JP2002274997A - METHOD FOR MANUFACTURING GaN SEMICONDUCTOR CRYSTAL - Google Patents

METHOD FOR MANUFACTURING GaN SEMICONDUCTOR CRYSTAL

Info

Publication number
JP2002274997A
JP2002274997A JP2001078246A JP2001078246A JP2002274997A JP 2002274997 A JP2002274997 A JP 2002274997A JP 2001078246 A JP2001078246 A JP 2001078246A JP 2001078246 A JP2001078246 A JP 2001078246A JP 2002274997 A JP2002274997 A JP 2002274997A
Authority
JP
Japan
Prior art keywords
crystal
gan
compound semiconductor
substrate
plane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001078246A
Other languages
Japanese (ja)
Other versions
JP3785566B2 (en
Inventor
Takashi Kainosho
敬司 甲斐荘
Shinichi Sasaki
伸一 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Mining Holdings Inc
Original Assignee
Nikko Materials Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikko Materials Co Ltd filed Critical Nikko Materials Co Ltd
Priority to JP2001078246A priority Critical patent/JP3785566B2/en
Publication of JP2002274997A publication Critical patent/JP2002274997A/en
Application granted granted Critical
Publication of JP3785566B2 publication Critical patent/JP3785566B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a method for manufacturing a GaN semiconductor single crystal having few crystal defects with a high yield by using a rare earth 13 (3B) group perovskite substrate showing relatively good lattice matching with the GaN semiconductor crystal. SOLUTION: In the method of growing the GaN semiconductor crystal by using a rare earth 13 (3B) group perovskite crystal containing one or more kinds of rare earth elements as the substrate, a plane in an off-angle state by 1 deg. to 4 deg. from the (011) plane of the rare earth 13 (3B) perovskite crystal substrate is used as the growing plane.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、発光デバイス、電
子デバイスなどの半導体デバイスの製造に用いられるG
aN系化合物半導体結晶の製造方法に関する。
[0001] 1. Field of the Invention [0002] The present invention relates to a semiconductor device such as a light emitting device or an electronic device.
The present invention relates to a method for producing an aN-based compound semiconductor crystal.

【0002】[0002]

【従来の技術】GaN、InGaN、AlGaN、In
GaAlN等のGaN系化合物半導体(InGa
1−x−yN 但し0≦x,y;x+y≦1)は、発
光デバイスのみでなく、耐環境性に優れたデバイス、パ
ワーデバイスなどの電子デバイス等の半導体デバイスの
材料として期待され、またその他種々の分野で応用可能
な材料として注目されている。
2. Description of the Related Art GaN, InGaN, AlGaN, InGaN
GaN-based compound such as GaAlN semiconductor (In x Ga y A
l 1-xy N where 0 ≦ x, y; x + y ≦ 1) is expected not only as a light emitting device but also as a material for semiconductor devices such as electronic devices such as devices having excellent environmental resistance and power devices, In addition, it is attracting attention as a material applicable in various other fields.

【0003】従来、GaN系化合物半導体のバルク結晶
を成長させるのは困難であったため、上記電子デバイス
には、例えばサファイア等の異種結晶上へのヘテロエピ
タキシーによってGaN等の薄膜単結晶を形成した基板
が用いられていた。
Conventionally, it has been difficult to grow a bulk crystal of a GaN-based compound semiconductor. For this reason, the above-mentioned electronic device has a substrate on which a thin-film single crystal such as GaN is formed by heteroepitaxy on a heterogeneous crystal such as sapphire. Was used.

【0004】ところが、サファイア結晶とGaN系化合
物半導体結晶とは格子不整合性が大きいので、サファイ
ア結晶上に成長させたGaN系化合物半導体結晶の転位
密度が大きくなり結晶欠陥が発生してしまうという問題
があった。さらに、サファイアは熱伝導率が小さく放熱
しにくいので、サファイア結晶上にGaN系化合物半導
体結晶を成長させた基板を消費電力の大きい電子デバイ
ス等に用いると高温になりやすいという問題があった。
However, since the lattice mismatch between the sapphire crystal and the GaN-based compound semiconductor crystal is large, the dislocation density of the GaN-based compound semiconductor crystal grown on the sapphire crystal becomes large and crystal defects occur. was there. Furthermore, since sapphire has a low thermal conductivity and is difficult to dissipate heat, there is a problem in that when a substrate in which a GaN-based compound semiconductor crystal is grown on a sapphire crystal is used for an electronic device or the like which consumes a large amount of power, the temperature tends to rise.

【0005】そこで、熱伝導率が大きくGaN系化合物
半導体結晶と格子整合する基板の必要性が一層高まり、
ハイドライド気相成長法(以下、HVPEと略する)を
利用したELO(Epitaxial lateral overgrowth)法等
の研究が急速に進められた。ここでELO法とは、例え
ばサファイア基板上に絶縁体マスクを形成し、該マスク
の一部に開口部を設けて露出したサファイア基板面をエ
ピタキシャル成長の種として結晶性の高いGaN系化合
物半導体結晶を成長させる方法である。この方法によれ
ば、マスクに設けられた開口部からGaN系化合物半導
体結晶の成長が始まりマスク上に成長層が広がっていく
ので、結晶中の転位密度を小さく抑えることができ、結
晶欠陥の少ないGaN系化合物半導体結晶を得ることが
できる。
Accordingly, the need for a substrate having a large thermal conductivity and lattice-matching with a GaN-based compound semiconductor crystal has been further increased.
Research such as ELO (Epitaxial Lateral Overgrowth) using hydride vapor phase epitaxy (hereinafter abbreviated as HVPE) has been rapidly advanced. Here, the ELO method means that, for example, an insulator mask is formed on a sapphire substrate, an opening is provided in a part of the mask, and the exposed sapphire substrate surface is used as a seed for epitaxial growth to form a highly crystalline GaN-based compound semiconductor crystal. It is a method of growing. According to this method, the growth of the GaN-based compound semiconductor crystal starts from the opening provided in the mask, and the growth layer spreads on the mask. Therefore, the dislocation density in the crystal can be suppressed to be small, and the number of crystal defects is small. A GaN-based compound semiconductor crystal can be obtained.

【0006】しかし、ELO法により得られたGaN系
化合物半導体結晶ウェハは熱歪みが大きいため、ウェハ
製造工程のポリッシングによりサファイア基板を離間さ
せてGaN系化合物半導体結晶ウェハを単体で得ようと
するとGaN系化合物半導体結晶ウェハが歪んでしまう
という問題があった。
However, since the GaN-based compound semiconductor crystal wafer obtained by the ELO method has a large thermal distortion, it is difficult to separate the sapphire substrate by polishing in the wafer manufacturing process to obtain a GaN-based compound semiconductor crystal wafer alone. There is a problem that the system compound semiconductor crystal wafer is distorted.

【0007】そこで本発明者等は、異種結晶基板の材料
の一つとして希土類13(3B)族ペロブスカイト結晶
を用い、且つその{011}面または{101}面を成
長面としてGaN系化合物半導体をヘテロエピタキシー
によって成長させる方法を提案した(WO95/278
15号)。なお、ここでいう{011}面または{10
1}面とは、それぞれ(011)面、(101)面と等
価な面の組を表す。
Therefore, the present inventors have used a rare earth 13 (3B) group perovskite crystal as one of the materials for the heterocrystalline substrate, and have grown a GaN-based compound semiconductor using the {011} plane or the {101} plane as a growth plane. A method of growing by heteroepitaxy was proposed (WO 95/278).
No. 15). The {011} plane or {10}
The 1} plane represents a set of planes equivalent to the (011) plane and the (101) plane, respectively.

【0008】前記先願の成長技術によれば、例えば希土
類13(3B)族ペロブスカイトの一つであるNdGa
を基板として、その{011}面または{101}
面にGaNを成長させる場合、格子不整合は1.2%程
度であり格子不整合性をサファイアやその代替品として
用いられるSiCを基板とした場合よりも極めて小さく
なる。よって、結晶中の転位密度が低くなるので結晶欠
陥の少ないGaN系化合物半導体結晶を成長させること
ができた。
According to the growth technology of the prior application, for example, NdGa which is one of the rare earth 13 (3B) group perovskites is used.
Using O 3 as a substrate, its {011} plane or {101}
When GaN is grown on a surface, the lattice mismatch is about 1.2%, which is much smaller than that of a substrate made of sapphire or SiC used as a substitute thereof. Therefore, the dislocation density in the crystal is reduced, so that a GaN-based compound semiconductor crystal with few crystal defects can be grown.

【0009】[0009]

【発明が解決しようとする課題】しかしながら、前記先
願の成長方法では、GaN系化合物半導体結晶を成長さ
せる際に基板との格子不整合による結晶欠陥の発生を抑
えることができたが、得られたGaN系化合物半導体結
晶の結晶状態が多結晶になってしまうこともあった。す
なわち、前記先願の成長方法では半導体デバイスに適し
たGaN化合物半導体単結晶を歩留まりよく成長させる
ことができない場合があるという問題があった。
However, in the growth method of the prior application, the generation of crystal defects due to lattice mismatch with the substrate during the growth of the GaN-based compound semiconductor crystal could be suppressed. In some cases, the crystal state of the GaN-based compound semiconductor crystal becomes polycrystalline. That is, the prior-art growth method has a problem that a GaN compound semiconductor single crystal suitable for a semiconductor device may not be able to grow with high yield.

【0010】本発明は、GaN系化合物半導体結晶と比
較的よく格子整合する希土類13(3B)族ペロブスカ
イトを基板として用いることにより、結晶欠陥が少ない
GaN系化合物半導体単結晶を歩留まりよく製造可能な
方法を提供することを目的とする。
The present invention provides a method for producing a GaN-based compound semiconductor single crystal having few crystal defects with good yield by using a rare-earth 13 (3B) group perovskite which has a relatively good lattice matching with a GaN-based compound semiconductor crystal as a substrate. The purpose is to provide.

【0011】[0011]

【課題を解決するための手段】本発明は、上記目的を達
成するためになされたものであり、1または2種類以上
の希土類元素を含む希土類13(3B)族ペロブスカイ
ト結晶を基板としてGaN系化合物半導体結晶を成長さ
せる方法において、前記希土類13(3B)族ペロブス
カイト結晶基板の(011)面から1°から4°だけオ
フアングルさせた面を成長面とすることを特徴とするG
aN系化合物半導体結晶の製造方法である。
SUMMARY OF THE INVENTION The present invention has been made to achieve the above object, and a GaN-based compound using a rare earth 13 (3B) group perovskite crystal containing one or more rare earth elements as a substrate. In the method for growing a semiconductor crystal, a plane which is off-angled by 1 ° to 4 ° from the (011) plane of the rare-earth 13 (3B) group perovskite crystal substrate is defined as a growth plane.
This is a method for producing an aN-based compound semiconductor crystal.

【0012】これにより、結晶欠陥が少ないGaN系化
合物半導体結晶を成長させることができるとともに、G
aN系化合物半導体結晶の単結晶化率が向上するので、
半導体デバイスに適したGaN系化合物半導体単結晶を
歩留まりよく製造することができる。
Thus, a GaN-based compound semiconductor crystal having few crystal defects can be grown, and
Since the single crystallization rate of the aN-based compound semiconductor crystal is improved,
A GaN-based compound semiconductor single crystal suitable for a semiconductor device can be manufactured with high yield.

【0013】また、望ましくは前記オフアングルの方向
を<100>方向にするとよい。これにより、GaN系
化合物半導体結晶の単結晶化率が特に高くなるので、G
aN系化合物半導体単結晶を歩留まりよく製造すること
ができる。
Preferably, the off-angle direction is set to the <100> direction. As a result, the single crystallization ratio of the GaN-based compound semiconductor crystal becomes particularly high.
An aN-based compound semiconductor single crystal can be manufactured with high yield.

【0014】また、基板として用いられる上記希土類1
3(3B)族ペロブスカイト結晶は、希土類元素のうち
Al,Ga,Inの少なくとも1種類とNとの化合物で
あるようにするとよい。例えば、希土類13(3B)族
ペロブスカイト結晶として、NdGaO結晶を利用す
ることができる。また、結晶成長方法としてはハイドラ
イドVPEが望ましい。
The rare earth element 1 used as a substrate
The 3 (3B) group perovskite crystal is preferably a compound of N and at least one of Al, Ga, and In among rare earth elements. For example, an NdGaO 3 crystal can be used as the rare earth 13 (3B) group perovskite crystal. Also, hydride VPE is desirable as a crystal growth method.

【0015】以下に、本発明を完成するに至った過程に
ついて説明する。
Hereinafter, a process of completing the present invention will be described.

【0016】まず、本発明者等は前記先願で提案したG
aN系化合物半導体結晶の成長方法により得られたGa
N系化合物半導体結晶の中には、結晶状態が多結晶にな
っているものがあることに気付いた。つまり、前記成長
法法ではGaN系化合物半導体結晶を成長させる際に基
板との格子不整合による結晶欠陥の発生を抑えることが
できたが、得られたGaN系化合物半導体結晶の結晶状
態が多結晶になる場合があるため、半導体デバイスの材
料に適したGaN化合物半導体結晶を製造する方法とし
て実用化することは困難であることが判明した。
First, the present inventors have proposed the G method proposed in the prior application.
Ga obtained by a method of growing an aN-based compound semiconductor crystal
It has been noticed that some of the N-based compound semiconductor crystals have a polycrystalline crystal state. That is, in the above-mentioned growth method, the generation of crystal defects due to lattice mismatch with the substrate when growing the GaN-based compound semiconductor crystal could be suppressed. It has been found that it is difficult to put it into practical use as a method for producing a GaN compound semiconductor crystal suitable for a material of a semiconductor device.

【0017】そこで、本発明者等は前記成長方法にはさ
らに改良する余地があると考え、前記成長方法により得
られるGaN系化合物半導体結晶の結晶状態を改善すべ
く希土類13(3B)族ペロブスカイトの一つであるN
dGaO基板の成長面に着目して鋭意研究を重ねた。
具体的には、前記先願の成長方法ではNdGaO基板
の(011)ジャスト面を成長面としていたのを、(0
11)面から所定の角度だけ傾斜したオフアングル面を
成長面としてGaN化合物半導体結晶を成長させる実験
を行った。
Therefore, the present inventors consider that there is room for further improvement in the above-mentioned growth method, and in order to improve the crystal state of the GaN-based compound semiconductor crystal obtained by the above-mentioned growth method, a rare-earth 13 (3B) group perovskite is used. N which is one
Focusing on the growth surface of the dGaO 3 substrate, intensive research was conducted.
Specifically, the (011) just surface of the NdGaO 3 substrate was used as the growth surface in the growth method of the prior application, but instead of (0)
11) An experiment was conducted in which a GaN compound semiconductor crystal was grown with an off-angle plane inclined by a predetermined angle from the plane as a growth plane.

【0018】まず、NdGaO結晶のインゴットをス
ライスし、(011)ジャスト面および(011)面か
ら<100>方向に1°〜6°傾斜したオフアングル面
が成長面となるようにした基板をそれぞれ複数枚用意し
た。そして、これらのNdGaO基板を洗浄してエッ
チングした後、ハイドライドVPE法によりGaN化合
物半導体結晶を成長させた。
First, an ingot of NdGaO 3 crystal is sliced, and a substrate having an off-angle surface inclined by 1 ° to 6 ° in the <100> direction from the (011) just surface and the (011) surface is used as a growth surface. Multiple pieces were prepared for each. After cleaning and etching these NdGaO 3 substrates, GaN compound semiconductor crystals were grown by the hydride VPE method.

【0019】その結果、(011)ジャスト面を成長面
とした場合の単結晶化率は50%、(011)面から1
°傾斜したオフアングル面を成長面とした場合の単結晶
化率は80%、(011)面から2°傾斜したオフアン
グル面を成長面とした場合の単結晶化率は90%、(0
11)面から3°傾斜したオフアングル面を成長面とし
た場合の単結晶化率は80%、(011)面から4°傾
斜したオフアングル面を成長面とした場合の単結晶化率
は70%、(011)面から5°傾斜したオフアングル
面を成長面とした場合の単結晶化率は50%、(01
1)面から6°傾斜したオフアングル面を成長面とした
場合の単結晶化率は30%となった(表1)。
As a result, when the (011) just face was used as the growth face, the single crystallization ratio was 50%, and the single crystallization rate was 1
The single crystallization ratio when the off-angle surface inclined at an angle of 0 ° is the growth surface is 80%, and the single crystallization ratio when the off-angle surface inclined at 2 ° from the (011) plane is the growth surface is 90%.
The single crystallization ratio when the off-angle surface inclined at 3 ° from the (11) plane is the growth surface is 80%, and the single crystallization ratio when the off-angle surface at 4 ° from the (011) plane is the growth surface is: When the off-angle plane inclined by 5 ° from the (011) plane was used as the growth plane, the single crystallization ratio was 50%.
1) When the off-angle plane inclined 6 ° from the plane was used as the growth plane, the single crystallization ratio was 30% (Table 1).

【0020】[0020]

【表1】 [Table 1]

【0021】この実験より、NdGaO基板の(01
1)ジャスト面を成長面とするよりも、(011)面か
ら<100>方向に1°〜4°傾斜したオフアングル面
を成長面とした方が単結晶化率が向上することが分かっ
た。
From this experiment, (01) of the NdGaO 3 substrate
1) It was found that the single crystallization ratio was improved when the off-angle surface inclined by 1 ° to 4 ° in the <100> direction from the (011) plane was used as the growth surface, rather than when the just surface was used as the growth surface. .

【0022】本発明は上記知見に基づいてなされたもの
で、この方法により半導体デバイスに適したGaN化合
物半導体単結晶を歩留まりよく成長させることができ
る。
The present invention has been made based on the above findings, and this method can grow a GaN compound semiconductor single crystal suitable for a semiconductor device with high yield.

【0023】なお、本発明は、NdGaO基板にGa
N化合物半導体結晶を成長させる実験により見出された
ものであるが、GaN化合物半導体結晶以外にも、In
GaN、AlGaN等のGaN系化合物半導体結晶を成
長させた場合も同様の効果が得られる。
In the present invention, the NdGaO 3 substrate is
Although it was found by an experiment for growing an N compound semiconductor crystal, in addition to the GaN compound semiconductor crystal, In
Similar effects can be obtained when a GaN-based compound semiconductor crystal such as GaN or AlGaN is grown.

【0024】[0024]

【発明の実施の形態】以下、本発明の好適な実施の形態
を、NdGaO結晶を基板としてGaN化合物半導体
結晶を成長させる場合について説明する。
BEST MODE FOR CARRYING OUT THE INVENTION A preferred embodiment of the present invention will be described below in which a GaN compound semiconductor crystal is grown using an NdGaO 3 crystal as a substrate.

【0025】まず、NdGaOのインゴットを(01
1)面から<100>方向に2°傾斜したオフアングル
面でスライスして基板とした。このとき、NdGaO
基板の大きさは50mm径で、厚さは0.5mmとした。
First, an ingot of NdGaO 3 was placed at (01
1) A substrate was sliced on an off-angle plane inclined at 2 ° in the <100> direction from the plane. At this time, NdGaO 3
The size of the substrate was 50 mm in diameter, and the thickness was 0.5 mm.

【0026】次に、鏡面研磨したNdGaO基板をア
セトン中で5分間超音波洗浄を行い、続けてメタノール
で5分間超音波洗浄を行った。その後、Nガスでブロ
ーして液滴を吹き飛ばしてから自然乾燥させた。次に、
洗浄したNdGaO基板を硫酸系エッチャント(燐
酸:硫酸=1:3、80℃)で5分間エッチングした。
Next, the mirror-polished NdGaO 3 substrate was subjected to ultrasonic cleaning in acetone for 5 minutes, followed by ultrasonic cleaning in methanol for 5 minutes. Thereafter, the liquid droplets were blown off by blowing with N 2 gas, and then air-dried. next,
The washed NdGaO 3 substrate was etched with a sulfuric acid-based etchant (phosphoric acid: sulfuric acid = 1: 3, 80 ° C.) for 5 minutes.

【0027】次に、このNdGaO基板をハイドライ
ドVPE装置内の所定の部位に配置した後、Nガスを
導入しながら基板温度を620℃まで昇温し、Gaメタ
ルとHClガスから生成されたGaClと、NHガス
とをNキャリアガスを用いてNdGaO基板上に供
給し、約100nmのGaN保護層を形成した。NdG
aOは800℃以上の高温でNHやHと反応して
ネオジウム化合物を生成してしまうので、本実施形態で
はキャリアガスとしてNを用い、成長温度を620℃
の低温で保護層を形成することによりネオジウム化合物
が生成されないようにしている。
Next, after placing this NdGaO 3 substrate at a predetermined position in a hydride VPE device, the substrate temperature was increased to 620 ° C. while introducing N 2 gas, and the NdGaO 3 substrate was formed from Ga metal and HCl gas. GaCl and NH 3 gas were supplied onto the NdGaO 3 substrate using an N 2 carrier gas to form a GaN protective layer of about 100 nm. NdG
Since aO 3 reacts with NH 3 or H 2 at a high temperature of 800 ° C. or more to generate a neodymium compound, in this embodiment, N 2 is used as a carrier gas and the growth temperature is 620 ° C.
By forming the protective layer at a low temperature, the neodymium compound is prevented from being generated.

【0028】次に、基板温度を1000℃に昇温し、G
aメタルとHClガスから生成されたGaClと、NH
ガスとをNキャリアガスを用いてNdGaO基板
上に供給した。このとき、GaCl分圧が4.0×10
−3atm、NH分圧が2.4×10−1atmとな
るようにそれぞれのガス導入量を制御しながら約40μ
m/hの成長速度で300分間GaN化合物半導体結晶
を成長させた。
Next, the substrate temperature is raised to 1000 ° C.
a GaCl generated from metal and HCl gas, NH
The three gases were supplied onto a NdGaO 3 substrate using a N 2 carrier gas. At this time, the GaCl partial pressure was 4.0 × 10
−40 atm while controlling the gas introduction amounts so that the partial pressure of NH 3 becomes 2.4 × 10 −1 atm.
A GaN compound semiconductor crystal was grown at a growth rate of m / h for 300 minutes.

【0029】その後、冷却速度5.3℃/minで90
分間冷却して膜厚が約200μmのGaN化合物半導体
結晶を得た。
Thereafter, the cooling rate is 5.3 ° C./min at 90 ° C.
After cooling for one minute, a GaN compound semiconductor crystal having a thickness of about 200 μm was obtained.

【0030】得られたGaN化合物半導体結晶は、結晶
欠陥が少なく結晶性に優れた単結晶であった。また、上
述した方法によりGaN化合物半導体結晶を作製した場
合、GaN化合物半導体結晶の単結晶化率は90%以上
であり、半導体デバイスの材料として適したGaN化合
物半導体単結晶を歩留まりよく成長させることができ
た。
The obtained GaN compound semiconductor crystal was a single crystal having few crystal defects and excellent crystallinity. Further, when a GaN compound semiconductor crystal is manufactured by the above-described method, the single crystallinity of the GaN compound semiconductor crystal is 90% or more, so that a GaN compound semiconductor single crystal suitable as a material for a semiconductor device can be grown with high yield. did it.

【0031】以上本発明者によってなされた発明を実施
形態に基づき具体的に説明したが、本発明は上記実施の
形態に限定されるものではない。例えば、<100>方
向に傾ける角度は2°に限定されず、1°〜4°の範囲
とすることにより本実施形態と同様に単結晶化率を向上
させることができる。
Although the invention made by the present inventor has been specifically described based on the embodiments, the present invention is not limited to the above embodiments. For example, the angle of inclination in the <100> direction is not limited to 2 °, and the single crystallization ratio can be improved by setting the angle in the range of 1 ° to 4 ° as in the present embodiment.

【0032】また、成長条件としては、GaCl分圧が
1.0×10−3〜1.0×10 atm、NH
圧が1.0×10−1〜4.0×10−1atm、成長
速度が30〜100μm/h、 成長温度が930〜1
050℃、冷却速度が4〜10℃/minであることが
望ましい。
Further, as the growth conditions, GaCl partial pressure of 1.0 × 10 -3 ~1.0 × 10 - 2 atm, NH 3 partial pressure 1.0 × 10 -1 ~4.0 × 10 - 1 atm, growth rate 30-100 μm / h, growth temperature 930-1
It is desirable that the cooling rate is 050 ° C and the cooling rate is 4 to 10 ° C / min.

【0033】また、GaN化合物半導体結晶を成長させ
る場合に制限されず、例えば、InGaN、AlGaN
等のGaN系化合物半導体結晶の成長方法に適用しても
同様の効果を得ることができる。また、基板として用い
られる希土類13(3B)族ペロブスカイト結晶はNd
GaO結晶に制限されず、Al,Ga,Inの少なく
とも1種類を含む希土類13(3B)族ペロブスカイト
結晶であればよいと考えられる。
The present invention is not limited to the case where a GaN compound semiconductor crystal is grown. For example, InGaN, AlGaN
The same effect can be obtained by applying the present invention to a method for growing a GaN-based compound semiconductor crystal. The rare-earth 13 (3B) group perovskite crystal used as the substrate is Nd.
The crystal is not limited to the GaO 3 crystal, but may be a rare-earth 13 (3B) group perovskite crystal containing at least one of Al, Ga, and In.

【0034】[0034]

【発明の効果】本発明によれば、1または2種類以上の
希土類元素を含む希土類13(3B)族ペロブスカイト
結晶を基板としてGaN系化合物半導体結晶を成長させ
る方法において、前記希土類13(3B)族ペロブスカ
イト結晶基板の(011)面から1°から4°だけオフ
アングルさせた面を成長面としたので、結晶欠陥が少な
いGaN系化合物半導体結晶を成長させることができる
とともに、GaN系化合物半導体結晶の単結晶化率が向
上するので、半導体デバイスに適したGaN系化合物半
導体単結晶を歩留まりよく製造することができるという
効果を奏する。
According to the present invention, there is provided a method of growing a GaN-based compound semiconductor crystal using a rare earth 13 (3B) group perovskite crystal containing one or more kinds of rare earth elements as a substrate. Since the plane that is off-angled by 1 ° to 4 ° from the (011) plane of the perovskite crystal substrate is used as the growth plane, a GaN-based compound semiconductor crystal with few crystal defects can be grown, and the GaN-based compound semiconductor crystal Since the single crystallization rate is improved, there is an effect that a GaN-based compound semiconductor single crystal suitable for a semiconductor device can be manufactured with high yield.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 1または2種類以上の希土類元素を含む
希土類13(3B)族ペロブスカイト結晶を基板として
GaN系化合物半導体結晶を成長させる方法において、 前記希土類13(3B)族ペロブスカイト結晶基板の
(011)面から1°から4°だけオフアングルさせた
面を成長面とすることを特徴とするGaN系化合物半導
体結晶の製造方法。
1. A method for growing a GaN-based compound semiconductor crystal using a rare earth 13 (3B) group perovskite crystal containing one or more kinds of rare earth elements as a substrate, wherein the (011) A method for producing a GaN-based compound semiconductor crystal, characterized in that a plane off-angled by 1 ° to 4 ° from the plane is a growth plane.
【請求項2】 前記オフアングルの方向は、<100>
方向であることを特徴とする請求項1に記載のGaN系
化合物半導体結晶の製造方法。
2. The off-angle direction is <100>.
The method according to claim 1, wherein the direction is a direction.
【請求項3】 基板として用いられる上記希土類13
(3B)族ペロブスカイト結晶は、希土類元素のうちA
l,Ga,Inの少なくとも1種類とNとの化合物であ
ることを特徴とする請求項1または請求項2に記載のG
aN系化合物半導体結晶の製造方法。
3. The rare earth element 13 used as a substrate.
The group (3B) perovskite crystal is one of the rare earth elements A
The G according to claim 1 or 2, wherein the compound is a compound of at least one of l, Ga, and In and N.
A method for producing an aN-based compound semiconductor crystal.
JP2001078246A 2001-03-19 2001-03-19 GaN compound semiconductor crystal manufacturing method Expired - Fee Related JP3785566B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001078246A JP3785566B2 (en) 2001-03-19 2001-03-19 GaN compound semiconductor crystal manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001078246A JP3785566B2 (en) 2001-03-19 2001-03-19 GaN compound semiconductor crystal manufacturing method

Publications (2)

Publication Number Publication Date
JP2002274997A true JP2002274997A (en) 2002-09-25
JP3785566B2 JP3785566B2 (en) 2006-06-14

Family

ID=18934887

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001078246A Expired - Fee Related JP3785566B2 (en) 2001-03-19 2001-03-19 GaN compound semiconductor crystal manufacturing method

Country Status (1)

Country Link
JP (1) JP3785566B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006119927A1 (en) * 2005-05-06 2006-11-16 Freiberger Compound Materials Gmbh Method for producing iii-n layers, and iii-n layers or iii-n substrates, and devices based thereon
US7589358B2 (en) * 2002-05-17 2009-09-15 Ammono Sp. Z O.O. Phosphor single crystal substrate and method for preparing the same, and nitride semiconductor component using the same
US7744697B2 (en) 2001-06-06 2010-06-29 Nichia Corporation Bulk monocrystalline gallium nitride
US7750355B2 (en) 2001-10-26 2010-07-06 Ammono Sp. Z O.O. Light emitting element structure using nitride bulk single crystal layer
JP2010183026A (en) * 2009-02-09 2010-08-19 Sumitomo Electric Ind Ltd Epitaxial wafer, method of fabricating gallium nitride-based semiconductor device, gallium nitride-based semiconductor device, and gallium oxide wafer
US7811380B2 (en) 2002-12-11 2010-10-12 Ammono Sp. Z O.O. Process for obtaining bulk mono-crystalline gallium-containing nitride
US7871843B2 (en) 2002-05-17 2011-01-18 Ammono. Sp. z o.o. Method of preparing light emitting device
US7905957B2 (en) 2004-11-26 2011-03-15 Ammono Sp. Z.O.O. Method of obtaining bulk single crystals by seeded growth
US8110848B2 (en) 2002-12-11 2012-02-07 Ammono Sp. Z O.O. Substrate for epitaxy and method of preparing the same
US8398767B2 (en) 2004-06-11 2013-03-19 Ammono S.A. Bulk mono-crystalline gallium-containing nitride and its application

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7744697B2 (en) 2001-06-06 2010-06-29 Nichia Corporation Bulk monocrystalline gallium nitride
US7750355B2 (en) 2001-10-26 2010-07-06 Ammono Sp. Z O.O. Light emitting element structure using nitride bulk single crystal layer
US7935550B2 (en) 2001-10-26 2011-05-03 Ammono Sp. Z O.O. Method of forming light-emitting device using nitride bulk single crystal layer
US7589358B2 (en) * 2002-05-17 2009-09-15 Ammono Sp. Z O.O. Phosphor single crystal substrate and method for preparing the same, and nitride semiconductor component using the same
US7871843B2 (en) 2002-05-17 2011-01-18 Ammono. Sp. z o.o. Method of preparing light emitting device
US8110848B2 (en) 2002-12-11 2012-02-07 Ammono Sp. Z O.O. Substrate for epitaxy and method of preparing the same
US7811380B2 (en) 2002-12-11 2010-10-12 Ammono Sp. Z O.O. Process for obtaining bulk mono-crystalline gallium-containing nitride
US8398767B2 (en) 2004-06-11 2013-03-19 Ammono S.A. Bulk mono-crystalline gallium-containing nitride and its application
US7905957B2 (en) 2004-11-26 2011-03-15 Ammono Sp. Z.O.O. Method of obtaining bulk single crystals by seeded growth
EP2322699A3 (en) * 2005-05-06 2011-06-22 Freiberger Compound Materials GmbH Process for producing III-N substrates
WO2006119927A1 (en) * 2005-05-06 2006-11-16 Freiberger Compound Materials Gmbh Method for producing iii-n layers, and iii-n layers or iii-n substrates, and devices based thereon
US7998273B2 (en) 2005-05-06 2011-08-16 Freiberger Compound Materials Gmbh Method for producing III-N layers, and III-N layers or III-N substrates, and devices based thereon
EP2322699A2 (en) 2005-05-06 2011-05-18 Freiberger Compound Materials GmbH Process for producing III-N substrates
KR101348985B1 (en) * 2005-05-06 2014-01-09 오스람 옵토 세미컨덕터스 게엠베하 Method for producing ⅲ-n layers, and ⅲ-n layers or ⅲ-n substrates, and devices based thereon
KR101472832B1 (en) 2005-05-06 2014-12-16 프라이베르게르 컴파운드 마터리얼스 게엠베하 Method for producing ⅲ-n layers, and ⅲ-n layers or ⅲ-n substrates, and devices based thereon
TWI475598B (en) * 2005-05-06 2015-03-01 Osram Opto Semiconductors Gmbh Method for producing iii-n layers, and iii-n layers or iii-n substrates, and devices based thereon
US9115444B2 (en) 2005-05-06 2015-08-25 Freiberger Compound Materials Gmbh Method for producing III-N layers, and III-N layers or III-N substrates, and devices based thereon
CN102308370A (en) * 2009-02-09 2012-01-04 住友电气工业株式会社 Epitaxial wafer, method for manufacturing gallium nitride semiconductor device, gallium nitride semiconductor device and gallium oxide wafer
JP2010183026A (en) * 2009-02-09 2010-08-19 Sumitomo Electric Ind Ltd Epitaxial wafer, method of fabricating gallium nitride-based semiconductor device, gallium nitride-based semiconductor device, and gallium oxide wafer
US8592289B2 (en) 2009-02-09 2013-11-26 Sumitomo Electric Industries, Ltd. Epitaxial wafer, method for manufacturing gallium nitride semiconductor device, gallium nitride semiconductor device and gallium oxide wafer
TWI476947B (en) * 2009-02-09 2015-03-11 Koha Co Ltd An epitaxial wafer, a gallium nitride-based semiconductor device, a gallium nitride-based semiconductor device, and a gallium oxide wafer

Also Published As

Publication number Publication date
JP3785566B2 (en) 2006-06-14

Similar Documents

Publication Publication Date Title
JP4581490B2 (en) III-V group nitride semiconductor free-standing substrate manufacturing method and III-V group nitride semiconductor manufacturing method
US7976630B2 (en) Large-area seed for ammonothermal growth of bulk gallium nitride and method of manufacture
JP4150527B2 (en) Crystal production method
JP2006232655A (en) Method for manufacturing nitride-based single crystal substrate and method for manufacturing nitride-based semiconductor light emitting element using the same
US10161059B2 (en) Group III nitride bulk crystals and their fabrication method
JP2003197541A (en) Method of manufacturing iii nitride film
JPH10265297A (en) Production of gallium nitride bulk single crystal
JP3785566B2 (en) GaN compound semiconductor crystal manufacturing method
JP2002305155A (en) CRYSTAL GROWING APPARATUS FOR GaN-BASED COMPOUND SEMICONDUCTOR CRYSTAL
JPH07273048A (en) Manufacture method of compound semiconductor single crystal and single crystal substrate using such method
JP2002050585A (en) Method for growing crystal of semiconductor
US7112243B2 (en) Method for producing Group III nitride compound semiconductor
US6875272B2 (en) Method for preparing GaN based compound semiconductor crystal
WO2003056073A1 (en) Group iii nitride semiconductor substrate and its manufacturing method
JP4355232B2 (en) GaN compound semiconductor crystal manufacturing method and GaN compound semiconductor crystal
JP2003218043A (en) METHOD OF MANUFACTURING GaN-BASED COMPOUND SEMICONDUCTOR CRYSTAL
JP4673514B2 (en) GaN compound semiconductor crystal manufacturing method
JP2006032736A (en) Method of manufacturing semiconductor device
JP2000277440A (en) Nitride iii-v compound semiconductor crystal film, semiconductor device, and semiconductor laser using the same
JP2002231640A (en) Gallium nitride substrate and manufacturing method therefor
WO2015179852A1 (en) Group iii nitride bulk crystals and their fabrication method
JP2000012901A (en) Manufacture of gallium nitride-based compound semiconductor single crystal
JP2002211999A (en) Method of producing crystal growth substrate of group iii nitride-based compound semiconductor
JP2002313741A (en) GaN BASED COMPOUND SEMICONDUCTOR CRYSTAL AND ITS MANUFACTURING METHOD
JP2009120484A (en) Group iii-v nitride semiconductor device and its production method

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051110

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051122

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060120

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060307

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060308

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090331

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090331

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090331

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090331

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100331

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100331

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110331

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110331

Year of fee payment: 5

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110331

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120331

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120331

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130331

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130331

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140331

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees