JP3785566B2 - GaN compound semiconductor crystal manufacturing method - Google Patents

GaN compound semiconductor crystal manufacturing method Download PDF

Info

Publication number
JP3785566B2
JP3785566B2 JP2001078246A JP2001078246A JP3785566B2 JP 3785566 B2 JP3785566 B2 JP 3785566B2 JP 2001078246 A JP2001078246 A JP 2001078246A JP 2001078246 A JP2001078246 A JP 2001078246A JP 3785566 B2 JP3785566 B2 JP 3785566B2
Authority
JP
Japan
Prior art keywords
gan
compound semiconductor
crystal
plane
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001078246A
Other languages
Japanese (ja)
Other versions
JP2002274997A (en
Inventor
敬司 甲斐荘
伸一 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Mining Holdings Inc
Original Assignee
Nikko Materials Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikko Materials Co Ltd filed Critical Nikko Materials Co Ltd
Priority to JP2001078246A priority Critical patent/JP3785566B2/en
Publication of JP2002274997A publication Critical patent/JP2002274997A/en
Application granted granted Critical
Publication of JP3785566B2 publication Critical patent/JP3785566B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、発光デバイス、電子デバイスなどの半導体デバイスの製造に用いられるGaN系化合物半導体結晶の製造方法に関する。
【0002】
【従来の技術】
GaN、InGaN、AlGaN、InGaAlN等のGaN系化合物半導体(InGaAl1−x−yN 但し0≦x,y;x+y≦1)は、発光デバイスのみでなく、耐環境性に優れたデバイス、パワーデバイスなどの電子デバイス等の半導体デバイスの材料として期待され、またその他種々の分野で応用可能な材料として注目されている。
【0003】
従来、GaN系化合物半導体のバルク結晶を成長させるのは困難であったため、上記電子デバイスには、例えばサファイア等の異種結晶上へのヘテロエピタキシーによってGaN等の薄膜単結晶を形成した基板が用いられていた。
【0004】
ところが、サファイア結晶とGaN系化合物半導体結晶とは格子不整合性が大きいので、サファイア結晶上に成長させたGaN系化合物半導体結晶の転位密度が大きくなり結晶欠陥が発生してしまうという問題があった。さらに、サファイアは熱伝導率が小さく放熱しにくいので、サファイア結晶上にGaN系化合物半導体結晶を成長させた基板を消費電力の大きい電子デバイス等に用いると高温になりやすいという問題があった。
【0005】
そこで、熱伝導率が大きくGaN系化合物半導体結晶と格子整合する基板の必要性が一層高まり、ハイドライド気相成長法(以下、HVPEと略する)を利用したELO(Epitaxial lateral overgrowth)法等の研究が急速に進められた。ここでELO法とは、例えばサファイア基板上に絶縁体マスクを形成し、該マスクの一部に開口部を設けて露出したサファイア基板面をエピタキシャル成長の種として結晶性の高いGaN系化合物半導体結晶を成長させる方法である。この方法によれば、マスクに設けられた開口部からGaN系化合物半導体結晶の成長が始まりマスク上に成長層が広がっていくので、結晶中の転位密度を小さく抑えることができ、結晶欠陥の少ないGaN系化合物半導体結晶を得ることができる。
【0006】
しかし、ELO法により得られたGaN系化合物半導体結晶ウェハは熱歪みが大きいため、ウェハ製造工程のポリッシングによりサファイア基板を離間させてGaN系化合物半導体結晶ウェハを単体で得ようとするとGaN系化合物半導体結晶ウェハが歪んでしまうという問題があった。
【0007】
