JPS6190426A - Method for gas-phase epitaxal growth of organic metal - Google Patents
Method for gas-phase epitaxal growth of organic metalInfo
- Publication number
- JPS6190426A JPS6190426A JP21353884A JP21353884A JPS6190426A JP S6190426 A JPS6190426 A JP S6190426A JP 21353884 A JP21353884 A JP 21353884A JP 21353884 A JP21353884 A JP 21353884A JP S6190426 A JPS6190426 A JP S6190426A
- Authority
- JP
- Japan
- Prior art keywords
- substrate
- groove
- iii
- molar ratio
- growth
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02367—Substrates
- H01L21/0237—Materials
- H01L21/02387—Group 13/15 materials
- H01L21/02395—Arsenides
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02518—Deposited layers
- H01L21/02521—Materials
- H01L21/02538—Group 13/15 materials
- H01L21/02546—Arsenides
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02612—Formation types
- H01L21/02617—Deposition types
- H01L21/0262—Reduction or decomposition of gaseous compounds, e.g. CVD
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Materials Engineering (AREA)
- Semiconductor Lasers (AREA)
Abstract
Description
【発明の詳細な説明】
産業上の利用分野
本発明は各種半導体素子の作製に用いることができる有
機金属気相エピタキシャル成長方法に関するものである
。DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to an organometallic vapor phase epitaxial growth method that can be used for manufacturing various semiconductor devices.
従来例の構成とその問題点
近年、有機金属気相エピタキシャル 成長方法は、薄膜
成長時の膜厚の制御性1、ウェハ面内での膜厚、電気的
、光学的特性の均一性、同一結晶成長条件下でのウェハ
間の再現性に優れているため、化合物半導体材料のエピ
タキシャル成長方法としてよく用いられている。Conventional configurations and their problems In recent years, organometallic vapor phase epitaxial growth methods have improved controllability of film thickness during thin film growth1, uniformity of film thickness, electrical and optical properties within the wafer plane, and uniform crystallization. Because of its excellent wafer-to-wafer reproducibility under growth conditions, it is often used as a method for epitaxial growth of compound semiconductor materials.
特に化合物半導体を用いた高速素子やプラナ−型半導体
レーザなどの作製には、通常平坦基板上に、平坦に積層
構造を形成するので、有機金属気相エピタキシャル成長
方法の前述した特徴を十分に生かすことができる。In particular, in the production of high-speed devices and planar semiconductor lasers using compound semiconductors, a flat stacked structure is usually formed on a flat substrate, so it is necessary to take full advantage of the above-mentioned features of the metal-organic vapor phase epitaxial growth method. I can do it.
しかしながら、上記のような構成では、単一モード半導
体レーザ、光導波路、光集積回路素子作製には十分では
ない。これらの素子を工程数を少なく、良い電気的、光
学的特性を得るための手段として溝部を有する基板上へ
の成長があげられる。However, the above configuration is not sufficient for manufacturing single mode semiconductor lasers, optical waveguides, and optical integrated circuit elements. One way to reduce the number of steps and obtain good electrical and optical characteristics for these devices is to grow them on a substrate having grooves.
また、最終エビ層が平坦面であれば、各種素子への利用
範囲も広くなる。Furthermore, if the final shrimp layer is a flat surface, it can be used in a wide variety of devices.
しかしながら、通常行なわれる有機金属気相エピタキシ
ャル成長での結晶成長条件では、溝部上に成長したエビ
層表面を平坦にするには、かなりの膜厚の成長層を作ら
ねばならないという欠点を有していた。However, the crystal growth conditions used in conventional metal-organic vapor phase epitaxial growth have the drawback that in order to flatten the surface of the shrimp layer grown on the grooves, a considerably thick layer must be formed. .
発明の目的
本発明は上記欠点に鑑み、小さいエビタキシャル層膜厚
で、エピタキシャル層表面を平坦にすることのできる有
機金属気相エピタキシャル成長方法を提供するものであ
る。OBJECTS OF THE INVENTION In view of the above drawbacks, the present invention provides an organic metal vapor phase epitaxial growth method that can flatten the surface of the epitaxial layer with a small thickness of the epitaxial layer.
発明の構成
この目的を達成するために本発明の有機金属気相エピタ
キシャル成長方法は、m−v族化合物半導体の結晶成長
において、溝部を有する基板上に、8μm/[I以上の
成長速度で、かつV元素の■族元素に対する供給モル比
が10以上であるという結晶成長条件で結晶成長を行な
うことから構成されており、この構成によって小さいエ
ビ層膜厚で、エビ層表面を平坦に形成することが可能と
なる。Structure of the Invention To achieve this object, the organometallic vapor phase epitaxial growth method of the present invention provides crystal growth of an m-v group compound semiconductor on a substrate having a groove at a growth rate of 8 μm/[I or more, and It consists of crystal growth performed under crystal growth conditions in which the molar ratio of supply of V element to Group Ⅰ element is 10 or more, and with this configuration, it is possible to form a flat shrimp layer surface with a small shrimp layer thickness. becomes possible.
実施例の説明
以下、本発明の一実施例について、図面を参照しながら
説明する。DESCRIPTION OF EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawings.
第1図は本発明の第1の実施例における有機金属気相エ
ピタキシャル成長方法により成長したときのエビ層の断
面形状を示すものである。FIG. 1 shows the cross-sectional shape of the shrimp layer grown by the organometallic vapor phase epitaxial growth method in the first embodiment of the present invention.
第1図において、1は溝部を有する基板、2はエピタキ
シャル成長層である。−例として、基板1としてn型の
GaAs基板を用いる。フォトリソグラフィにより第1
図に示す様に深さ3μmのV字形の溝を作り、この上に
結晶成長を行なう。有機金属気相エピタキシャル成長法
により、アンドープGaAsを成長させる。この時の成
長条件は、成長温度760°C9全ガス流量F5115
+、■族元素に対するV族元素の供給モル比(以下V/
III供給モル比とする)は60.成長速度は10μm
/時である。この時、3μmのエビ層を成長した時の、
成長時間に対する溝を有する基板上への成長エビ層の断
面形状を第1図に示す。時間軸はa−+b 4 Cの順
に進む。基板上の溝はその直上のエビ層の断面形状に影
響をおよぼし、エビ層は、成長時間がたつにつれ7字の
溝形状を小さくしながら、基板上のV字溝を埋めて行く
。上記の成長条件では約2.6μmのエビ層を形成する
とその表面が平坦になった。In FIG. 1, 1 is a substrate having a groove, and 2 is an epitaxially grown layer. - As an example, an n-type GaAs substrate is used as the substrate 1. The first photolithography
As shown in the figure, a V-shaped groove with a depth of 3 μm is made, and crystal growth is performed on this groove. Undoped GaAs is grown by metal organic vapor phase epitaxial growth. The growth conditions at this time were: growth temperature: 760°C, total gas flow rate: F5115
+, supply molar ratio of group V element to group ■ element (hereinafter referred to as V/
III supply molar ratio) is 60. Growth rate is 10μm
/It's time. At this time, when a 3 μm shrimp layer was grown,
FIG. 1 shows the cross-sectional shape of a shrimp layer grown on a substrate with grooves depending on the growth time. The time axis advances in the order of a-+b 4 C. The groove on the substrate influences the cross-sectional shape of the shrimp layer directly above it, and as the growth time passes, the shrimp layer fills the V-shaped groove on the substrate while reducing the shape of the figure 7 groove. Under the above growth conditions, when a shrimp layer of about 2.6 μm was formed, its surface became flat.
゛以上のように本実施例によれば、溝を有する基板上に
小さい膜厚のエビ層を積んでも平坦面が得られる。As described above, according to this embodiment, a flat surface can be obtained even if a thin shrimp layer is deposited on a substrate having grooves.
以下、本発明の第2の実施例について、図面を参照しな
がら説明する。A second embodiment of the present invention will be described below with reference to the drawings.
第2図は、本発明の第2の実施例における有機金属気相
エピタキシャル成長方法により成長したときのエビ層の
断面形状を示すものである。FIG. 2 shows the cross-sectional shape of the shrimp layer grown by the organometallic vapor phase epitaxial growth method in the second embodiment of the present invention.
同図において、3は溝部を有する基板4はエピタキシャ
ル成長層で、以上は第1図の構成と同様なものである。In the figure, a substrate 4 having a groove portion 3 is an epitaxially grown layer, and the structure described above is the same as that in FIG. 1.
第1図の構成と異なるのは溝をV字形でなくU字形の溝
として設けた点である。The difference from the configuration shown in FIG. 1 is that the groove is provided as a U-shaped groove instead of a V-shaped groove.
第2図(→、(11,(→は第1図の(→、 (11,
(C)を同様な構成で成長時間が経過したときの溝の埋
まる傾向も同様であることが示されている。Figure 2 (→, (11, (→ means (→, (11,
It is shown that the tendency of trench filling when the growth time elapses with the same structure as in (C) is also the same.
ところで第1図でエビ層表面が平坦になったときのエビ
層膜厚t1 がt1≦h1となる成長条件は多数の実
験を行ない測定した結果、第3図の斜線に示す領域であ
ることがわかった。即ち、成長速度8μm/時以上でか
つV/Ill 供給モル比10以上である。他の成長条
件との相関は弱い。第3図に示す上記範囲内であれば、
本実施例と同様の有機全屈気相エピタキシャル成長が可
能である。By the way, as a result of numerous experiments and measurements, the growth conditions under which the shrimp layer thickness t1 when the shrimp layer surface becomes flat in Figure 1 satisfies t1≦h1 are found to be in the area shown by diagonal lines in Figure 3. Understood. That is, the growth rate is 8 μm/hour or more and the V/Ill supply molar ratio is 10 or more. The correlation with other growth conditions is weak. If it is within the above range shown in Figure 3,
Organic total vapor phase epitaxial growth similar to this example is possible.
