A (en) Semiconductor epitaxial wafer
JPS62101024A (en) Epitaxial-growth wafer
JPS6286884A (en) Manufacture of semiconductor device