そこで本発明者等は、異種結晶基板の材料の一つとして希土類13(3B)族ペロブスカイト結晶を用い、且つその{011}面または{101}面を成長面としてGaN系化合物半導体をヘテロエピタキシーによって成長させる方法を提案した(WO95/27815号)。なお、ここでいう{011}面または{101}面とは、それぞれ(011)面、(101)面と等価な面の組を表す。
【0008】
前記先願の成長技術によれば、例えば希土類13(3B)族ペロブスカイトの一つであるNdGaOを基板として、その{011}面または{101}面にGaNを成長させる場合、格子不整合は1.2%程度であり格子不整合性をサファイアやその代替品として用いられるSiCを基板とした場合よりも極めて小さくなる。よって、結晶中の転位密度が低くなるので結晶欠陥の少ないGaN系化合物半導体結晶を成長させることができた。
【0009】
【発明が解決しようとする課題】
しかしながら、前記先願の成長方法では、GaN系化合物半導体結晶を成長させる際に基板との格子不整合による結晶欠陥の発生を抑えることができたが、得られたGaN系化合物半導体結晶の結晶状態が多結晶になってしまうこともあった。すなわち、前記先願の成長方法では半導体デバイスに適したGaN化合物半導体単結晶を歩留まりよく成長させることができない場合があるという問題があった。
【0010】
本発明は、GaN系化合物半導体結晶と比較的よく格子整合する希土類13(3B)族ペロブスカイトを基板として用いることにより、結晶欠陥が少ないGaN系化合物半導体単結晶を歩留まりよく製造可能な方法を提供することを目的とする。
【0011】
【課題を解決するための手段】
本発明は、上記目的を達成するためになされたものであり、1または2種類以上の希土類元素を含む希土類13(3B)族ペロブスカイト結晶を基板としてGaN系化合物半導体結晶を成長させる方法において、前記希土類13(3B)族ペロブスカイト結晶基板の(011)面から1°から4°だけオフアングルさせた面を成長面とすることを特徴とするGaN系化合物半導体結晶の製造方法である。
【0012】
これにより、結晶欠陥が少ないGaN系化合物半導体結晶を成長させることができるとともに、GaN系化合物半導体結晶の単結晶化率が向上するので、半導体デバイスに適したGaN系化合物半導体単結晶を歩留まりよく製造することができる。
【0013】
また、望ましくは前記オフアングルの方向を<100>方向にするとよい。これにより、GaN系化合物半導体結晶の単結晶化率が特に高くなるので、GaN系化合物半導体単結晶を歩留まりよく製造することができる。
【0014】
また、基板として用いられる上記希土類13(3B)族ペロブスカイト結晶は、13(3B)族元素のうちAl,Ga,Inの少なくとも1種類とNdとの化合物であるようにするとよい。例えば、希土類13(3B)族ペロブスカイト結晶として、NdGaO結晶を利用することができる。また、結晶成長方法としてはハイドライドVPEが望ましい。
【0015】
以下に、本発明を完成するに至った過程について説明する。
【0016】
まず、本発明者等は前記先願で提案したGaN系化合物半導体結晶の成長方法により得られたGaN系化合物半導体結晶の中には、結晶状態が多結晶になっているものがあることに気付いた。つまり、前記成長法法ではGaN系化合物半導体結晶を成長させる際に基板との格子不整合による結晶欠陥の発生を抑えることができたが、得られたGaN系化合物半導体結晶の結晶状態が多結晶になる場合があるため、半導体デバイスの材料に適したGaN化合物半導体結晶を製造する方法として実用化することは困難であることが判明した。
【0017】
そこで、本発明者等は前記成長方法にはさらに改良する余地があると考え、前記成長方法により得られるGaN系化合物半導体結晶の結晶状態を改善すべく希土類13(3B)族ペロブスカイトの一つであるNdGaO基板の成長面に着目して鋭意研究を重ねた。具体的には、前記先願の成長方法ではNdGaO基板の(011)ジャスト面を成長面としていたのを、(011)面から所定の角度だけ傾斜したオフアングル面を成長面としてGaN化合物半導体結晶を成長させる実験を行った。
【0018】
まず、NdGaO結晶のインゴットをスライスし、(011)ジャスト面および(011)面から<100>方向に1°〜6°傾斜したオフアングル面が成長面となるようにした基板をそれぞれ複数枚用意した。そして、これらのNdGaO基板を洗浄してエッチングした後、ハイドライドVPE法によりGaN化合物半導体結晶を成長させた。
【0019】
その結果、(011)ジャスト面を成長面とした場合の単結晶化率は50%、(011)面から1°傾斜したオフアングル面を成長面とした場合の単結晶化率は80%、(011)面から2°傾斜したオフアングル面を成長面とした場合の単結晶化率は90%、(011)面から3°傾斜したオフアングル面を成長面とした場合の単結晶化率は80%、(011)面から4°傾斜したオフアングル面を成長面とした場合の単結晶化率は70%、(011)面から5°傾斜したオフアングル面を成長面とした場合の単結晶化率は50%、(011)面から6°傾斜したオフアングル面を成長面とした場合の単結晶化率は30%となった(表1)。
【0020】
【表1】