なお、本実施例ではGaAsに関してだけ述べたが、G
aAlAs系材料の結晶成長に適用することも可能であ
り、ドーピングされたエビ層の結晶成長においても適用
可能である。In this example, only GaAs was described, but G
It is also possible to apply to the crystal growth of aAlAs-based materials, and also to the crystal growth of doped shrimp layers.
発明の効果
以上のように本発明は、溝部を有する基板上に小さい膜
厚で溝部を埋め平坦にすることができ、しかも、膜厚な
どの制御性の良い有機金属気相エピタキシャル成長法を
用いるので様々なデバイスの有効力作製手段として用い
ることができ、その実用的効果は大なるものがある。Effects of the Invention As described above, the present invention is capable of filling grooves with a small thickness on a substrate having grooves and making the grooves flat, and also because it uses an organic metal vapor phase epitaxial growth method with good controllability of film thickness, etc. It can be used as a means for producing effective force in various devices, and its practical effects are great.
第1図、第2図は、それぞれ本発明の第1および第2の
実施例における有機金属気相エピタキシャル成長方法に
より成長したときの断面形状を示す図、第3図は本発明
の適用可能な結晶成長条件の範囲を示す図である。
1.3・・・・・・基板、2,4・・・・・・エピタキ
シャル成長層。
代理人の氏名 弁理士 中 尾 敏 男 ほか1名第1
図
(a−ン
(I))
(り
第2図
(αン
(b)
(C)1 and 2 are diagrams showing the cross-sectional shape of a crystal grown by the metal organic vapor phase epitaxial growth method in the first and second embodiments of the present invention, respectively, and FIG. 3 is a diagram showing a crystal to which the present invention can be applied. It is a figure showing the range of growth conditions. 1.3...Substrate, 2,4...Epitaxial growth layer. Name of agent: Patent attorney Toshio Nakao and 1 other person No. 1
Figure (a-n (I)) (Fig. 2 (a-n (b) (C)
Claims (1)
かつ、V族元素のIII族元素に対する供給モル比を10
以上としてIII−V化合物半導体の結晶成長を行なうこ
とを特徴とする有機金属気相エピタキシャル成長方法。On a substrate having a groove, a growth rate of 8 μm/hour or more and a supply molar ratio of group V elements to group III elements of 10
An organometallic vapor phase epitaxial growth method characterized in that crystal growth of a III-V compound semiconductor is performed as described above.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP21353884A JPS6190426A (en) | 1984-10-11 | 1984-10-11 | Method for gas-phase epitaxal growth of organic metal |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP21353884A JPS6190426A (en) | 1984-10-11 | 1984-10-11 | Method for gas-phase epitaxal growth of organic metal |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS6190426A true JPS6190426A (en) | 1986-05-08 |
Family
ID=16640845
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP21353884A Pending JPS6190426A (en) | 1984-10-11 | 1984-10-11 | Method for gas-phase epitaxal growth of organic metal |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6190426A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5037776A (en) * | 1989-03-10 | 1991-08-06 | International Business Machines Corporation | Method for the epitaxial growth of a semiconductor structure |
-
1984
- 1984-10-11 JP JP21353884A patent/JPS6190426A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5037776A (en) * | 1989-03-10 | 1991-08-06 | International Business Machines Corporation | Method for the epitaxial growth of a semiconductor structure |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4790909B2 (en) | Fabrication of gallium nitride layers by lateral growth. | |
JP3950630B2 (en) | Fabrication of gallium nitride semiconductor layers by lateral growth from trench sidewalls. | |
US5244834A (en) | Semiconductor device | |
KR20010041192A (en) | Methods of fabricating gallium nitride semiconductor layers by lateral overgrowth through masks, and gallium nitride semiconductor structures fabricated thereby | |
GB2114808A (en) | Semiconductor laser manufacture | |
US4746192A (en) | Diffraction grating and process for producing the same | |
JPS61188927A (en) | Compound semiconductor device | |
JPS6190426A (en) | Method for gas-phase epitaxal growth of organic metal | |
JP2527016B2 (en) | Method for manufacturing semiconductor film | |
JPH08186080A (en) | Growth method for compound semiconductor crystal | |
JPS6155982A (en) | Semiconductor laser device | |
JPS6262581A (en) | Manufacture of semiconductor light emitting device | |
JPS5834988A (en) | Manufacture of semiconductor laser | |
JPS61198713A (en) | Manufacture of semiconductor device | |
JPS6122645A (en) | Substrate for semiconductor device and manufacture thereof | |
JP2527015B2 (en) | Method for manufacturing semiconductor film | |
JPH03247597A (en) | Epitaxial growth method of iii-v compound semiconductor on silicon substrate | |
JPS62262471A (en) | Manufacture of semiconductor device | |
JP2964547B2 (en) | Method for forming SOI substrate | |
JPS61241911A (en) | Compound semiconductor device | |
JPS61276390A (en) | Manufacture of semiconductor light-emitting device | |
JPH05343321A (en) | Compound semiconductor substrate and manufacture thereof | |
JPH02219217A (en) | Epitaxial growth process | |
JPS63266891A (en) | Manufacture of semiconductor laser device | |
JPS62226622A (en) | Vapor phase diffusion method for compound semiconductor layer |