JPS6066811A - Manufacture of compound semiconductor device - Google Patents

Manufacture of compound semiconductor device

Info

Publication number
JPS6066811A
JPS6066811A JP58177478A JP17747883A JPS6066811A JP S6066811 A JPS6066811 A JP S6066811A JP 58177478 A JP58177478 A JP 58177478A JP 17747883 A JP17747883 A JP 17747883A JP S6066811 A JPS6066811 A JP S6066811A
Authority
JP
Japan
Prior art keywords
substrate
compound semiconductor
layer
heat treatment
semiconductor device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58177478A
Other languages
Japanese (ja)
Inventor
Noboru Otani
昇 大谷
Masabumi Shimizu
正文 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP58177478A priority Critical patent/JPS6066811A/en
Publication of JPS6066811A publication Critical patent/JPS6066811A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02373Group 14 semiconducting materials
    • H01L21/02381Silicon, silicon germanium, germanium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • H01L21/02441Group 14 semiconducting materials
    • H01L21/0245Silicon, silicon germanium, germanium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02524Group 14 semiconducting materials
    • H01L21/02532Silicon, silicon germanium, germanium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Photovoltaic Devices (AREA)

Abstract

PURPOSE:To form a compound semiconductor layer having excellent lattice matching property on an Si substrate by forming a Ge layer on the Si substrate which is previously subjected to a high temperature heat processing and then forming a III-V group compound semiconductor through the heat processing. CONSTITUTION:An Si substrate 6 is held for the specified period at a temperature just under the melting point and is then cooled rapidly up to a room temperature. After removing a substrate oxide film, Ge 7 is formed by the epitaxial growth on the surface of substrate 6. A secondary heat processing is carried out for introducing mutual diffusion between the formed Ge thin film 7 and the substrate 6. Thereby, diffusion is carried out mutually between the substrate 6 and layer 7 and a diffusion layer is formed. Lattice distortion based on difference of thermal expansion coefficient is alleviated by such mutual diffusion. As a result, a compound semiconductor layer can be formed on the Si substrate and high quality, low cost and light-weight compound semiconductor device can be obtained.

Description

【発明の詳細な説明】 く技術分野〉 本発明は化合物半導体装置の製造力θくに関し、特にシ
リコン基板を用いて、この基板」−に化合物半導体を積
層した半導体装置の熱処理に関するも 。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field] The present invention relates to the manufacturing capacity of compound semiconductor devices, and more particularly to heat treatment of semiconductor devices in which a silicon substrate is used and a compound semiconductor is laminated on this substrate.

のである。It is.

〈従来技術〉 GaAs等の化合物半導体はその優れた1゛テ徴を活し
て高機能、高性能デバイスに利用されつつあ(川。
<Prior art> Compound semiconductors such as GaAs are being used for highly functional and high performance devices by taking advantage of their excellent characteristics (Kawa.

しかし、化合物半導体結晶は一般に1雷価であり、コン
を基板とし、このシリコン基板(以下S i J、1板
という)」二に化合物半導体層を積層し°Cデバイスを
構成するための化合物半導体装;Plを製造する方法が
従来からいくつか提案されている。しかし未だ結晶品位
等の点でバルク結晶に劣るのか現状である。
However, compound semiconductor crystals generally have a value of 1, and a silicon substrate (hereinafter referred to as 1 board) is used as a substrate, and a compound semiconductor layer is laminated on this silicon substrate (hereinafter referred to as 1 board) to form a compound semiconductor to form a °C device. Several methods for producing Pl have been proposed in the past. However, it is still inferior to bulk crystals in terms of crystal quality, etc.

例えば、Si基板]二にGaAs層を形成する試みOこ
は太きく 3)けて2imりの方法かある。
For example, there is an attempt to form a GaAs layer on the second layer of a Si substrate.

第1の方法は81基板上に分子制(エピタキシーい■B
E)、又は有機金属熱分解法(?t、fOCVD)を用
いて直接GaAs層をJit成する方法である。第1図
は81基板1]−への化合物半導体2のエピタキシャル
成長の第1の方法例である。Si基板1とG a A 
s結晶2間の格子定数の大きな相違(4%)のため、1
−記従来の方法では品質の優れた結晶層をイIJること
は不ITJ能であり、多結晶しか得られていない。又S
1とG a A s界面の接着力も弱く熱膨張係数の差
による応力のためはかれ易い等の問題かあり、良質なG
aAs単結晶の形成には成功してい乙J゛いのか現状で
ある。
The first method is to use molecular epitaxy (epitaxy) on the 81 substrate.
E) or a method of directly forming a GaAs layer using JIT using an organometallic thermal decomposition method (?t, fOCVD). FIG. 1 shows a first example of the epitaxial growth of a compound semiconductor 2 onto an 81 substrate 1]. Si substrate 1 and G a A
1 due to the large difference (4%) in lattice constant between the s crystals 2
- In the conventional method, it is impossible to produce a crystalline layer of excellent quality, and only polycrystals can be obtained. Also S
The adhesive force between the interface between 1 and G a A s is weak and it easily breaks off due to the stress caused by the difference in the coefficient of thermal expansion.
At present, the formation of aAs single crystals has not been successful.

第2のJj/、!、はSiとGaAsの中間の格子定数
をもつ/111品系を利用するものである。例えば5i
Ge。
Second Jj/,! , utilizes a /111 product system with a lattice constant between Si and GaAs. For example, 5i
Ge.

GHIAsl”jiの混品用成をわずかずつ変化させた
格子整合層を、SlとGaAsとの間に形成し、格子歪
°整合による結晶性への影若ゝを少なくするものである
。第2図は、81基板3」二への格子整合層4をイJす
る化合物半導体5のエピタキシャル成長の第2の方法例
である。この方法では格子整合層4の格子定数の変化率
は可能な限り小さく゛」−る心安があるため成長の制御
が複卸になる。」5た格J′整合層4中の内部応力によ
る影響を抑制する1旧杓−C格子整合層4の厚さを大き
くとる必要がj7)る。SlとGaAsの場合、以上の
要J[5を満足するために必要な格子整合層は数十μI
n程度とされており、(=れは通常化合物半導体素子を
機能させるために必要な活性層厚の数倍ないし数十(−
Hlt、に相当し、低価格、軽量化の条件に反する方法
である。
A lattice matching layer in which the mixture composition of GHIAsl''ji is slightly changed is formed between Sl and GaAs to reduce the influence on crystallinity due to lattice strain degree matching.Second. The figure shows a second method example of epitaxial growth of a compound semiconductor 5 with a lattice matching layer 4 onto an 81 substrate 3''. In this method, there is peace of mind that the rate of change in the lattice constant of the lattice matching layer 4 is as small as possible, so the growth is controlled in multiple ways. In order to suppress the influence of internal stress in the lattice matching layer 4, it is necessary to increase the thickness of the lattice matching layer 4. In the case of Sl and GaAs, the lattice matching layer required to satisfy the above requirement J[5 is several tens of μI
The thickness of the active layer is usually several times to several tens of times (−
Hlt, and is a method that violates the requirements of low cost and weight reduction.

〈発明の目的〉 本発明[j上記従来の化合物半導体装1;tの製造方法
の欠点を除去し、シリコン単結晶を基板4A’ 4’l
とし、III−V族の混晶系単結晶を活性層とするrI
S合物半導体装簡において、基板と化合物産導体層との
間に存在する格子不整合による結晶性への影響及び熱膨
張係数の相違に基ずく結晶;1・を吸収゛=I−る緩価
層を設けることにより高品質、低価格か一刀IIr量化
を可能とする化合物半導体装置の製造JJ法を提供する
<Object of the Invention> The present invention [j) eliminates the drawbacks of the manufacturing method of the conventional compound semiconductor device 1;
rI with a III-V group mixed single crystal as the active layer.
In S compound semiconductor devices, the influence of lattice mismatch between the substrate and the compound conductor layer on the crystallinity and the crystallographic absorption due to the difference in thermal expansion coefficient; The present invention provides a JJ method for manufacturing a compound semiconductor device that enables high quality, low cost, and one-shot IIr quantification by providing a chemical layer.

〈実施例〉 本発明は81基板」二に化合物半導体層を形成する場合
に、新らたに格子の不整合を緩和する層を設けた構造の
化合物半導装置の製造に際し、予めS1基板を融点直下
の温度に保持する第1の熱処理を施こし第1の熱処理を
行なった基板上にGe1iiね11品薄IJ位を彫成し
、これに引き続いて第2の熱処理を施こい第1の熱処理
と第2の熱処理によりSlとGeの4[1互拡散層を形
成して化合物半導体装置の製造するものである。
<Example> In the case of forming a compound semiconductor layer on the S1 substrate of the present invention, the S1 substrate is prepared in advance when manufacturing a compound semiconductor device having a structure in which a layer for mitigating lattice mismatch is newly provided. A first heat treatment is performed to maintain the temperature just below the melting point, and a Ge1ii-11 thin IJ is carved on the substrate that has undergone the first heat treatment, followed by a second heat treatment and the first heat treatment. A compound semiconductor device is manufactured by forming a 4[1 interdiffused layer of Sl and Ge by a second heat treatment.

以下第3図を用いて、本発明を一実施例を挙げて説明す
る。
The present invention will be described below with reference to FIG. 3 by way of an example.

J、[板6として面方位(+00)の81単結晶を使用
する。このS i 4J板6をIQ ”Torr以下の
真空中で1300’Cの温度に30分間保持しく第1熱
処理)室温まで急冷する。基板酸化膜を除く程度にII
 CEて気相コーッヂングした後、sl基板表面にGe
7を約500Aエビタギシヤル気相成長させる。
J, [81 single crystal with plane orientation (+00) is used as plate 6. This S i 4J plate 6 is held at a temperature of 1300'C for 30 minutes in a vacuum below IQ'' Torr and rapidly cooled to room temperature (first heat treatment).
After vapor phase coating with CE, Ge was deposited on the surface of the SL substrate.
7 was subjected to vapor phase growth at approximately 500 A.

コjJ) とQ゛ノ成長1’;ll’1度は70Crc
とした。その後、H2゛、17囲気中てQ (l O’
C60分間の第2熱処理を施こしたのち700°Cまで
徐冷し、その温度でGaAs8を約1μmエピタキシャ
ル気相成長させて化合物−′1′導体を形成する。ここ
で」−記第2の熱処理に」、すSi基板6とGe層7と
の間には後述するように相互に拡散が行われ、拡散層を
形成しているとちえられる。
kojJ) and Q゛no growth 1';ll'1 degree is 70Crc
And so. After that, in H2゛, 17 atmosphere Q (l O'
After performing a second heat treatment for 60 minutes, it is slowly cooled to 700°C, and at that temperature, GaAs8 is epitaxially grown to a thickness of about 1 μm to form a compound-'1' conductor. Here, during the second heat treatment, diffusion occurs between the Si substrate 6 and the Ge layer 7, as will be described later, to form a diffusion layer.

上記工程を経て製造した化合物半導体(以l−A試料と
いう)の効果を検討するため、比軸σ以・j象として第
1熱処理をせずに81基板」−に直ちに500AのGe
単結晶薄層を形成し、第2熱処理のみ行なった後、Ga
As単結晶層をエビクギシャル気相成長した試料を作製
した(以I: 13試M′lという)。
In order to study the effect of the compound semiconductor (hereinafter referred to as the I-A sample) manufactured through the above steps, we immediately applied Ge at 500A to the 81 substrate without the first heat treatment as a
After forming a single crystal thin layer and performing only the second heat treatment, Ga
A sample was prepared in which an As single crystal layer was epitaxially grown in vapor phase (hereinafter referred to as I: 13 samples M'l).

」−記A、B試料の断面を走査形電子顕i)&鏡により
観察すると、B試料では5i−Ge界而面くにiH;t
l。
” - Observation of the cross sections of samples A and B using a scanning electron microscope (i) and mirror reveals that in sample B, the 5i-Ge world is completely iH;
l.

細なりラック、界面でのき裂か見られるのにスJしてA
試料ではそのような欠陥は観察され/4−か−、た。
Although the rack is narrow and cracks can be seen at the interface, I did A.
Such defects were observed in the sample /4- or-.

またB試料ではき裂の端から応力集中に」:り発/l。In addition, in sample B, stress concentration occurs from the edge of the crack.

した転位によるものと思われる多数のす・\り線か成長
層方向に伝播しているのか観察された。、以1のような
界面イ]近での欠陥GJ1第1熱処理をT」/+い第2
熱処理を欠いた試料についても観察された。
A large number of thin lines, which are thought to be caused by dislocations, were observed propagating in the direction of the grown layer. , the defect GJ1 near the interface A] as shown in 1 below is subjected to the first heat treatment T'/+
It was also observed for samples lacking heat treatment.

このことはA試料ては900°C60分間の第2熱処狸
中に、予め1300°0の第1熱処理で導入された空孔
を介してSlとGeの相互拡散層が形成され、この相互
拡散層によって熱膨張係数の差異に基づく格子歪か緩和
されているためと考えられる。
This means that during the second heat treatment at 900°C for 60 minutes in sample A, a mutually diffused layer of Sl and Ge is formed through the pores introduced in advance in the first heat treatment at 1300°C. This is thought to be because the lattice strain caused by the difference in thermal expansion coefficients is alleviated by the diffusion layer.

81とGeの相互拡散層」二に形成されたGaAs層中
にはずへり線、少傾角粒界等の欠陥は見られず、人l自
1の一゛1′1uな成表層が得られた。
No defects such as edge lines or low-angle grain boundaries were observed in the GaAs layer formed on the interdiffused layer of 81 and Ge, and a surface layer with a 1'1'1 u surface layer was obtained. .

31とGcの相互拡散層上に形成する化合物体’+j、
を体単右!1品層はG r+ A sに限られずGaP
等の二元化合物、さらにGaA、(As、InGaP、
GaAsP等の王ハコ糸及び1nGaAsP等の多元系
の化合物であっても同様に形成することができる。また
第1熱処理は、温j夏を1300”cとしたがこの温度
に限らす)1(板融点の90・も以上の温度範囲であれ
ばよく、−その1lii′i囲内のl:u’+度で30
分程度保持すれば十分で31・〕る。史に第2熱処理で
相互拡散層を形成する条f’lとしては、700〜90
0°Cの温度で相互拡散するのに1′分/C時間保持ず
ればよく、700°C以下の温度でも保持時間を長くす
ることによって同し効1kを得ることかできる。81基
板に形成するGe中結晶薄層は格子歪を緩和するのに十
分な柑lI−拡ff!J。
Compound body '+j formed on the mutual diffusion layer of 31 and Gc,
The body is just right! The first layer is not limited to Gr+A s but also GaP.
binary compounds such as GaA, (As, InGaP,
It can be formed in the same way even if it is a king box thread such as GaAsP or a multi-component compound such as 1nGaAsP. In addition, the first heat treatment is performed at a temperature of 1300"C, but it is limited to this temperature.) 1 (The temperature range of 90 or higher than the melting point of the plate is sufficient.) +30 degrees
It is enough to hold it for about 31 minutes. Historically, the grain f'l that forms the interdiffusion layer in the second heat treatment is 700 to 90.
Interdiffusion can occur at a temperature of 0°C by holding for 1' min/C time, and even at temperatures below 700°C, the same effect of 1k can be obtained by increasing the holding time. The Ge medium crystalline thin layer formed on the 81 substrate has sufficient dilatation to alleviate lattice strain. J.

層を形成する必要上、300〜700A 6.度の厚さ
であればよい。また、相互拡散層りに形成する11 ’
F7物半物体導体単結晶層要に応じた厚さに形成できる
ことは言うまでもない。
300-700A due to the necessity of forming a layer 6. It is sufficient if the thickness is about 100 oz. In addition, 11' formed on the interdiffusion layer
It goes without saying that the F7 semiconductor semiconductor single crystal layer can be formed to have a thickness depending on the requirements.

上記の予め高温熱処理を施こしたSI基板I(・Ge層
を形成し、その後に再度熱処理を施こして形成したll
l−〜r族化合物半導体6j1各種?[εfテバイスの
半導体基板として利用することができ、特に」−配化合
物半導体にPN接合を形成して太陽電池を構成すること
によりすぐれた効果を示ず3.即ち受光面側は光電変換
効率の高いG a A、 s層を用いて構成し、このG
aAs層を支持する基板を比較的軽い81基板を用いて
構成することかでき、効率及、び重量の点で非常に有利
な太1場電池を7(Iることかできる。
The above SI substrate I was previously subjected to high-temperature heat treatment (I was formed by forming a Ge layer and then performing heat treatment again)
l-~r group compound semiconductor 6j1 various? [It can be used as a semiconductor substrate for εf devices, especially when a solar cell is constructed by forming a PN junction on a compound semiconductor.3. That is, the light-receiving surface side is constructed using a Ga A, s layer with high photoelectric conversion efficiency, and this G
The substrate supporting the aAs layer can be constructed using a relatively light 81 substrate, making it possible to construct a 7 (I) field cell which is very advantageous in terms of efficiency and weight.

〈効 果〉 以上のように本発明に」二り81〕、1板I−に格f−
qH′/−舎外のよいGaAs、GaAp、ΔS等のI
II −vIj5′化合物+11結晶j・カを形成する
ことがてき、高品質、低価格かつ軽量な化合物半導体装
置の製造がiTJ能となり化合物半導体装置の高機能化
、高性能化に寄与ずろことかできる。
<Effects> As described above, according to the present invention, the effect of the present invention is as follows:
qH'/-I of good GaAs, GaAp, ΔS, etc. outside the building
It is possible to form II-vIj5' compound +11 crystals, and the production of high-quality, low-cost, lightweight compound semiconductor devices will become an iTJ function, contributing to higher functionality and higher performance of compound semiconductor devices. can.

【図面の簡単な説明】[Brief explanation of drawings]

第1図及び第2図は従来の化合物半導体装置のi1′J
i而図、第面図は本発明による一実施例を説明ずろため
の断面図である。 6.81基板 7 Ge単結晶層 8 G:1As単結晶層
Figures 1 and 2 show i1'J of a conventional compound semiconductor device.
The second figure and the second side figure are sectional views for explaining one embodiment of the present invention. 6.81 Substrate 7 Ge single crystal layer 8 G:1As single crystal layer

Claims (1)

【特許請求の範囲】 l)シリコン基板上に化合物半導体層を形成する方法に
おいて、シリコン基板を融点直下の温度で保持する第1
の熱処理工程と、第1の熱処理を行った基板」−にゲル
マニウム薄層を形成する工程と、形成されたゲルマニウ
ム薄層とシリコン基板間に相J−L拡散を導く第2の熱
処理を施こす」二押と、11に第2の熱処理後に化合物
半導体層を成ト、コさゼることを特徴とする化合物半導
体装置の製造方法。 2)前記化合物半導体巻輪基層はGaAs5又はGaA
j!As単結晶であることを特徴とする特許請求の範σ
((第1項記載の化合物半導体装置の製j青力υ、。 3)前記化合物半導体結晶層がGaP、GaAsP。 I n:G il P又はInGaAsP単結晶である
ことを特?:tどするギI’ :!’l’ 請求の範囲
第1項記載の化合物半導体装置の製造方法。
[Claims] l) In a method of forming a compound semiconductor layer on a silicon substrate, the first step is to maintain the silicon substrate at a temperature just below its melting point.
a heat treatment step, a step of forming a germanium thin layer on the substrate subjected to the first heat treatment, and a second heat treatment to induce phase J-L diffusion between the formed germanium thin layer and the silicon substrate. 11. A method for manufacturing a compound semiconductor device, which comprises forming and solidifying a compound semiconductor layer after a second heat treatment. 2) The compound semiconductor winding ring base layer is GaAs5 or GaA
j! The claim σ is characterized in that it is an As single crystal.
((Manufacture of the compound semiconductor device according to item 1). 3) The compound semiconductor crystal layer is GaP, GaAsP, or InGaAsP single crystal. GI':!'l' The method for manufacturing a compound semiconductor device according to claim 1.
JP58177478A 1983-09-24 1983-09-24 Manufacture of compound semiconductor device Pending JPS6066811A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58177478A JPS6066811A (en) 1983-09-24 1983-09-24 Manufacture of compound semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58177478A JPS6066811A (en) 1983-09-24 1983-09-24 Manufacture of compound semiconductor device

Publications (1)

Publication Number Publication Date
JPS6066811A true JPS6066811A (en) 1985-04-17

Family

ID=16031610

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58177478A Pending JPS6066811A (en) 1983-09-24 1983-09-24 Manufacture of compound semiconductor device

Country Status (1)

Country Link
JP (1) JPS6066811A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5326716A (en) * 1986-02-11 1994-07-05 Max Planck-Gesellschaft Zur Foerderung Der Wissenschaften E.V. Liquid phase epitaxial process for producing three-dimensional semiconductor structures by liquid phase expitaxy
US8686472B2 (en) 2008-10-02 2014-04-01 Sumitomo Chemical Company, Limited Semiconductor substrate, electronic device and method for manufacturing semiconductor substrate
CN105089792A (en) * 2015-08-21 2015-11-25 成都博世德能源科技股份有限公司 Silent air filtering device with efficient cyclic utilization function
US20160010557A1 (en) * 2013-03-15 2016-01-14 Mitsubishi Heavy Industries, Ltd. Gas turbine silencer, and gas turbine provided with same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5326716A (en) * 1986-02-11 1994-07-05 Max Planck-Gesellschaft Zur Foerderung Der Wissenschaften E.V. Liquid phase epitaxial process for producing three-dimensional semiconductor structures by liquid phase expitaxy
US5397736A (en) * 1986-02-11 1995-03-14 Max-Planck-Gesellschaft Zur Foerderung Der Wissenschaften Liquid epitaxial process for producing three-dimensional semiconductor structures
US8686472B2 (en) 2008-10-02 2014-04-01 Sumitomo Chemical Company, Limited Semiconductor substrate, electronic device and method for manufacturing semiconductor substrate
US20160010557A1 (en) * 2013-03-15 2016-01-14 Mitsubishi Heavy Industries, Ltd. Gas turbine silencer, and gas turbine provided with same
CN105089792A (en) * 2015-08-21 2015-11-25 成都博世德能源科技股份有限公司 Silent air filtering device with efficient cyclic utilization function

Similar Documents

Publication Publication Date Title
US6030884A (en) Method of bonding a III-V group compound semiconductor layer on a silicon substrate
US5735949A (en) Method of producing electronic, electrooptical and optical components
US5011550A (en) Laminated structure of compound semiconductors
KR100319300B1 (en) Semiconductor Device with Quantum dot buffer in heterojunction structures
JPH01289108A (en) Heteroepitaxy
JPH0794420A (en) Manufacture of compound semiconductor crystal substrate
JP3855061B2 (en) Method of forming compound semiconductor thin film on Si substrate
US5107317A (en) Semiconductor device with first and second buffer layers
JPS60210831A (en) Manufacture of compound semiconductor crystal substrate
JPH03284834A (en) Semiconductor device
JPS6066811A (en) Manufacture of compound semiconductor device
JPS61189621A (en) Compound semiconductor device
JP3350855B2 (en) Method for manufacturing group III nitride semiconductor substrate
US20100187539A1 (en) Compound semiconductor epitaxial wafer and fabrication method thereof
JP4728460B2 (en) Method for producing gallium nitride compound semiconductor single crystal
JP2006253414A (en) Method for forming semiconductor thin film on si substrate and its structure
JPH0475649B2 (en)
JP2687445B2 (en) Heteroepitaxial growth method
JPS61189620A (en) Compound semiconductor device
JPS63184320A (en) Semiconductor device
JP2959767B2 (en) Semiconductor substrate, semiconductor device and method of manufacturing the same
JPS6066812A (en) Manufacture of compound semiconductor device
KR100425092B1 (en) method for fabricating silicon compliant substrate
KR940008012B1 (en) Direct bonding method of hetero-type semiconductor substrate
JPH02210817A (en) Inp epitaxial growth method