Figure 0003785566
【0021】
この実験より、NdGaO基板の(011)ジャスト面を成長面とするよりも、(011)面から<100>方向に1°〜4°傾斜したオフアングル面を成長面とした方が単結晶化率が向上することが分かった。
【0022】
本発明は上記知見に基づいてなされたもので、この方法により半導体デバイスに適したGaN化合物半導体単結晶を歩留まりよく成長させることができる。
【0023】
なお、本発明は、NdGaO基板にGaN化合物半導体結晶を成長させる実験により見出されたものであるが、GaN化合物半導体結晶以外にも、InGaN、AlGaN等のGaN系化合物半導体結晶を成長させた場合も同様の効果が得られる。
【0024】
【発明の実施の形態】
以下、本発明の好適な実施の形態を、NdGaO結晶を基板としてGaN化合物半導体結晶を成長させる場合について説明する。
【0025】
まず、NdGaOのインゴットを(011)面から<100>方向に2°傾斜したオフアングル面でスライスして基板とした。このとき、NdGaO基板の大きさは50mm径で、厚さは0.5mmとした。
【0026】
次に、鏡面研磨したNdGaO基板をアセトン中で5分間超音波洗浄を行い、続けてメタノールで5分間超音波洗浄を行った。その後、Nガスでブローして液滴を吹き飛ばしてから自然乾燥させた。次に、洗浄したNdGaO基板を硫酸系エッチャント(燐酸:硫酸=1:3、80℃)で5分間エッチングした。
【0027】
次に、このNdGaO基板をハイドライドVPE装置内の所定の部位に配置した後、Nガスを導入しながら基板温度を620℃まで昇温し、GaメタルとHClガスから生成されたGaClと、NHガスとをNキャリアガスを用いてNdGaO基板上に供給し、約100nmのGaN保護層を形成した。NdGaOは800℃以上の高温でNHやHと反応してネオジウム化合物を生成してしまうので、本実施形態ではキャリアガスとしてNを用い、成長温度を620℃の低温で保護層を形成することによりネオジウム化合物が生成されないようにしている。
【0028】
次に、基板温度を1000℃に昇温し、GaメタルとHClガスから生成されたGaClと、NHガスとをNキャリアガスを用いてNdGaO基板上に供給した。このとき、GaCl分圧が4.0×10−3atm、NH分圧が2.4×10−1atmとなるようにそれぞれのガス導入量を制御しながら約40μm/hの成長速度で300分間GaN化合物半導体結晶を成長させた。
【0029】
その後、冷却速度5.3℃/minで90分間冷却して膜厚が約200μmのGaN化合物半導体結晶を得た。
【0030】
得られたGaN化合物半導体結晶は、結晶欠陥が少なく結晶性に優れた単結晶であった。また、上述した方法によりGaN化合物半導体結晶を作製した場合、GaN化合物半導体結晶の単結晶化率は90%以上であり、半導体デバイスの材料として適したGaN化合物半導体単結晶を歩留まりよく成長させることができた。
【0031】
以上本発明者によってなされた発明を実施形態に基づき具体的に説明したが、本発明は上記実施の形態に限定されるものではない。例えば、<100>方向に傾ける角度は2°に限定されず、1°〜4°の範囲とすることにより本実施形態と同様に単結晶化率を向上させることができる。
【0032】
また、成長条件としては、GaCl分圧が1.0×10−3〜1.0×10−2atm、NH分圧が1.0×10−1〜4.0×10−1atm、成長速度が30〜100μm/h、 成長温度が930〜1050℃、冷却速度が4〜10℃/minであることが望ましい。
【0033】
また、GaN化合物半導体結晶を成長させる場合に制限されず、例えば、InGaN、AlGaN等のGaN系化合物半導体結晶の成長方法に適用しても同様の効果を得ることができる。また、基板として用いられる希土類13(3B)族ペロブスカイト結晶はNdGaO結晶に制限されず、Al,Ga,Inの少なくとも1種類を含む希土類13(3B)族ペロブスカイト結晶であればよいと考えられる。
【0034】
【発明の効果】
本発明によれば、1または2種類以上の希土類元素を含む希土類13(3B)族ペロブスカイト結晶を基板としてGaN系化合物半導体結晶を成長させる方法において、前記希土類13(3B)族ペロブスカイト結晶基板の(011)面から1°から4°だけオフアングルさせた面を成長面としたので、結晶欠陥が少ないGaN系化合物半導体結晶を成長させることができるとともに、GaN系化合物半導体結晶の単結晶化率が向上するので、半導体デバイスに適したGaN系化合物半導体単結晶を歩留まりよく製造することができるという効果を奏する。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for manufacturing a GaN-based compound semiconductor crystal used for manufacturing a semiconductor device such as a light-emitting device or an electronic device.
[0002]
[Prior art]
GaN-based compound semiconductors such as GaN, InGaN, AlGaN, InGaAlN (In x Ga y Al 1-xy N where 0 ≦ x, y; x + y ≦ 1) are excellent not only in light-emitting devices but also in environmental resistance It is expected as a material for semiconductor devices such as electronic devices such as devices and power devices, and attracts attention as a material applicable in various other fields.
[0003]
Conventionally, since it has been difficult to grow a bulk crystal of a GaN-based compound semiconductor, a substrate in which a thin-film single crystal such as GaN is formed by heteroepitaxy on a heterogeneous crystal such as sapphire is used for the electronic device. It was.
[0004]
However, since sapphire crystal and GaN compound semiconductor crystal have large lattice mismatch, there is a problem in that dislocation density of GaN compound semiconductor crystal grown on sapphire crystal increases and crystal defects occur. . Furthermore, since sapphire has a low thermal conductivity and is difficult to dissipate heat, there is a problem that when a substrate on which a GaN-based compound semiconductor crystal is grown on a sapphire crystal is used for an electronic device with high power consumption, the temperature tends to increase.
[0005]
Therefore, the necessity of a substrate having a high thermal conductivity and lattice matching with the GaN compound semiconductor crystal is further increased, and research such as an ELO (Epitaxial lateral overgrowth) method using hydride vapor phase epitaxy (hereinafter referred to as HVPE) is performed. Was advanced rapidly. Here, the ELO method is, for example, that an insulator mask is formed on a sapphire substrate, an opening is provided in a part of the mask, and an exposed sapphire substrate surface is used as a seed for epitaxial growth to produce a highly crystalline GaN-based compound semiconductor crystal. It is a way to grow. According to this method, since the growth of the GaN-based compound semiconductor crystal starts from the opening provided in the mask and the growth layer spreads on the mask, the dislocation density in the crystal can be kept small, and there are few crystal defects. A GaN-based compound semiconductor crystal can be obtained.
[0006]
However, since the GaN-based compound semiconductor crystal wafer obtained by the ELO method has a large thermal strain, when a single GaN-based compound semiconductor crystal wafer is obtained by separating the sapphire substrate by polishing in the wafer manufacturing process, the GaN-based compound semiconductor is obtained. There was a problem that the crystal wafer was distorted.
[0007]
Therefore, the present inventors use rare earth 13 (3B) group perovskite crystal as one of the materials of the different crystal substrate, and the GaN-based compound semiconductor by heteroepitaxy using the {011} plane or {101} plane as a growth plane. A method of growing was proposed (WO95 / 27815). Here, the {011} plane or {101} plane represents a set of planes equivalent to the (011) plane and the (101) plane, respectively.
[0008]
According to the growth technique of the prior application, for example, when NdGaO 3 which is one of rare earth 13 (3B) group perovskites is used as a substrate and GaN is grown on the {011} plane or the {101} plane, the lattice mismatch is It is about 1.2%, and the lattice mismatch is extremely smaller than that in the case of using sapphire or SiC used as a substitute for the substrate. Therefore, since the dislocation density in the crystal is low, a GaN-based compound semiconductor crystal with few crystal defects can be grown.
[0009]
[Problems to be solved by the invention]
However, the growth method of the prior application was able to suppress the occurrence of crystal defects due to lattice mismatch with the substrate when growing the GaN-based compound semiconductor crystal, but the crystal state of the obtained GaN-based compound semiconductor crystal Sometimes became polycrystalline. That is, the growth method of the prior application has a problem that a GaN compound semiconductor single crystal suitable for a semiconductor device may not be grown with a high yield.
[0010]
The present invention provides a method capable of producing a GaN-based compound semiconductor single crystal with few crystal defects with a high yield by using, as a substrate, a rare earth 13 (3B) group perovskite that lattice-matches with a GaN-based compound semiconductor crystal relatively well. For the purpose.
[0011]
[Means for Solving the Problems]
The present invention has been made to achieve the above object, and in the method for growing a GaN-based compound semiconductor crystal using a rare earth 13 (3B) group perovskite crystal containing one or more rare earth elements as a substrate, A method for producing a GaN-based compound semiconductor crystal, characterized in that a growth plane is a plane that is off-angled by 1 ° to 4 ° from a (011) plane of a rare earth 13 (3B) group perovskite crystal substrate.
[0012]
This makes it possible to grow GaN-based compound semiconductor crystals with few crystal defects and to improve the single crystallization rate of GaN-based compound semiconductor crystals, so that GaN-based compound semiconductor single crystals suitable for semiconductor devices can be manufactured with high yield. can do.
[0013]
Preferably, the off-angle direction is a <100> direction. Thereby, since the single crystallization rate of the GaN-based compound semiconductor crystal is particularly high, the GaN-based compound semiconductor single crystal can be manufactured with a high yield.
[0014]
The rare earth 13 (3B) group perovskite crystal used as the substrate may be a compound of Nd with at least one of Al, Ga, and In among the 13 (3B) group elements . For example, an NdGaO 3 crystal can be used as the rare earth 13 (3B) group perovskite crystal. As a crystal growth method, hydride VPE is desirable.
[0015]
The process that led to the completion of the present invention will be described below.
[0016]
First, the present inventors have noticed that some of the GaN-based compound semiconductor crystals obtained by the method for growing a GaN-based compound semiconductor crystal proposed in the previous application have a crystalline state. It was. That is, in the growth method, when the GaN compound semiconductor crystal was grown, the generation of crystal defects due to lattice mismatch with the substrate could be suppressed. However, the crystal state of the obtained GaN compound semiconductor crystal was polycrystalline. Therefore, it has been found difficult to put it into practical use as a method for producing a GaN compound semiconductor crystal suitable for a semiconductor device material.
[0017]
Therefore, the present inventors consider that there is room for further improvement in the growth method, and one of the rare earth 13 (3B) group perovskites to improve the crystal state of the GaN-based compound semiconductor crystal obtained by the growth method. Research has been conducted focusing on the growth surface of a certain NdGaO 3 substrate. Specifically, in the growth method of the previous application, the (011) just surface of the NdGaO 3 substrate was used as the growth surface, but the off-angle surface inclined by a predetermined angle from the (011) surface was used as the growth surface. Experiments were conducted to grow crystals.
[0018]
First, an NdGaO 3 crystal ingot is sliced, and a plurality of substrates each having a (011) just plane and an off-angle plane inclined from 1 ° to 6 ° in the <100> direction from the (011) plane as growth planes are provided. Prepared. Then, these NdGaO 3 substrates were cleaned and etched, and then a GaN compound semiconductor crystal was grown by a hydride VPE method.
[0019]
As a result, the single crystallization rate is 50% when the (011) just plane is the growth plane, and the single crystallization ratio is 80% when the off-angle plane inclined by 1 ° from the (011) plane is the growth plane. The single crystallization rate is 90% when the off-angle plane inclined by 2 ° from the (011) plane is used as the growth plane, and the single crystallization rate when the off-angle plane inclined by 3 ° from the (011) plane is used as the growth plane. Is 80%, the single crystallization rate is 70% when the off-angle plane inclined by 4 ° from the (011) plane is the growth plane, and the off-angle plane inclined by 5 ° from the (011) plane is the growth plane. The single crystallization rate was 50%, and the single crystallization rate was 30% when an off-angle plane inclined by 6 ° from the (011) plane was used as the growth surface (Table 1).
[0020]
[Table 1]
Figure 0003785566
[0021]
From this experiment, it was found that an off-angle plane inclined by 1 ° to 4 ° in the <100> direction from the (011) plane was used as the growth plane, rather than the (011) just plane of the NdGaO 3 substrate as the growth plane. It was found that the conversion rate was improved.
[0022]
The present invention has been made on the basis of the above knowledge, and by this method, a GaN compound semiconductor single crystal suitable for a semiconductor device can be grown with high yield.
[0023]
The present invention is the one found by experiment to grow a GaN compound semiconductor crystal NdGaO 3 substrate, other than the GaN compound semiconductor crystal was grown InGaN, GaN-based compound semiconductor crystal of AlGaN, etc. In this case, the same effect can be obtained.
[0024]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, a preferred embodiment of the present invention will be described in the case of growing a GaN compound semiconductor crystal using an NdGaO 3 crystal as a substrate.
[0025]
First, an ingot of NdGaO 3 was sliced at an off-angle plane inclined by 2 ° in the <100> direction from the (011) plane to obtain a substrate. At this time, the NdGaO 3 substrate had a diameter of 50 mm and a thickness of 0.5 mm.
[0026]
Next, the mirror-polished NdGaO 3 substrate was subjected to ultrasonic cleaning in acetone for 5 minutes, followed by ultrasonic cleaning with methanol for 5 minutes. After that, it was blown with N 2 gas to blow off the droplets and then naturally dried. Next, the cleaned NdGaO 3 substrate was etched with a sulfuric acid-based etchant (phosphoric acid: sulfuric acid = 1: 3, 80 ° C.) for 5 minutes.
[0027]
Next, after this NdGaO 3 substrate is placed at a predetermined site in the hydride VPE apparatus, the substrate temperature is raised to 620 ° C. while introducing N 2 gas, and GaCl generated from Ga metal and HCl gas, NH 3 gas was supplied onto the NdGaO 3 substrate using N 2 carrier gas to form a GaN protective layer of about 100 nm. Since NdGaO 3 reacts with NH 3 or H 2 at a high temperature of 800 ° C. or higher to generate a neodymium compound, N 2 is used as a carrier gas in this embodiment, and the protective layer is formed at a low growth temperature of 620 ° C. The formation prevents a neodymium compound from being generated.
[0028]
Next, the substrate temperature was raised to 1000 ° C., and GaCl generated from Ga metal and HCl gas and NH 3 gas were supplied onto the NdGaO 3 substrate using N 2 carrier gas. At this time, at a growth rate of about 40 μm / h while controlling the amount of gas introduced so that the GaCl partial pressure is 4.0 × 10 −3 atm and the NH 3 partial pressure is 2.4 × 10 −1 atm. A GaN compound semiconductor crystal was grown for 300 minutes.
[0029]
Thereafter, it was cooled at a cooling rate of 5.3 ° C./min for 90 minutes to obtain a GaN compound semiconductor crystal having a film thickness of about 200 μm.
[0030]
The obtained GaN compound semiconductor crystal was a single crystal with few crystal defects and excellent crystallinity. Further, when a GaN compound semiconductor crystal is manufactured by the above-described method, the crystallization rate of the GaN compound semiconductor crystal is 90% or more, and a GaN compound semiconductor single crystal suitable as a semiconductor device material can be grown with a high yield. did it.
[0031]
Although the invention made by the present inventor has been specifically described based on the embodiment, the present invention is not limited to the above embodiment. For example, the angle inclined in the <100> direction is not limited to 2 °, and the single crystallization rate can be improved in the same manner as in this embodiment by setting the angle in the range of 1 ° to 4 °.
[0032]
As growth conditions, the GaCl partial pressure is 1.0 × 10 −3 to 1.0 × 10 −2 atm, the NH 3 partial pressure is 1.0 × 10 −1 to 4.0 × 10 −1 atm, It is desirable that the growth rate is 30 to 100 μm / h, the growth temperature is 930 to 1050 ° C., and the cooling rate is 4 to 10 ° C./min.
[0033]
Further, the present invention is not limited to the case of growing a GaN compound semiconductor crystal, and the same effect can be obtained even when applied to a growth method of a GaN compound semiconductor crystal such as InGaN or AlGaN. The rare earth 13 (3B) group perovskite crystal used as the substrate is not limited to the NdGaO 3 crystal, but may be any rare earth 13 (3B) group perovskite crystal including at least one of Al, Ga, and In.
[0034]
【The invention's effect】
According to the present invention, in a method of growing a GaN-based compound semiconductor crystal using a rare earth 13 (3B) group perovskite crystal containing one or more kinds of rare earth elements as a substrate, the rare earth 13 (3B) group perovskite crystal substrate ( 011) Since the growth plane is the plane off-angled by 1 ° to 4 ° from the plane, a GaN-based compound semiconductor crystal with few crystal defects can be grown, and the crystallization rate of the GaN-based compound semiconductor crystal can be increased. As a result, the GaN-based compound semiconductor single crystal suitable for the semiconductor device can be produced with a high yield.

Claims (2)

1または2種類以上の希土類元素を含む希土類13(3B)族ペロブスカイト結晶を基板としてGaN系化合物半導体結晶を成長させる方法において、
前記希土類13(3B)族ペロブスカイト結晶基板の(011)面から<100>方向に1°から4°だけオフアングルさせた面を成長面とすることを特徴とするGaN系化合物半導体結晶の製造方法。
In a method of growing a GaN-based compound semiconductor crystal using a rare earth 13 (3B) group perovskite crystal containing one or more kinds of rare earth elements as a substrate,
A method for producing a GaN-based compound semiconductor crystal, characterized in that a growth plane is a plane that is off-angled by 1 ° to 4 ° in the <100> direction from the (011) plane of the rare earth 13 (3B) group perovskite crystal substrate. .
基板として用いられる上記希土類13(3B)族ペロブスカイト結晶は、13(3B)族元素のうちAl,Ga,Inの少なくとも1種類とNdとの化合物であることを特徴とする請求項1に記載のGaN系化合物半導体結晶の製造方法。The rare earth 13 (3B) Group perovskite crystal used as the substrate, 13 (3B) Group Al among the elements, Ga, according to claim 1 which is a compound of at least one and Nd of In A method for producing a GaN-based compound semiconductor crystal.
JP2001078246A 2001-03-19 2001-03-19 GaN compound semiconductor crystal manufacturing method Expired - Fee Related JP3785566B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001078246A JP3785566B2 (en) 2001-03-19 2001-03-19 GaN compound semiconductor crystal manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001078246A JP3785566B2 (en) 2001-03-19 2001-03-19 GaN compound semiconductor crystal manufacturing method

Publications (2)

Publication Number Publication Date
JP2002274997A JP2002274997A (en) 2002-09-25
JP3785566B2 true JP3785566B2 (en) 2006-06-14

Family

ID=18934887

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001078246A Expired - Fee Related JP3785566B2 (en) 2001-03-19 2001-03-19 GaN compound semiconductor crystal manufacturing method

Country Status (1)

Country Link
JP (1) JP3785566B2 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
MY141883A (en) 2001-06-06 2010-07-16 Ammono Sp Zoo Process and apparatus for obtaining bulk mono-crystalline gallium-containing nitride
CN1300901C (en) 2001-10-26 2007-02-14 波兰商艾蒙诺公司 Light emitting element structure using nitride bulk single crystal layer
US20060138431A1 (en) 2002-05-17 2006-06-29 Robert Dwilinski Light emitting device structure having nitride bulk single crystal layer
PL225427B1 (en) * 2002-05-17 2017-04-28 Ammono Spółka Z Ograniczoną Odpowiedzialnością Light emitting element structure having nitride bulk single crystal layer
PL224993B1 (en) 2002-12-11 2017-02-28 Ammono Spółka Z Ograniczoną Odpowiedzialnością Process for obtaining bulk monocrystalline gallium-containing nitride
US7410539B2 (en) 2002-12-11 2008-08-12 Ammono Sp. Z O.O. Template type substrate and a method of preparing the same
WO2005121415A1 (en) 2004-06-11 2005-12-22 Ammono Sp. Z O.O. Bulk mono-crystalline gallium-containing nitride and its application
PL371405A1 (en) 2004-11-26 2006-05-29 Ammono Sp.Z O.O. Method for manufacture of volumetric monocrystals by their growth on crystal nucleus
DE102005021099A1 (en) 2005-05-06 2006-12-07 Universität Ulm GaN layers
JP5529420B2 (en) 2009-02-09 2014-06-25 住友電気工業株式会社 Epitaxial wafer, method for producing gallium nitride semiconductor device, gallium nitride semiconductor device, and gallium oxide wafer

Also Published As

Publication number Publication date
JP2002274997A (en) 2002-09-25

Similar Documents

Publication Publication Date Title
JP4581490B2 (en) III-V group nitride semiconductor free-standing substrate manufacturing method and III-V group nitride semiconductor manufacturing method
JP4150527B2 (en) Crystal production method
JP2002343728A (en) Gallium nitride crystalline substrate and method for manufacturing the same
JP2007519591A5 (en)
JP2009071279A (en) Substrate for growing gallium nitride and method for preparing substrate for growing gallium nitride
TW200933705A (en) Group III nitride semiconductor and a manufacturing method thereof
JP3785566B2 (en) GaN compound semiconductor crystal manufacturing method
JP2002299253A (en) Production method for semiconductor wafer and semiconductor device
JP2002305155A (en) CRYSTAL GROWING APPARATUS FOR GaN-BASED COMPOUND SEMICONDUCTOR CRYSTAL
JP3758537B2 (en) Method for producing group III nitride compound semiconductor
JP2011093803A (en) Method for manufacturing gallium nitride-based compound semiconductor single crystal
US6875272B2 (en) Method for preparing GaN based compound semiconductor crystal
JP4236121B2 (en) Manufacturing method of semiconductor substrate
JP4236122B2 (en) Manufacturing method of semiconductor substrate
JP4355232B2 (en) GaN compound semiconductor crystal manufacturing method and GaN compound semiconductor crystal
JP4673514B2 (en) GaN compound semiconductor crystal manufacturing method
JP2013209270A (en) Production method for nitride semiconductor crystal of group 13 metal of periodic table, and nitride semiconductor crystal of group 13 metal of periodic table obtained by the production method
JP2003218043A (en) METHOD OF MANUFACTURING GaN-BASED COMPOUND SEMICONDUCTOR CRYSTAL
JP2002211999A (en) Method of producing crystal growth substrate of group iii nitride-based compound semiconductor
KR100839224B1 (en) Method for manufacturing thick film of gan
JP2000012901A (en) Manufacture of gallium nitride-based compound semiconductor single crystal
JP2000247790A (en) Substrate for semiconductor element, semiconductor element and production of nitrogen compound single crystal substrate
CN116504607A (en) Epitaxial layer of gallium nitride on silicon and preparation method of HEMT device
JP2008162886A (en) Method for manufacturing substrate
JP2003073195A (en) Method for producing gallium nitride crystal and gallium nitride crystal

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051110

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051122

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060120

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060307

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060308

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090331

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090331

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090331

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090331

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100331

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100331

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110331

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110331

Year of fee payment: 5

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110331

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120331

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120331

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130331

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130331

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140331

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees