JP4728460B2 - Method for producing gallium nitride compound semiconductor single crystal - Google Patents

Method for producing gallium nitride compound semiconductor single crystal Download PDF

Info

Publication number
JP4728460B2
JP4728460B2 JP7136499A JP7136499A JP4728460B2 JP 4728460 B2 JP4728460 B2 JP 4728460B2 JP 7136499 A JP7136499 A JP 7136499A JP 7136499 A JP7136499 A JP 7136499A JP 4728460 B2 JP4728460 B2 JP 4728460B2
Authority
JP
Japan
Prior art keywords
single crystal
compound semiconductor
gallium nitride
nitride compound
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP7136499A
Other languages
Japanese (ja)
Other versions
JP2000269143A (en
Inventor
洋二 関
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JX Nippon Mining and Metals Corp
Original Assignee
JX Nippon Mining and Metals Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JX Nippon Mining and Metals Corp filed Critical JX Nippon Mining and Metals Corp
Priority to JP7136499A priority Critical patent/JP4728460B2/en
Publication of JP2000269143A publication Critical patent/JP2000269143A/en
Application granted granted Critical
Publication of JP4728460B2 publication Critical patent/JP4728460B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Led Devices (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、光デバイス,電子デバイスなどの半導体デバイスの製造に用いられる窒化ガリウム系化合物半導体単結晶の製造方法に関するものである。
【0002】
【従来の技術】
窒化ガリウム系化合物半導体(例えば、InxGayAl1-x-yN)(0≦x,y;x+y≦1)は、禁制帯幅が広く、短波長発光素子,耐環境素子として期待され、広く研究されてきた。
【0003】
しかしながら、この窒化ガリウム系の化合物半導体においては、未だ大型のバルク結晶が得られないため、異種結晶(例えばサファイアα−Al23)上へのヘテロエピタキシーによってGaN等の薄膜単結晶を形成したものが基板として用いられてきた。
【0004】
ところが、サファイアに代表されるように、多くの場合、基板に用いられる異種結晶とその上に成長される窒化ガリウム系化合物半導体薄膜との格子不整合性が大きく、欠陥や熱歪みなどが発生し易いため、窒化ガリウム系化合物薄膜単結晶は品質的に問題を抱えるものであった。
【0005】
そこで、窒化ガリウム系化合物半導体のヘテロエピタキシー用に、種々の優れた特性を備える異種結晶基板の材料の一つとして希土類Gaペロブスカイトに代表される希土類13(3B)族ペロブスカイトを用いる窒化ガリウム系化合物半導体単結晶の成長方法および窒化ガリウム系化合物半導体装置が提案されている(特願平7−526233号)。
【0006】
この希土類13(3B)族ペロブスカイトの基板を用いると、例えばNdGaO3を基板として用い、その基板上にGaNをエピタキシャル成長させる場合には、格子不整合を1.2%程度とすることができた。この格子不整合性は、サファイアやその代替品として用いられるSiCを基板とした場合と比較しても非常に小さく、窒化ガリウム系化合物半導体単結晶のヘテロエピタキシーに適していると考えられる。
【0007】
【発明が解決しようとする課題】
しかし、希土類13(3B)族ペロブスカイトを窒化ガリウム系化合物半導体のヘテロエピタキシー用の基板として用いる場合において、例えばNdGaO3を基板として窒化ガリウム系化合物半導体単結晶をエピタキシャル成長させると、基板とエピタキシャル層との熱膨張係数の差によって生じる熱歪みに起因して、成長終了後の冷却時に基板およびエピタキシャル層の双方が小片状に砕けて破壊されてしまい、歩留まりを大幅に低下させる問題を生じる場合があった。
【0008】
本発明は上述のような問題を解決すべく案出されたものであり、成長終了後の冷却時に基板やエピタキシャル層の破壊を防止することのでき、エピタキシャル層の形状を保ったまま基板から剥離することのできる窒化ガリウム系化合物半導体単結晶の製造方法を提供することを主目的とするものである。
【0009】
【課題を解決するための手段】
上記目的を達成するために、発明(1)は、単結晶基板上に窒化ガリウム系化合物半導体の結晶をエピタキシャル成長させた後、降温速度を毎分5℃以下、好ましくは毎分2℃以下の条件で冷却するようにしたものである。
【0010】
これにより、窒化ガリウム系化合物半導体の結晶をエピタキシャル成長させた後の冷却工程における降温速度を小さくし、急激な熱衝撃を回避することにより窒化ガリウム系化合物半導体の単結晶のエピタキシャル層と単結晶基板との熱膨張係数の差に起因する熱歪を抑制することができ、基板やエピタキシャル層の破壊を防止することができる。
【0011】
また、発明(2)は、単結晶基板上に窒化ガリウム系化合物半導体の結晶をエピタキシャル成長させる方法において、上記単結晶基板の厚さを、300μm以下、好ましくは100μm以下と薄くしたものである。
【0012】
これにより、単結晶基板とエピタキシャル層(窒化ガリウム系化合物半導体の結晶)との熱膨張係数の差に起因する熱歪みをエピタキシャル層が破壊しない程度に小さくすることができ、窒化ガリウム系化合物半導体の結晶を破壊することなく得ることができる。
【0013】
さらに、発明(3)は、単結晶基板上に窒化ガリウム系化合物半導体の結晶をエピタキシャル成長させる方法において、成長させた窒化ガリウム系化合物半導体結晶の厚さを、100μm以上、好ましくは300μm以上と厚くしたものである。
【0014】
これにより、エピタキシャル層(窒化ガリウム系化合物半導体の結晶)の強度が、単結晶基板とエピタキシャル層との熱膨張係数の差に起因する熱歪みによっても破壊されない程度に強化することができ、窒化ガリウム系化合物半導体結晶の破壊を未然に防止することができる。
【0015】
なお、上記方法は適宜組み合わせて用いることができ、相乗効果により成長させた上記窒化ガリウム系化合物半導体結晶を破壊することなく単結晶基板から剥離させて窒化ガリウム系化合物半導体の結晶を歩留まりよく得ることができる。
【0016】
具体的には、上記発明(1)+発明(2),発明(1)+発明(3),発明(2)+発明(3),発明(1)+発明(2)+発明(3)等の組み合わせである。
【0017】
また、上記単結晶基板は、1種類また2種類以上の希土類元素を含む希土類13(3B)族ペロブスカイトの結晶とすることができる。また、上記希土類元素は、Al,Ga,Inの少なくとも一つとしてもよい。
【0018】
このようにして製造した良質の窒化ガリウム系化合物半導体単結晶を用いることにより、熱的,化学的に安定な高性能の青色発光ダイオードや半導体レーザ等の半導体装置を作成することが可能となる。
【0019】
【発明の実施の形態】
ここで、本発明の実施形態について説明する。
【0020】
なお、本実施形態では、希土類ガリウムペロブスカイトの一種としてNdGaO3の単結晶基板の(011)面上に窒化ガリウム系化合物半導体としてのGaN単結晶を成長させる場合について述べる。
【0021】
また、GaNの成長方法としては、ハイドライドVPE法を用いることができるが、これに限定されるものではない。
【0022】
(第1の実施形態)
本実施形態は、窒化ガリウム系化合物半導体の結晶成長工程終了後の冷却工程における降温速度を毎分5℃以下、好ましくは毎分2℃以下とする場合の実施形態の一例であり、上記降温速度を毎分1.3℃にした場合について述べる。
【0023】
本実施形態では、まず、厚さ350μmの(011)面NdGaO3単結晶基板を有機洗浄および酸洗浄した後、乾燥させ、ハイドライドVPE(HVPE)装置にセットした。
【0024】
次いで、窒素ガスを流しながら、基板部の温度を600℃に、Ga原料の温度を850℃に昇温して保持した。
【0025】
そして、Ga原料の上流側から窒素(N2)ガスで希釈されたHClガスを流し、同時にGa原料をバイパスして基板の直上近傍にNH3ガスを流して、基板の表面に第1のGaN層の薄膜を10分間成長させた。これにより得られた第1のGaN層の薄膜の厚さは約0.1μmであった。なお、この第1のGaN層は、NdGaO3の単結晶基板が高温下でNH3により分解されるのを防ぐ目的で形成されるものである。
【0026】
続いて、基板部の温度を1000℃に昇温,保持して、第2のGaN層の薄膜を30分間成長させた。その後、降温速度毎分1.3℃で室温まで冷却してGaN層を成長させた単結晶基板をHVPE装置から取り出した。なお、第2のGaN層と第1のGaN層とを合わせたGaN層全体の厚さは約50μmである。
【0027】
このGaN層に粘着テープを貼付するなどして単結晶基板から剥離させたところ、小片に破壊されることなく剥がすことができ、GaNの単結晶として得ることができた。
【0028】
その後、このGaN単結晶を検査したところ、全体としては表面に異常成長が見られない平坦な鏡面のエピタキシャル膜であり、X線回折法による観察では良好な膜質の(0001)面の単結晶であることが確認された。なお、若干の反りがみられる場合があったが実用上問題の無い程度であり、GaNチップとして最大20mm×30mmをとることが可能であった(表1の結果(b)参照)。
【0029】
【表1】

Figure 0004728460
【0030】
なお、表1は、GaN層の厚さ,降温速度,剥離したGaN単結晶の反りの程度,得られたGaNチップの最大のサイズを示す表である。
【0031】
上記表1の結果(b)のような成果は、GaN層をエピタキシャル成長させた後の冷却工程における降温速度を毎分1.3℃と小さくすることにより、急激な熱衝撃を回避することができたため、GaN単結晶のエピタキシャル層とNdGaO3単結晶基板との熱膨張係数の差に起因する熱歪みを抑制することができ、それによりGaN単結晶の破壊を防止することができたものと推論することができる。
【0032】
なお、対比のため、上記と同様の条件で、GaN層育成後の降温速度のみを毎分12℃と変更して実験したところ、基板からGaN層を剥離する時点でGaN層は破壊されてしまうか、あるいは破壊せずに剥離できた場合にも反りが大きかった。そのため、GaNチップの最大サイズも7mm×4mmと小さく(表1の結果(a)参照)実用上は難点を有するものであった。
【0033】
(第2の実施形態)
本実施形態は、成長させる窒化ガリウム系化合物半導体結晶の厚さを、100μm以上、好ましくは300μm以上とする場合の実施形態の一例であり、上記厚さを100μmと300μmにした場合について述べる。
【0034】
本実施形態では、厚さ350μmの(011)面NdGaO3単結晶基板を有機洗浄および酸洗浄した後、乾燥させ、ハイドライドVPE(HVPE)装置にセットした。
【0035】
次いで、窒素ガスを流しながら、基板部の温度を600℃に、Ga原料の温度を850℃に昇温して保持した。
【0036】
そして、Ga原料の上流側から窒素(N2)ガスで希釈されたHClガスを流し、同時にGa原料をバイパスして基板の直上近傍にNH3ガスを流して、基板の表面に第1のGaN層の薄膜を10分間成長させた。これにより得られた第1のGaN層の薄膜の厚さは約0.1μmであった。
【0037】
続いて、基板部の温度を1000℃に昇温,保持して、第2のGaN層の薄膜を60分間成長させた。その後、降温速度毎分1.3℃で室温まで冷却してGaN層を成長させた単結晶基板をHVPE装置から取り出した。
【0038】
この場合に、第2のGaN層と第1のGaN層とを合わせたGaN層全体の厚さは約100μmであった。
【0039】
このGaN層に粘着テープを貼付するなどして単結晶基板から剥離させたところ、小片に破壊されることなく剥がれ、GaNの単結晶として得ることができた。その後、このGaN単結晶を検査したところ、全体としては表面に異常成長が見られない平坦な鏡面のエピタキシャル膜であり、X線回折法による観察では良好な膜質の(0001)面の単結晶であることが確認された。また、反りも観察されず平坦性も良好であり、GaNチップとして最大20mm×30mmをとることが可能であった(表2の結果()参照)。
【0040】
【表2】
Figure 0004728460
【0041】
なお、表2は、GaN層の厚さ,降温速度,剥離したGaN単結晶の反りの程度,得られたGaNチップの最大のサイズを示す表である。
【0042】
また、第2のGaN層の薄膜の成長時間を延ばして、第2のGaN層と第1のGaN層とを合わせたGaN層全体の厚さを約300μmとする実験を行ったところ、やはり小片に破壊されることなく基板から剥がすことができ、GaNの単結晶として得ることができた。このGaN単結晶についても検査したところ、全体としては表面に異常成長が見られない平坦な鏡面のエピタキシャル膜であり、X線回折法による観察でも良好な膜質の(0001)面の単結晶であることが確認された。また、反りも観察されず平坦性も良好であった(表の結果()参照)。この場合には、GaNチップとして、用いた基板の大きさに相当する直径50mmをとることが可能であった。また、NdGaO3単結晶基板としては、最大40mm×30mmのものを用いることができ、GaN単結晶の大面積化に有効であることを確認できた。
【0043】
このような結果は、成長させたGaN結晶の厚さを、100μm以上と厚くしたことにより、GaNのエピタキシャル層の強度を、NdGaO3単結晶基板とエピタキシャル層との熱膨張係数の差に起因する熱歪みによっても破壊されない程度に強化することができたので、窒化ガリウム系化合物半導体結晶の破壊を未然に防止することができたものと推論することができる。
【0044】
(第3の実施形態)
本実施形態は、単結晶基板の厚さを、300μm以下、好ましくは100μm以下とする場合の実施形態の一例であり、単結晶基板の厚さを100μmとし、窒化ガリウム系化合物半導体の結晶成長工程終了後の冷却工程における降温速度を毎分12℃、成長させる窒化ガリウム系化合物半導体結晶の厚さを100μmと300μmにした場合について述べる。
【0045】
本実施形態では、厚さ100μmの(011)面NdGaO3単結晶基板を有機洗浄および酸洗浄した後、乾燥させ、ハイドライドVPE(HVPE)装置にセットした。
【0046】
次いで、窒素ガスを流しながら、基板部の温度を600℃に、Ga原料の温度を850℃に昇温して保持した。
【0047】
そして、Ga原料の上流側から窒素(N2)ガスで希釈されたHClガスを流し、同時にGa原料をバイパスして基板の直上近傍にNH3ガスを流して、基板の表面に第1のGaN層の薄膜を10分間成長させた。これにより得られた第1のGaN層の薄膜の厚さは約0.1μmであった。
【0048】
続いて、基板部の温度を1000℃に昇温,保持して、第2のGaN層の薄膜を30分間成長させた。その後、降温速度毎分12℃で室温まで冷却してGaN層を成長させた単結晶基板をHVPE装置から取り出した。
【0049】
この場合に、第2のGaN層と第1のGaN層とを合わせたGaN層全体の厚さは約100μmであった。
【0050】
このGaN層に粘着テープを貼付するなどして単結晶基板から剥離させたところ、小片に破壊されることなく剥がれ、GaNの単結晶として得ることができた。その後、このGaN単結晶を検査したところ、全体としては表面に異常成長が見られない平坦な鏡面のエピタキシャル膜であり、X線回折法による観察では良好な膜質の(0001)面の単結晶であることが確認された。なお、若干の反りがみられる場合があったが実用上問題の無い程度であった(表3の結果()参照)。
【0051】
【表3】
Figure 0004728460
【0052】
なお、表3は、GaN層の厚さ,降温速度,剥離したGaN単結晶の反りの程度を示す表である。
【0053】
また、第2のGaN層の薄膜の成長時間を延ばして、第2のGaN層と第1のGaN層とを合わせたGaN層全体の厚さを約300μmとする実験をおこなったところ、やはり小片に破壊されることなく基板から剥がすことができ、GaNの単結晶として得ることができた。このGaN単結晶についても検査したところ、全体としては表面に異常成長が見られない平坦な鏡面のエピタキシャル膜であり、X線回折法による観察でも良好な膜質の(0001)面の単結晶であることが確認された。また、反りも観察されず平坦性も良好であった(表3の結果()参照)。
【0054】
このような結果は、NdGaO3単結晶基板の厚さを、100μmと薄くしたことにより、NdGaO3単結晶基板とGaNのGaNのエピタキシャル層との熱膨張係数の差に起因する熱歪みをエピタキシャル層が破壊しない程度に小さくすることができたので、GaN結晶を破壊することなく得ることができたものと推論することができる。
【0055】
このように上記第1から第3の実施形態によれば、成長させた窒化ガリウム系化合物半導体結晶(GaN単結晶)を破壊することなく単結晶基板から剥離させて窒化ガリウム系化合物半導体の結晶を歩留まりよく得ることができ、生産性を向上させて窒化ガリウム系化合物半導体結晶の製造コストを低減することができる。
【0056】
また、上述のようにハイドライドVPE法等を用いる場合には、成長速度が速いため短時間で容易に窒化ガリウム系化合物半導体結晶の厚膜を得ることができ、さらに、結晶のエピタキシャル成長過程で不純物をドーピングすることにより、導電性の窒化ガリウム系化合物半導体単結晶を製造することも可能である。
【0057】
なお、上記実施形態では、希土類ガリウムペロブスカイトとしてNdGaO3単結晶基板を用い、GaN単結晶を成長させる場合について説明したが、これに限られるものではなく、その他の1または2種類以上の希土類元素を含む希土類13(3B)族ペロブスカイトの単結晶基板上にGaN以外の窒化ガリウム系化合物半導体単結晶を成長させる場合にも適用することができる。また、上記希土類元素は、Al,Ga,Inの少なくとも一つとすることができる。
【0058】
また、本実施形態では、不活性ガスとしてN2ガスを用いる場合について述べたがこれに限定されずその他の不活性ガスを用いることも可能である。
【0059】
【発明の効果】
本発明は、単結晶基板上に窒化ガリウム系化合物半導体の結晶をエピタキシャル成長させた後、降温速度を毎分5℃以下、好ましくは毎分2℃以下の条件で冷却するようにしたので、窒化ガリウム系化合物半導体の結晶をエピタキシャル成長させた後の冷却工程における降温速度を小さくし、急激な熱衝撃を回避することにより窒化ガリウム系化合物半導体の単結晶のエピタキシャル層と単結晶基板との熱膨張係数の差に起因する熱歪みによる破壊を防止することができるという効果がある。
【0060】
また、単結晶基板上に窒化ガリウム系化合物半導体の結晶をエピタキシャル成長させる方法において、上記単結晶基板の厚さを、300μm以下、好ましくは100μm以下と薄くすることにより、単結晶基板とエピタキシャル層(窒化ガリウム系化合物半導体の結晶)との熱膨張係数の差に起因する熱歪みをエピタキシャル層が破壊しない程度に小さくすることができ、窒化ガリウム系化合物半導体の結晶を破壊することなく得ることができるという効果がある。
【0061】
さらに、単結晶基板上に窒化ガリウム系化合物半導体の結晶をエピタキシャル成長させる方法において、成長させた窒化ガリウム系化合物半導体結晶の厚さを、100μm以上、好ましくは300μm以上と厚くすることにより、エピタキシャル層(窒化ガリウム系化合物半導体の結晶)の強度が、単結晶基板とエピタキシャル層との熱膨張係数の差に起因する熱歪みによっても破壊されない程度に強化することができ、窒化ガリウム系化合物半導体結晶の破壊を未然に防止することができるという効果がある。
【0062】
なお、上記方法は適宜組み合わせて用いることができ、相乗効果により成長させた上記窒化ガリウム系化合物半導体結晶を破壊することなく単結晶基板から剥離させて窒化ガリウム系化合物半導体の結晶を歩留まりよく得ることができるという効果を期待できる。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for manufacturing a gallium nitride-based compound semiconductor single crystal used for manufacturing semiconductor devices such as optical devices and electronic devices.
[0002]
[Prior art]
Gallium nitride-based compound semiconductors (for example, In x Ga y Al 1-xy N) (0 ≦ x, y; x + y ≦ 1) have a wide forbidden bandwidth and are expected as short-wavelength light-emitting elements and environment-resistant elements. Have been studied extensively.
[0003]
However, in this gallium nitride-based compound semiconductor, since a large bulk crystal cannot be obtained yet, a thin-film single crystal such as GaN is formed by heteroepitaxy on a different crystal (for example, sapphire α-Al 2 O 3 ). Things have been used as substrates.
[0004]
However, as represented by sapphire, in many cases, the lattice mismatch between the dissimilar crystal used for the substrate and the gallium nitride compound semiconductor thin film grown thereon is large, resulting in defects and thermal strain. Therefore, the gallium nitride compound thin film single crystal has a problem in quality.
[0005]
Therefore, a gallium nitride compound semiconductor using a rare earth 13 (3B) group perovskite represented by a rare earth Ga perovskite as one of the materials of a heterogeneous crystal substrate having various excellent characteristics for hetero epitaxy of a gallium nitride compound semiconductor. A single crystal growth method and a gallium nitride compound semiconductor device have been proposed (Japanese Patent Application No. 7-526233).
[0006]
When this rare earth 13 (3B) group perovskite substrate was used, for example, when NdGaO 3 was used as the substrate and GaN was epitaxially grown on the substrate, the lattice mismatch could be reduced to about 1.2%. This lattice mismatch is very small as compared with the case of using sapphire or SiC used as a substitute for the substrate as a substrate, and is considered suitable for heteroepitaxy of a gallium nitride-based compound semiconductor single crystal.
[0007]
[Problems to be solved by the invention]
However, when the rare earth 13 (3B) group perovskite is used as a heteroepitaxial substrate for a gallium nitride compound semiconductor, for example, when a gallium nitride compound semiconductor single crystal is epitaxially grown using NdGaO 3 as a substrate, the substrate and the epitaxial layer Due to the thermal strain caused by the difference in thermal expansion coefficient, both the substrate and the epitaxial layer may be broken into pieces and destroyed during cooling after the growth, resulting in a problem of greatly reducing the yield. It was.
[0008]
The present invention has been devised to solve the above-mentioned problems, and can prevent the substrate and the epitaxial layer from being destroyed during cooling after the growth is completed, and can be peeled off from the substrate while maintaining the shape of the epitaxial layer. The main object of the present invention is to provide a method for producing a gallium nitride compound semiconductor single crystal that can be used.
[0009]
[Means for Solving the Problems]
In order to achieve the above object, the invention (1) is based on the condition that, after epitaxially growing a crystal of a gallium nitride compound semiconductor on a single crystal substrate, the temperature decreasing rate is 5 ° C. or less, preferably 2 ° C. or less. It is made to cool with.
[0010]
Thereby, the temperature drop rate in the cooling process after epitaxially growing the crystal of the gallium nitride compound semiconductor is reduced, and a sudden thermal shock is avoided, so that the single crystal epitaxial layer and the single crystal substrate of the gallium nitride compound semiconductor are It is possible to suppress thermal strain caused by the difference in thermal expansion coefficient between the substrates and the substrate and the epitaxial layer.
[0011]
The invention (2) is a method of epitaxially growing a gallium nitride compound semiconductor crystal on a single crystal substrate, wherein the thickness of the single crystal substrate is reduced to 300 μm or less, preferably 100 μm or less.
[0012]
As a result, the thermal strain due to the difference in thermal expansion coefficient between the single crystal substrate and the epitaxial layer (gallium nitride compound semiconductor crystal) can be reduced to such an extent that the epitaxial layer does not break down. It can be obtained without destroying the crystals.
[0013]
Further, in the invention (3), in the method of epitaxially growing a gallium nitride compound semiconductor crystal on a single crystal substrate, the thickness of the grown gallium nitride compound semiconductor crystal is increased to 100 μm or more, preferably 300 μm or more. Is.
[0014]
As a result, the strength of the epitaxial layer (gallium nitride compound semiconductor crystal) can be strengthened to such an extent that it is not destroyed by thermal strain caused by the difference in thermal expansion coefficient between the single crystal substrate and the epitaxial layer. Breakage of the system compound semiconductor crystal can be prevented beforehand.
[0015]
Note that the above methods can be used in appropriate combinations, and the gallium nitride compound semiconductor crystal grown by a synergistic effect is peeled off from the single crystal substrate without breaking, thereby obtaining a gallium nitride compound semiconductor crystal with high yield. Can do.
[0016]
Specifically, Invention (1) + Invention (2), Invention (1) + Invention (3), Invention (2) + Invention (3), Invention (1) + Invention (2) + Invention (3) Etc. are combinations.
[0017]
The single crystal substrate may be a rare earth 13 (3B) group perovskite crystal containing one kind or two or more kinds of rare earth elements. The rare earth element may be at least one of Al, Ga, and In.
[0018]
By using the high-quality gallium nitride compound semiconductor single crystal thus manufactured, it is possible to produce a semiconductor device such as a high-performance blue light-emitting diode or semiconductor laser that is thermally and chemically stable.
[0019]
DETAILED DESCRIPTION OF THE INVENTION
Here, an embodiment of the present invention will be described.
[0020]
In this embodiment, a case where a GaN single crystal as a gallium nitride compound semiconductor is grown on a (011) plane of a single crystal substrate of NdGaO 3 as a kind of rare earth gallium perovskite will be described.
[0021]
Further, as a method for growing GaN, a hydride VPE method can be used, but it is not limited to this.
[0022]
(First embodiment)
This embodiment is an example of an embodiment in which the cooling rate in the cooling process after the completion of the crystal growth process of the gallium nitride compound semiconductor is 5 ° C. or less per minute, preferably 2 ° C. or less per minute. The case where is set to 1.3 ° C. per minute will be described.
[0023]
In this embodiment, first, a (011) plane NdGaO 3 single crystal substrate having a thickness of 350 μm was subjected to organic cleaning and acid cleaning, and then dried and set in a hydride VPE (HVPE) apparatus.
[0024]
Next, while flowing nitrogen gas, the temperature of the substrate portion was raised to 600 ° C. and the temperature of the Ga raw material was raised to 850 ° C. and held.
[0025]
Then, HCl gas diluted with nitrogen (N 2 ) gas is allowed to flow from the upstream side of the Ga source, and simultaneously, NH 3 gas is allowed to flow immediately above the substrate while bypassing the Ga source, so that the first GaN is formed on the surface of the substrate. A thin film of layers was grown for 10 minutes. The thickness of the thin film of the 1st GaN layer obtained by this was about 0.1 micrometer. The first GaN layer is formed for the purpose of preventing the NdGaO 3 single crystal substrate from being decomposed by NH 3 at a high temperature.
[0026]
Subsequently, the temperature of the substrate portion was raised to 1000 ° C. and held, and a thin film of the second GaN layer was grown for 30 minutes. Thereafter, the single crystal substrate on which the GaN layer was grown by cooling to room temperature at a temperature drop rate of 1.3 ° C. per minute was taken out from the HVPE apparatus. The total thickness of the GaN layer including the second GaN layer and the first GaN layer is about 50 μm.
[0027]
When the GaN layer was peeled off from the single crystal substrate by sticking an adhesive tape or the like, it could be peeled off without being broken into small pieces and obtained as a single crystal of GaN.
[0028]
After that, when this GaN single crystal was inspected, it was a flat mirror surface epitaxial film with no abnormal growth on the surface as a whole, and it was a (0001) plane single crystal with good film quality as observed by X-ray diffraction method. It was confirmed that there was. Although some warping was observed, there was no problem in practical use, and it was possible to take a maximum of 20 mm × 30 mm as a GaN chip (see the result (b) in Table 1).
[0029]
[Table 1]
Figure 0004728460
[0030]
Table 1 is a table showing the thickness of the GaN layer, the temperature drop rate, the degree of warpage of the peeled GaN single crystal, and the maximum size of the obtained GaN chip.
[0031]
Results such as the result (b) in Table 1 above can avoid a rapid thermal shock by reducing the cooling rate in the cooling step after epitaxially growing the GaN layer to 1.3 ° C./min. Therefore, it is inferred that the thermal strain caused by the difference in thermal expansion coefficient between the epitaxial layer of the GaN single crystal and the NdGaO 3 single crystal substrate can be suppressed, thereby preventing the destruction of the GaN single crystal. can do.
[0032]
For comparison, an experiment was conducted by changing only the temperature drop rate after growing the GaN layer to 12 ° C. per minute under the same conditions as described above, and the GaN layer was destroyed when the GaN layer was peeled from the substrate. The warpage was also great when the film could be peeled without breaking. Therefore, the maximum size of the GaN chip is also as small as 7 mm × 4 mm (see the result (a) in Table 1), which has a practical difficulty.
[0033]
(Second Embodiment)
This embodiment is an example of an embodiment in which the thickness of the gallium nitride compound semiconductor crystal to be grown is 100 μm or more, preferably 300 μm or more. The case where the thickness is 100 μm and 300 μm will be described.
[0034]
In this embodiment, a (011) plane NdGaO 3 single crystal substrate having a thickness of 350 μm was subjected to organic cleaning and acid cleaning, and then dried and set in a hydride VPE (HVPE) apparatus.
[0035]
Next, while flowing nitrogen gas, the temperature of the substrate portion was raised to 600 ° C. and the temperature of the Ga raw material was raised to 850 ° C. and held.
[0036]
Then, HCl gas diluted with nitrogen (N 2 ) gas is allowed to flow from the upstream side of the Ga source, and simultaneously, NH 3 gas is allowed to flow immediately above the substrate while bypassing the Ga source, so that the first GaN is formed on the surface of the substrate. A thin film of layers was grown for 10 minutes. The thickness of the thin film of the 1st GaN layer obtained by this was about 0.1 micrometer.
[0037]
Subsequently, the temperature of the substrate portion was raised to 1000 ° C. and held, and a thin film of the second GaN layer was grown for 60 minutes. Thereafter, the single crystal substrate on which the GaN layer was grown by cooling to room temperature at a temperature drop rate of 1.3 ° C. per minute was taken out from the HVPE apparatus.
[0038]
In this case, the total thickness of the GaN layer including the second GaN layer and the first GaN layer was about 100 μm.
[0039]
When the GaN layer was peeled off from the single crystal substrate by attaching an adhesive tape or the like, it was peeled off without being broken into small pieces, and a GaN single crystal could be obtained. After that, when this GaN single crystal was inspected, it was a flat mirror surface epitaxial film with no abnormal growth on the surface as a whole, and it was a (0001) plane single crystal with good film quality as observed by X-ray diffraction method. It was confirmed that there was. Further, no warping was observed and the flatness was good, and it was possible to take a maximum of 20 mm × 30 mm as a GaN chip (see the result ( c ) in Table 2).
[0040]
[Table 2]
Figure 0004728460
[0041]
Table 2 shows the thickness of the GaN layer, the temperature drop rate, the degree of warpage of the peeled GaN single crystal, and the maximum size of the obtained GaN chip.
[0042]
In addition, when the growth time of the thin film of the second GaN layer was extended and the total thickness of the GaN layer including the second GaN layer and the first GaN layer was about 300 μm, an experiment was performed. Can be peeled off from the substrate without being broken, and can be obtained as a single crystal of GaN. When this GaN single crystal was also inspected, it was a flat mirror surface epitaxial film with no abnormal growth on the surface as a whole, and was a (0001) plane single crystal with good film quality even when observed by X-ray diffraction. It was confirmed. Further, no warpage was observed and the flatness was good (see the result ( d ) in Table 2 ). In this case, it was possible to take a diameter of 50 mm corresponding to the size of the substrate used as the GaN chip. Further, as the NdGaO 3 single crystal substrate, a substrate having a maximum of 40 mm × 30 mm can be used, and it was confirmed that it is effective for increasing the area of the GaN single crystal.
[0043]
Such a result is attributed to the difference in thermal expansion coefficient between the NdGaO 3 single crystal substrate and the epitaxial layer by increasing the thickness of the grown GaN crystal to 100 μm or more. It can be inferred that the gallium nitride compound semiconductor crystal could be prevented from being broken because it could be strengthened to such an extent that it could not be destroyed by thermal strain.
[0044]
(Third embodiment)
This embodiment is an example of an embodiment in which the thickness of the single crystal substrate is 300 μm or less, preferably 100 μm or less. The thickness of the single crystal substrate is 100 μm, and the crystal growth process of the gallium nitride compound semiconductor A case will be described in which the temperature drop rate in the cooling step after completion is 12 ° C. per minute and the thickness of the gallium nitride compound semiconductor crystal to be grown is 100 μm and 300 μm.
[0045]
In this embodiment, a (011) plane NdGaO 3 single crystal substrate having a thickness of 100 μm was subjected to organic cleaning and acid cleaning, and then dried and set in a hydride VPE (HVPE) apparatus.
[0046]
Next, while flowing nitrogen gas, the temperature of the substrate portion was raised to 600 ° C. and the temperature of the Ga raw material was raised to 850 ° C. and held.
[0047]
Then, HCl gas diluted with nitrogen (N 2 ) gas is allowed to flow from the upstream side of the Ga source, and simultaneously, NH 3 gas is allowed to flow immediately above the substrate while bypassing the Ga source, so that the first GaN is formed on the surface of the substrate. A thin film of layers was grown for 10 minutes. The thickness of the thin film of the 1st GaN layer obtained by this was about 0.1 micrometer.
[0048]
Subsequently, the temperature of the substrate portion was raised to 1000 ° C. and held, and a thin film of the second GaN layer was grown for 30 minutes. Thereafter, the single crystal substrate on which the GaN layer was grown by cooling to room temperature at 12 ° C. per minute was taken out from the HVPE apparatus.
[0049]
In this case, the total thickness of the GaN layer including the second GaN layer and the first GaN layer was about 100 μm.
[0050]
When the GaN layer was peeled off from the single crystal substrate by attaching an adhesive tape or the like, it was peeled off without being broken into small pieces, and a GaN single crystal could be obtained. After that, when this GaN single crystal was inspected, it was a flat mirror surface epitaxial film with no abnormal growth on the surface as a whole, and it was a (0001) plane single crystal with good film quality as observed by X-ray diffraction method. It was confirmed that there was. Although some warping was observed, there was no practical problem (see the result ( e ) in Table 3).
[0051]
[Table 3]
Figure 0004728460
[0052]
Table 3 is a table showing the thickness of the GaN layer, the temperature drop rate, and the degree of warpage of the separated GaN single crystal.
[0053]
Further, when the growth time of the thin film of the second GaN layer was extended and the total thickness of the GaN layer including the second GaN layer and the first GaN layer was about 300 μm, an experiment was performed. Can be peeled off from the substrate without being broken, and can be obtained as a single crystal of GaN. When this GaN single crystal was also inspected, it was a flat mirror surface epitaxial film with no abnormal growth on the surface as a whole, and was a (0001) plane single crystal with good film quality even when observed by X-ray diffraction. It was confirmed. Further, no warpage was observed and the flatness was good (see the result ( f ) in Table 3).
[0054]
Such a result shows that the thickness of the NdGaO 3 single crystal substrate is reduced to 100 μm, so that the thermal strain caused by the difference in thermal expansion coefficient between the NdGaO 3 single crystal substrate and the GaN epitaxial layer of GaN is reduced to the epitaxial layer. Therefore, it can be inferred that the GaN crystal could be obtained without destroying it.
[0055]
As described above, according to the first to third embodiments, the grown gallium nitride compound semiconductor crystal (GaN single crystal) is peeled off from the single crystal substrate without destroying the gallium nitride compound semiconductor crystal. It can be obtained with a good yield, and the productivity can be improved and the manufacturing cost of the gallium nitride compound semiconductor crystal can be reduced.
[0056]
Further, when the hydride VPE method or the like is used as described above, since the growth rate is high, a thick film of a gallium nitride compound semiconductor crystal can be easily obtained in a short time, and impurities can be added during the epitaxial growth process of the crystal. Conducting gallium nitride compound semiconductor single crystals can be produced by doping.
[0057]
In the above embodiment, a case where a NdGaO 3 single crystal substrate is used as a rare earth gallium perovskite and a GaN single crystal is grown has been described. However, the present invention is not limited to this, and other one or more kinds of rare earth elements are used. The present invention can also be applied to the case where a gallium nitride compound semiconductor single crystal other than GaN is grown on a rare earth 13 (3B) group perovskite single crystal substrate. The rare earth element may be at least one of Al, Ga, and In.
[0058]
In this embodiment, the case where N 2 gas is used as the inert gas has been described. However, the present invention is not limited to this, and other inert gases can also be used.
[0059]
【The invention's effect】
In the present invention, after a gallium nitride compound semiconductor crystal is epitaxially grown on a single crystal substrate, the temperature drop rate is 5 ° C./min or less, preferably 2 ° C./min or less. The thermal expansion coefficient between the single crystal epitaxial layer and the single crystal substrate of the gallium nitride compound semiconductor is reduced by reducing the temperature drop rate in the cooling step after epitaxially growing the crystal of the semiconductor compound semiconductor and avoiding a sudden thermal shock. There is an effect that it is possible to prevent breakage due to thermal distortion caused by the difference.
[0060]
In the method of epitaxially growing a gallium nitride compound semiconductor crystal on a single crystal substrate, the thickness of the single crystal substrate is reduced to 300 μm or less, preferably 100 μm or less, so that the single crystal substrate and the epitaxial layer (nitride) The thermal strain caused by the difference in thermal expansion coefficient from the crystal of the gallium compound semiconductor) can be reduced to such an extent that the epitaxial layer does not break, and can be obtained without destroying the gallium nitride compound semiconductor crystal. effective.
[0061]
Further, in the method of epitaxially growing a gallium nitride compound semiconductor crystal on a single crystal substrate, the thickness of the grown gallium nitride compound semiconductor crystal is increased to 100 μm or more, preferably 300 μm or more, thereby forming an epitaxial layer ( The strength of the gallium nitride compound semiconductor crystal) can be strengthened to such an extent that it cannot be destroyed by thermal strain caused by the difference in thermal expansion coefficient between the single crystal substrate and the epitaxial layer. There is an effect that can be prevented.
[0062]
Note that the above methods can be used in appropriate combinations, and the gallium nitride compound semiconductor crystal grown by a synergistic effect is peeled off from the single crystal substrate without breaking, thereby obtaining a gallium nitride compound semiconductor crystal with high yield. You can expect the effect that you can.

Claims (8)

厚さが300μmを超えるAl,Ga,Inの少なくとも一つを含む希土類13(3B)族ペロブスカイト結晶基板上に窒化ガリウム系化合物半導体の結晶ハイドライドVPE(HVPE)エピタキシャル成長させた後、降温速度を毎分1.3℃以下の条件で室温まで冷却し、その後、前記単結晶層をその形状を保ったまま前記単結晶基板から剥離するようにしたことを特徴とする窒化ガリウム系化合物半導体結晶の製造方法。 After a single crystal layer of a gallium nitride compound semiconductor is epitaxially grown on a rare earth 13 (3B) group perovskite single crystal substrate containing at least one of Al, Ga, and In having a thickness of more than 300 μm, hydride VPE (HVPE) is epitaxially cooled. A gallium nitride compound semiconductor characterized in that it is cooled to room temperature at a rate of 1.3 ° C. or less per minute , and then the single crystal layer is peeled off from the single crystal substrate while maintaining its shape. A method for producing a single crystal. 前記ペロブスカイト単結晶基板がNdGaO 単結晶基板であることを特徴とする、請求項1に記載の窒化ガリウム系化合物半導体結晶の製造方法。 The method for producing a gallium nitride compound semiconductor single crystal according to claim 1, wherein the perovskite single crystal substrate is an NdGaO 3 single crystal substrate . 前記ペロブスカイト単結晶基板が(011)面NdGaO 単結晶基板であることを特徴とする、請求項1又は2の何れか一項に記載の窒化ガリウム系化合物半導体結晶の製造方法。 3. The method for producing a gallium nitride-based compound semiconductor single crystal according to claim 1, wherein the perovskite single crystal substrate is a (011) plane NdGaO 3 single crystal substrate . 成長させた窒化ガリウム系化合物半導体結晶層の厚さが100μm以上であることを特徴とする請求項1から3の何れか一項に記載の窒化ガリウム系化合物半導体結晶の製造方法。4. The method for producing a gallium nitride compound semiconductor single crystal according to claim 1 , wherein the grown gallium nitride compound semiconductor single crystal layer has a thickness of 100 μm or more . 5. 成長させた窒化ガリウム系化合物半導体単結晶層の厚さが300μm以上であることを特徴とする請求項1から4の何れか一項に記載の窒化ガリウム系化合物半導体結晶の製造方法。The method for producing a gallium nitride compound semiconductor single crystal according to any one of claims 1 to 4, wherein the grown gallium nitride compound semiconductor single crystal layer has a thickness of 300 µm or more . 前記ペロブスカイト結晶基板から剥離して得られるGaNチップのサイズが20mm×30mm以上であることを特徴とする請求項1からの何れか一項に記載の窒化ガリウム系化合物半導体結晶の製造方法。Method for producing a gallium nitride-based compound semiconductor single crystal according to claim 1, any one of 5 the size of the GaN chip obtained by peeling from the perovskite single crystal substrate, characterized in that it is 20 mm × 30 mm or more . 前記窒化ガリウム系化合物半導体の結晶をエピタキシャル成長させる工程は、
前記単結晶基板を第1の温度に制御して第1の成長時間で窒化ガリウム系化合物半導体結晶を成長させることにより第1の窒化ガリウム系化合物半導体層を形成する工程と、
前記第1の窒化ガリウム系化合物半導体層の上に、前記単結晶基板を前記第1の温度より高い第2の温度に制御して前記第1の成長時間より長い第2の成長時間で窒化ガリウム系化合物半導体結晶を成長させることにより、前記第1の窒化ガリウム系化合物半導体層よりも厚い第2の窒化ガリウム系化合物半導体層を形成する工程と、を有することを特徴とする請求項1からの何れか一項に記載の窒化ガリウム系化合物半導体結晶の製造方法。
The step of epitaxially growing the crystal layer of the gallium nitride compound semiconductor comprises:
Forming a first gallium nitride compound semiconductor layer by growing the gallium nitride compound semiconductor crystal layer in a first growth time while controlling the single crystal substrate to a first temperature;
On the first gallium nitride-based compound semiconductor layer, the single crystal substrate is controlled to a second temperature higher than the first temperature, and the gallium nitride has a second growth time longer than the first growth time. And a step of forming a second gallium nitride compound semiconductor layer thicker than the first gallium nitride compound semiconductor layer by growing a system compound semiconductor crystal layer. The method for producing a gallium nitride compound semiconductor single crystal according to any one of claims 6 to 10.
前記第1の窒化ガリウム系化合物半導体層の膜厚は0.1μmであることを特徴とする請求項に記載の窒化ガリウム系化合物半導体結晶の製造方法。8. The method of manufacturing a gallium nitride compound semiconductor single crystal according to claim 7 , wherein the first gallium nitride compound semiconductor layer has a thickness of 0.1 [mu] m.
JP7136499A 1999-03-17 1999-03-17 Method for producing gallium nitride compound semiconductor single crystal Expired - Fee Related JP4728460B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7136499A JP4728460B2 (en) 1999-03-17 1999-03-17 Method for producing gallium nitride compound semiconductor single crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7136499A JP4728460B2 (en) 1999-03-17 1999-03-17 Method for producing gallium nitride compound semiconductor single crystal

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2011020495A Division JP2011093803A (en) 2011-02-02 2011-02-02 Method for manufacturing gallium nitride-based compound semiconductor single crystal

Publications (2)

Publication Number Publication Date
JP2000269143A JP2000269143A (en) 2000-09-29
JP4728460B2 true JP4728460B2 (en) 2011-07-20

Family

ID=13458383

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7136499A Expired - Fee Related JP4728460B2 (en) 1999-03-17 1999-03-17 Method for producing gallium nitride compound semiconductor single crystal

Country Status (1)

Country Link
JP (1) JP4728460B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6897138B2 (en) 2001-06-25 2005-05-24 Toyoda Gosei Co., Ltd. Method and apparatus for producing group III nitride compound semiconductor
JP2003012399A (en) * 2001-06-26 2003-01-15 Toyoda Gosei Co Ltd Production process for group iii nitride compound semiconductor
JP2003073195A (en) * 2001-08-30 2003-03-12 Shin Etsu Handotai Co Ltd Method for producing gallium nitride crystal and gallium nitride crystal
JP2003218043A (en) * 2002-01-28 2003-07-31 Nikko Materials Co Ltd METHOD OF MANUFACTURING GaN-BASED COMPOUND SEMICONDUCTOR CRYSTAL
JP4720323B2 (en) * 2005-07-06 2011-07-13 セイコーエプソン株式会社 Film forming method, film forming method, film forming apparatus, film forming apparatus, electro-optical device manufacturing method, electro-optical device, and electronic apparatus
DE102008023054B4 (en) * 2008-05-09 2011-12-22 Siltronic Ag Process for producing an epitaxied semiconductor wafer

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995027815A1 (en) * 1994-04-08 1995-10-19 Japan Energy Corporation Method for growing gallium nitride compound semiconductor crystal, and gallium nitride compound semiconductor device
JPH0832113A (en) * 1994-07-14 1996-02-02 Mitsubishi Cable Ind Ltd Manufacture of p-type gan semiconductor
JPH0971496A (en) * 1995-09-07 1997-03-18 Japan Energy Corp Production of thick film of gallium nitride single crystal
JPH111399A (en) * 1996-12-05 1999-01-06 Lg Electron Inc Production of gallium nitride semiconductor single crystal substrate and gallium nitride diode produced by using the substrate

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995027815A1 (en) * 1994-04-08 1995-10-19 Japan Energy Corporation Method for growing gallium nitride compound semiconductor crystal, and gallium nitride compound semiconductor device
JPH0832113A (en) * 1994-07-14 1996-02-02 Mitsubishi Cable Ind Ltd Manufacture of p-type gan semiconductor
JPH0971496A (en) * 1995-09-07 1997-03-18 Japan Energy Corp Production of thick film of gallium nitride single crystal
JPH111399A (en) * 1996-12-05 1999-01-06 Lg Electron Inc Production of gallium nitride semiconductor single crystal substrate and gallium nitride diode produced by using the substrate

Also Published As

Publication number Publication date
JP2000269143A (en) 2000-09-29

Similar Documents

Publication Publication Date Title
KR101154747B1 (en) Method of producing self-supporting substrates comprising ⅲ-nitrides by means of heteroepitaxy on a sacrificial layer
JP4849296B2 (en) GaN substrate
JP4597259B2 (en) Group III nitride semiconductor growth substrate, group III nitride semiconductor epitaxial substrate, group III nitride semiconductor device, group III nitride semiconductor free-standing substrate, and methods of manufacturing the same
JP4335187B2 (en) Nitride semiconductor device manufacturing method
JP2002284600A (en) Method for manufacturing gallium nitride crystal substrate and the same
JP2006290671A (en) Method for manufacturing iii-v group nitride semiconductor crystal
JP2004035275A (en) POROUS SUBSTRATE, ITS MANUFACTURING METHOD, SUBSTRATE ONTO WHICH GaN SEMICONDUCTOR IS MOUNTED AND ITS MANUFACTURING PROCESSES
JP2009505938A (en) Semiconductor substrate, method for manufacturing a self-supporting semiconductor substrate by hydride vapor phase epitaxy, and mask layer used therefor
JP2007070154A (en) Group iii-v nitride-based semiconductor substrate and its manufacturing method
JP2004319711A (en) Porous substrate for epitaxial growth and its manufacturing method, and method of manufacturing group iii nitride semiconductor substrate
JP4150527B2 (en) Crystal production method
JP4333466B2 (en) Manufacturing method of semiconductor substrate and manufacturing method of free-standing substrate
JP4633962B2 (en) Manufacturing method of nitride semiconductor substrate
US20040107891A1 (en) Method for producing group III nitride compound semiconductor substrate
JPH07273048A (en) Manufacture method of compound semiconductor single crystal and single crystal substrate using such method
JP2002050585A (en) Method for growing crystal of semiconductor
JP2007246289A (en) Method for manufacturing gallium nitride semiconductor substrate
JP4728460B2 (en) Method for producing gallium nitride compound semiconductor single crystal
JP2011093803A (en) Method for manufacturing gallium nitride-based compound semiconductor single crystal
JP3785566B2 (en) GaN compound semiconductor crystal manufacturing method
JP4065055B2 (en) Method for growing gallium nitride compound semiconductor single crystal
JP2000012901A (en) Manufacture of gallium nitride-based compound semiconductor single crystal
JP3946448B2 (en) Manufacturing method of nitride semiconductor substrate
JP4084539B2 (en) Method for producing crystal growth substrate of group III nitride compound semiconductor
JP2010278470A (en) Substrate for growing group-iii nitride semiconductor, epitaxial substrate for group-iii nitride semiconductor, group-iii nitride semiconductor element, stand-alone substrate for group-iii nitride semiconductor, and methods for manufacturing the same

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20040122

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060306

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080612

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080617

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080812

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090929

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091130

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20100902

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20101102

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110202

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20110316

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110405

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110415

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140422

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees