JP2002313741A - GaN BASED COMPOUND SEMICONDUCTOR CRYSTAL AND ITS MANUFACTURING METHOD - Google Patents

GaN BASED COMPOUND SEMICONDUCTOR CRYSTAL AND ITS MANUFACTURING METHOD

Info

Publication number
JP2002313741A
JP2002313741A JP2001119759A JP2001119759A JP2002313741A JP 2002313741 A JP2002313741 A JP 2002313741A JP 2001119759 A JP2001119759 A JP 2001119759A JP 2001119759 A JP2001119759 A JP 2001119759A JP 2002313741 A JP2002313741 A JP 2002313741A
Authority
JP
Japan
Prior art keywords
compound semiconductor
crystal
substrate
gan
semiconductor crystal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001119759A
Other languages
Japanese (ja)
Inventor
Takashi Kainosho
敬司 甲斐荘
Shinichi Sasaki
伸一 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Mining Holdings Inc
Original Assignee
Nikko Materials Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikko Materials Co Ltd filed Critical Nikko Materials Co Ltd
Priority to JP2001119759A priority Critical patent/JP2002313741A/en
Publication of JP2002313741A publication Critical patent/JP2002313741A/en
Pending legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a technique for effectively restraining generation of contamination in a manufacturing method of GaN based compound semiconductor crystal wherein a rare earth 13 (3B) group perovskite is used as a substrate. SOLUTION: In a method wherein GaN based compound semiconductor crystal is grown on the surface of a substrate in which a rare earth 13 (3B) group perovskite crystal containing one or at least two kinds of rare earth elements is used, at least the back of the substrate is coated with SiO2 . Thereby the are earth elements as constituent elements of the substrate are prevented from being captured during crystal growth.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、発光デバイス、電
子デバイスなどの半導体デバイスの製造に用いられるG
aN系化合物半導体結晶の製造方法に関する。
[0001] 1. Field of the Invention [0002] The present invention relates to a semiconductor device such as a light emitting device or an electronic device.
The present invention relates to a method for producing an aN-based compound semiconductor crystal.

【0002】[0002]

【従来の技術】GaN、InGaN、AlGaN、In
GaAlN等のGaN系化合物半導体(InGa
1−x−yN 但し0≦x,y;x+y≦1)は、発
光デバイスやパワーデバイスなどの電子デバイス等の半
導体デバイスの材料として期待され、またその他種々の
分野で応用可能な材料として注目されている。
2. Description of the Related Art GaN, InGaN, AlGaN, InGaN
GaN-based compound such as GaAlN semiconductor (In x Ga y A
l 1-xy N where 0 ≦ x, y; x + y ≦ 1) is expected as a material for semiconductor devices such as electronic devices such as light emitting devices and power devices, and as a material applicable in various other fields. Attention has been paid.

【0003】従来、GaN系化合物半導体のバルク結晶
を成長させるのは困難であったため、上記電子デバイス
には、例えばサファイア等の異種結晶上へのヘテロエピ
タキシーによってGaN等の薄膜単結晶を形成した基板
が用いられていた。
Conventionally, it has been difficult to grow a bulk crystal of a GaN-based compound semiconductor. For this reason, the above-mentioned electronic device has a substrate on which a thin-film single crystal such as GaN is formed by heteroepitaxy on a heterogeneous crystal such as sapphire. Was used.

【0004】ところが、サファイア結晶とGaN系化合
物半導体結晶とは格子不整合性が大きいので、サファイ
ア結晶上に成長させたGaN系化合物半導体結晶の転位
密度が大きくなり結晶欠陥が発生してしまうという問題
があった。さらに、サファイアは熱伝導率が小さく放熱
しにくいので、サファイア結晶上にGaN系化合物半導
体結晶を成長させた基板を消費電力の大きい電子デバイ
ス等に用いると高温になりやすいという問題があった。
However, since the lattice mismatch between the sapphire crystal and the GaN-based compound semiconductor crystal is large, the dislocation density of the GaN-based compound semiconductor crystal grown on the sapphire crystal becomes large and crystal defects occur. was there. Furthermore, since sapphire has a low thermal conductivity and is difficult to dissipate heat, there is a problem in that when a substrate in which a GaN-based compound semiconductor crystal is grown on a sapphire crystal is used for an electronic device or the like which consumes a large amount of power, the temperature tends to rise.

【0005】そこで、熱伝導率が大きくGaN系化合物
半導体結晶と格子整合する基板の必要性が一層高まり、
ハイドライド気相成長法(以下、HVPEと略する)を
利用したELO(Epitaxial lateral overgrowth)法等
の研究が急速に進められた。ここでELO法とは、例え
ばサファイア基板上にマスクとなる絶縁膜を形成し、該
絶縁膜の一部に開口部を設けて絶縁膜をマスクとし、露
出しているサファイア基板面をエピタキシャル成長の種
として結晶性の高いGaN系化合物半導体結晶を成長さ
せる方法である。この方法によれば、マスクに設けられ
た開口部内側のサファイア基板表面からGaN系化合物
半導体結晶の成長が始まりマスク上に成長層が広がって
いくので、結晶中の転位密度を小さく抑えることがで
き、結晶欠陥の少ないGaN系化合物半導体結晶を得る
ことができる。
Accordingly, the need for a substrate having a large thermal conductivity and lattice-matching with a GaN-based compound semiconductor crystal has been further increased.
Research such as ELO (Epitaxial Lateral Overgrowth) using hydride vapor phase epitaxy (hereinafter abbreviated as HVPE) has been rapidly advanced. Here, the ELO method means that, for example, an insulating film serving as a mask is formed on a sapphire substrate, an opening is provided in a part of the insulating film, the insulating film is used as a mask, and the exposed sapphire substrate surface is subjected to epitaxial growth. This is a method of growing a GaN-based compound semiconductor crystal having high crystallinity. According to this method, the growth of the GaN-based compound semiconductor crystal starts from the surface of the sapphire substrate inside the opening provided in the mask, and the growth layer spreads on the mask, so that the dislocation density in the crystal can be suppressed to a small value. Thus, a GaN-based compound semiconductor crystal having few crystal defects can be obtained.

【0006】しかし、ELO法により得られたGaN系
化合物半導体結晶は熱歪みが大きいため、ウェハ製造工
程のポリッシングによりサファイア基板を離間させてG
aN系化合物半導体結晶ウェハを単体で得ようとすると
GaN系化合物半導体結晶ウェハが歪んでしまうという
問題があった。
However, since the GaN-based compound semiconductor crystal obtained by the ELO method has a large thermal strain, the sapphire substrate is separated by polishing in the wafer manufacturing process so that the
There is a problem that the GaN-based compound semiconductor crystal wafer is distorted when trying to obtain the aN-based compound semiconductor crystal wafer alone.

【0007】そこで本発明者等は、異種結晶基板の材料
の一つとして希土類13(3B)族ペロブスカイト結晶
を用い、且つその{011}面または{101}面を成
長面としてGaN系化合物半導体をヘテロエピタキシー
によって成長させる方法を提案した(WO95/278
15号)。なお、ここでいう{011}面または{10
1}面とは、それぞれ(011)面、(101)面と等
価な面の組を表す。
Therefore, the present inventors have used a rare earth 13 (3B) group perovskite crystal as one of the materials for the heterocrystalline substrate, and have grown a GaN-based compound semiconductor using the {011} plane or the {101} plane as a growth plane. A method of growing by heteroepitaxy was proposed (WO 95/278).
No. 15). The {011} plane or {10}
The 1} plane represents a set of planes equivalent to the (011) plane and the (101) plane, respectively.

【0008】前記先願の成長技術によれば、例えば希土
類13(3B)族ペロブスカイトの一つであるNdGa
を基板として、その{011}面または{101}
面にGaNを成長させる場合、格子不整合は1.2%程
度であり格子不整合性をサファイアやその代替品として
用いられるSiCを基板とした場合よりも極めて小さく
なる。よって、結晶中の転位密度が低くなるので結晶欠
陥の少ないGaN系化合物半導体結晶を成長させること
ができた。
According to the growth technology of the prior application, for example, NdGa which is one of the rare earth 13 (3B) group perovskites is used.
Using O 3 as a substrate, its {011} plane or {101}
When GaN is grown on a surface, the lattice mismatch is about 1.2%, which is much smaller than that of a substrate made of sapphire or SiC used as a substitute thereof. Therefore, the dislocation density in the crystal is reduced, so that a GaN-based compound semiconductor crystal with few crystal defects can be grown.

【0009】[0009]

【発明が解決しようとする課題】しかしながら、前記先
願の成長方法ではGaN系化合物半導体結晶を成長させ
る際に基板との格子不整合による結晶欠陥の発生を抑え
ることができたが、得られたGaN系化合物半導体結晶
にコンタミネーション(汚染)が発生するため結晶性が
悪くなり、半導体素子のデバイス特性に悪影響を及ぼす
おそれがあるという問題があった。
However, in the growth method of the prior application, when growing a GaN-based compound semiconductor crystal, the occurrence of crystal defects due to lattice mismatch with the substrate could be suppressed. There is a problem in that contamination (contamination) occurs in the GaN-based compound semiconductor crystal, thereby deteriorating the crystallinity and adversely affecting the device characteristics of the semiconductor element.

【0010】本発明は、希土類13(3B)族ペロブス
カイトを基板として用いたGaN系化合物半導体結晶の
製造方法において、コンタミネーションの発生を効果的
に抑制する技術を提供することを目的とする。
An object of the present invention is to provide a method of manufacturing a GaN-based compound semiconductor crystal using a rare-earth 13 (3B) group perovskite as a substrate, and to provide a technique for effectively suppressing generation of contamination.

【0011】[0011]

【課題を解決するための手段】本発明は、上記目的を達
成するために、1または2種類以上の希土類元素を含む
希土類13(3B)族ペロブスカイト結晶を基板として
その表面(一主面)にGaN系化合物半導体結晶を成長
させる方法において、前記基板の少なくとも裏面をSi
で被覆するようにした。
According to the present invention, in order to achieve the above object, a rare earth 13 (3B) group perovskite crystal containing one or more kinds of rare earth elements is used as a substrate and its surface (one main surface) is formed. In the method for growing a GaN-based compound semiconductor crystal, at least the back surface of the substrate is made of Si.
And so as to cover at O 2.

【0012】これにより、希土類13(3B)族ペロブ
スカイト結晶基板の裏面で希土類元素が分解するのを防
止できるので、分解した希土類元素によりGaN系化合
物半導体結晶にコンタミネーションが発生するのを効果
的に防ぐことができる。
Thus, the rare earth element can be prevented from being decomposed on the back surface of the rare earth 13 (3B) group perovskite crystal substrate, so that the decomposed rare earth element can effectively prevent contamination of the GaN-based compound semiconductor crystal. Can be prevented.

【0013】また、13(3B)族元素としてAl,G
a,Inの少なくとも1種類を含んでいる希土類13
(3B)族ペロブスカイト結晶、例えばNdGaO
晶を基板として用いる場合に適用できる。
Further, Al, G as a group 13 (3B) element
rare earth 13 containing at least one of a and In
The present invention can be applied to a case where a (3B) group perovskite crystal, for example, an NdGaO 3 crystal is used as a substrate.

【0014】また、前記GaN化合物半導体結晶は、前
記基板上にハイドライドVPE法により形成するのが望
ましい。
Preferably, the GaN compound semiconductor crystal is formed on the substrate by a hydride VPE method.

【0015】また、前記SiOの厚みを0.1から1
0μmとすることにより、基板裏面から希土類元素、例
えばNdが分解するのを効果的に抑えることができる。
Further, the thickness of the SiO 2 is 0.1 to 1
By setting the thickness to 0 μm, the decomposition of rare earth elements, for example, Nd from the back surface of the substrate can be effectively suppressed.

【0016】前記製造方法により得られる、Nd濃度が
1.0×1016cm−3未満でかつX線ロッキングカ
ーブの半値幅が0.25°未満であるGaN系化合物半
導体結晶は、半導体デバイス用材料として好適である。
A GaN-based compound semiconductor crystal having an Nd concentration of less than 1.0 × 10 16 cm −3 and a half-width of an X-ray rocking curve of less than 0.25 ° obtained by the above-described manufacturing method is used for a semiconductor device. It is suitable as a material.

【0017】以下に、本発明を完成するに至った過程に
ついて説明する。まず、本発明者等は前記先願で提案し
たGaN系化合物半導体結晶の成長方法により得られた
GaN系化合物半導体結晶の中には、結晶性が悪くなっ
ているものがあることに気付いた。つまり、前記成長方
法ではGaN系化合物半導体結晶を成長させる際に基板
との格子不整合による結晶欠陥の発生を抑えることがで
きたが、得られたGaN系化合物半導体結晶の結晶性が
悪くなることがあるため、半導体デバイスの材料に適し
たGaN化合物半導体結晶を製造する方法として実用化
することは困難であることが判明した。
Hereinafter, the process of completing the present invention will be described. First, the present inventors have noticed that some of the GaN-based compound semiconductor crystals obtained by the method for growing a GaN-based compound semiconductor crystal proposed in the above-mentioned prior application have poor crystallinity. That is, in the above-described growth method, the generation of crystal defects due to lattice mismatch with the substrate when growing the GaN-based compound semiconductor crystal could be suppressed, but the crystallinity of the obtained GaN-based compound semiconductor crystal deteriorated. Therefore, it has been found that it is difficult to put it into practical use as a method for producing a GaN compound semiconductor crystal suitable for a material of a semiconductor device.

【0018】そこで、本発明者等は前記成長方法にはさ
らに改良する余地があると考え、前記成長方法により得
られるGaN系化合物半導体結晶の結晶性を改善すべく
鋭意研究を重ねた。
Therefore, the present inventors consider that there is room for further improvement in the above-mentioned growth method, and have intensively studied to improve the crystallinity of the GaN-based compound semiconductor crystal obtained by the above-mentioned growth method.

【0019】まず、本発明者等は前記成長方法により得
られたGaN化合物半導体結晶の結晶性が悪くなる原因
を調査した。その結果、GaN化合物半導体結晶にコン
タミネーションが発生していることが判明し、これによ
り結晶性が劣化していることが確認された。そして、本
発明者等はNdGaO基板の構成元素であるNdが原
因で結晶中にコンタミネーションが発生すると推測し
た。つまり、NdGaO 基板中のGaはGa
どの酸化物として揮発してしまうが、Ndの酸化物は安
定のため基板付近に残留しているので、GaN系化合物
半導体結晶の成長反応の過程で発生する水素に還元され
て結晶中に取り込まれやすいと考えた。
First, the present inventors obtained the above-mentioned growth method.
Causes the crystallinity of GaN compound semiconductor crystals to deteriorate
investigated. As a result, the GaN compound semiconductor crystal
It turns out that termination has occurred,
It was confirmed that the crystallinity was deteriorated. And book
We have NdGaO3Nd, a constituent element of the substrate,
It is presumed that contamination occurs in the crystal due to
Was. That is, NdGaO 3Ga in the substrate is Ga2O3What
Which oxide will volatilize, but Nd oxide is safe.
GaN-based compound
Reduced to hydrogen generated during the growth reaction of the semiconductor crystal
Was thought to be easily incorporated into the crystal.

【0020】次に、結晶中のNd濃度と結晶性の関係を
調査するために、NdGaO基板上にGaN化合物半
導体結晶を異なる成長条件で成長させて、Nd濃度が
1.0×1017〜1.1×1018cm−3の範囲に
ある複数の試料を得た。なお、Nd濃度は2次イオン質
量分析(SIMS)によるバルク分析(半定量値)でO
イオンを用いて測定した。
Next, the relationship between the Nd concentration in the crystal and the crystallinity will be described.
To investigate, NdGaO3GaN compound half on substrate
By growing the conductor crystal under different growth conditions, the Nd concentration
1.0 × 1017~ 1.1 × 1018cm-3In the range
Certain samples were obtained. The Nd concentration is a secondary ionic
O in bulk analysis (semi-quantitative value) by quantitative analysis (SIMS)
2It was measured using ions.

【0021】そして、これらの試料についてX線ロッキ
ングカーブ(XRC)の半値幅(FWHM)を測定した
ところ、図1中に示すような結果が得られ、Nd濃度と
FWHMとは相関関係があることが分かった。これよ
り、結晶中のNd濃度が小さくなると結晶性が向上する
ことが確認できた。図1中、▲印(A)〜(C)が上記
条件で得られた試料を測定したFWHM値をプロットし
たものである。
When the full width at half maximum (FWHM) of the X-ray rocking curve (XRC) was measured for these samples, the results shown in FIG. 1 were obtained, and there was a correlation between the Nd concentration and the FWHM. I understood. From this, it was confirmed that the crystallinity was improved when the Nd concentration in the crystal was reduced. In FIG. 1, ▲ marks (A) to (C) are plots of FWHM values obtained by measuring the samples obtained under the above conditions.

【0022】本発明者等は、さらに、基板をサファイア
基板に変えて同様の成長条件により基板上にGaN化合
物半導体結晶を成長させたときのNd濃度とFWHMと
測定した。その結果、Nd濃度は2.3×1015cm
−3でありNdによるコンタミネーションはNdGaO
を基板としたときに比較して少ないことが分かった。
但し、サファイア結晶とGaN化合物半導体結晶とは格
子不整合性が大きいので、FWHMは大きく結晶性は悪
かった(図1の×印(D))。
The present inventors further measured the Nd concentration and FWHM when a GaN compound semiconductor crystal was grown on a sapphire substrate under the same growth conditions under the same growth conditions. As a result, the Nd concentration is 2.3 × 10 15 cm.
-3 and the contamination by Nd is NdGaO
3 was smaller than when the substrate was used.
However, since the lattice mismatch between the sapphire crystal and the GaN compound semiconductor crystal was large, the FWHM was large and the crystallinity was poor (mark (D) in FIG. 1).

【0023】この実験より、NdGaO基板からNd
が分解されGaN化合物半導体結晶に取り込まれてコン
タミネーションが発生することが分かった。これより、
NdGaO基板から分解されるNdを抑制すればGa
N化合物半導体結晶にNdコンタミネーションが発生す
るのを防止でき、結晶性を向上できるという見解を得
た。
From this experiment, it was found that NdGaO 3 substrate
Was decomposed and taken into the GaN compound semiconductor crystal to cause contamination. Than this,
If Nd decomposed from the NdGaO 3 substrate is suppressed, Ga
It has been obtained that Nd contamination can be prevented from occurring in the N-compound semiconductor crystal, and the crystallinity can be improved.

【0024】そして次に、NdGaO基板からNdが
分解されるのを抑制するために、裏面をSiOでコー
ティングしたNdGaO基板を用いてGaN化合物半
導体結晶を成長させる実験を行った。その結果、GaN
化合物半導体結晶中のNd濃度は5.4×1015cm
−3と非常に小さくなり、SiOで裏面をコーティン
グすることによりNdが結晶中に取り込まれるのを抑制
できた。また、このGaN化合物半導体結晶のFWHM
は0.18°となり、本発明者等の見解通り結晶性に優
れた結晶を得ることができた(図1の●印(E))。
[0024] and then, in order to suppress the NdGaO 3 substrate of Nd it is degraded, an experiment was conducted for growing a GaN compound semiconductor crystal with a NdGaO 3 substrate coated backside with SiO 2. As a result, GaN
The Nd concentration in the compound semiconductor crystal is 5.4 × 10 15 cm
−3, which was extremely small, and Nd was prevented from being taken into the crystal by coating the back surface with SiO 2 . The FWHM of the GaN compound semiconductor crystal
Was 0.18 °, and crystals excellent in crystallinity could be obtained, as the present inventor's opinion (indicated by ● (E) in FIG. 1).

【0025】本発明は上記知見に基づいてなされたもの
で、希土類13(3B)族ペロブスカイト基板の表面に
GaN系化合物半導体結晶をエピタキシャル成長させる
際に裏面をSiOで被覆することにより、半導体装置
に適した高品質のGaN化合物半導体単結晶を成長させ
ることができる。
The present invention has been made on the basis of the above-described findings, and has been proposed for a semiconductor device by coating the back surface with SiO 2 when epitaxially growing a GaN-based compound semiconductor crystal on the surface of a rare earth 13 (3B) group perovskite substrate. Suitable high-quality GaN compound semiconductor single crystals can be grown.

【0026】なお、本発明は、NdGaO基板にGa
N化合物半導体結晶を成長させる実験により見出された
ものであるが、GaN化合物半導体結晶以外にも、In
GaN、AlGaN等のGaN系化合物半導体結晶を成
長させた場合も同様の効果が得られると考えられる。ま
た、希土類13(3B)族ペロブスカイト結晶基板とし
ては、NdGaO以外にNdAlO,NdInO
等を用いることができる。
It is to be noted that the present invention relates to a method in which Ga is added to an NdGaO 3 substrate.
Although it was found by an experiment for growing an N compound semiconductor crystal, in addition to the GaN compound semiconductor crystal, In
It is considered that a similar effect can be obtained when a GaN-based compound semiconductor crystal such as GaN or AlGaN is grown. As the rare earth 13 (3B) group perovskite crystal substrate, in addition to NdGaO 3 , NdAlO 3 and NdInO 3
Etc. can be used.

【0027】[0027]

【発明の実施の形態】以下、本発明の好適な実施の形態
を、NdGaO結晶を基板としてGaN化合物半導体
結晶を成長させる場合について説明する。
BEST MODE FOR CARRYING OUT THE INVENTION A preferred embodiment of the present invention will be described below in which a GaN compound semiconductor crystal is grown using an NdGaO 3 crystal as a substrate.

【0028】(実施例)まず、NdGaOのインゴッ
トをスライスして結晶成長用の基板とした。このとき、
NdGaO基板の大きさは50mm径で、厚さは0.
5mmとした。
(Example) First, an ingot of NdGaO 3 was sliced to obtain a substrate for crystal growth. At this time,
The size of the NdGaO 3 substrate is 50 mm in diameter, and the thickness is 0.1 mm.
It was 5 mm.

【0029】次に、前記基板の一方の面にスパッタリン
グ装置を用いてSiOを3μm塗布し、他方の面を結
晶成長面とした。
Next, 3 μm of SiO 2 was applied to one surface of the substrate using a sputtering apparatus, and the other surface was used as a crystal growth surface.

【0030】次に、鏡面研磨したNdGaO基板をア
セトン中で5分間超音波洗浄を行い、続けてメタノール
で5分間超音波洗浄を行った。その後、Nガスでブロ
ーして液滴を吹き飛ばしてから自然乾燥させた。次に、
洗浄したNdGaO基板を硫酸系エッチャント(燐
酸:硫酸=1:3、80℃)で5分間エッチングした。
Next, the mirror-polished NdGaO 3 substrate was subjected to ultrasonic cleaning in acetone for 5 minutes, followed by ultrasonic cleaning in methanol for 5 minutes. Thereafter, the liquid droplets were blown off by blowing with N 2 gas, and then air-dried. next,
The washed NdGaO 3 substrate was etched with a sulfuric acid-based etchant (phosphoric acid: sulfuric acid = 1: 3, 80 ° C.) for 5 minutes.

【0031】次に、このNdGaO基板をSiO
布面を裏面としてハイドライドVPE装置内の所定の部
位に配置した後、Nガスを導入しながら基板温度を6
20℃まで昇温し、GaメタルとHClガスから生成さ
れたGaClと、NHガスとをNキャリアガスを用
いてNdGaO基板上に供給し、約100nmのGa
N保護層を形成した。NdGaOは800℃以上の高
温でNHやHと反応してネオジウム化合物を生成し
てしまうので、本実施形態ではキャリアガスとしてN
を用い、成長温度を620℃の低温で保護層を形成する
ことによりネオジウム化合物が生成されないようにして
いる。
Next, the NdGaO 3 substrate is placed at a predetermined position in a hydride VPE apparatus with the SiO 2 coated surface as a back surface, and the substrate temperature is reduced to 6 while introducing N 2 gas.
The temperature was raised to 20 ° C., and GaCl generated from Ga metal and HCl gas, and NH 3 gas were supplied onto the NdGaO 3 substrate using an N 2 carrier gas, and Ga Ga of about 100 nm was supplied.
An N protective layer was formed. Since NdGaO 3 reacts with NH 3 or H 2 at a high temperature of 800 ° C. or more to generate a neodymium compound, N 2 Ga is used as a carrier gas in this embodiment.
And forming a protective layer at a low growth temperature of 620 ° C. so that a neodymium compound is not generated.

【0032】次に、基板温度を1000℃に昇温し、G
aメタルとHClガスから生成されたGaClと、NH
ガスとをNキャリアガスを用いてNdGaO基板
上に供給した。このとき、GaCl分圧が5.0×10
−3atm、NH分圧が3.0×10−1atmとな
るようにそれぞれのガス導入量を制御しながら約40μ
m/hの成長速度で300分間GaN化合物半導体結晶
を成長させた。
Next, the substrate temperature was raised to 1000 ° C.
a GaCl generated from metal and HCl gas, NH
The three gases were supplied onto a NdGaO 3 substrate using a N 2 carrier gas. At this time, the GaCl partial pressure is 5.0 × 10
-40 atm while controlling the gas introduction amounts so that the -3 atm and the NH 3 partial pressure are 3.0 × 10 −1 atm.
A GaN compound semiconductor crystal was grown at a growth rate of m / h for 300 minutes.

【0033】その後、冷却速度5.3℃/minで90
分間冷却して膜厚が約200μmのGaN化合物半導体
結晶を得た。
Thereafter, a cooling rate of 5.3 ° C./min
After cooling for one minute, a GaN compound semiconductor crystal having a thickness of about 200 μm was obtained.

【0034】得られたGaN化合物半導体結晶は、Nd
濃度が5.4×1015cm−3で、FWHMが0.1
8である結晶性に優れた単結晶であった。
The obtained GaN compound semiconductor crystal has Nd
The concentration is 5.4 × 10 15 cm −3 and the FWHM is 0.1
It was a single crystal with excellent crystallinity of 8.

【0035】(比較例1)次に、比較例としてNdGa
基板の裏面をSiOでコーティングしないで上記
実施例と同様の結晶成長を行った。
(Comparative Example 1) Next, as a comparative example, NdGa
The same crystal growth as in the above example was performed without coating the back surface of the O 3 substrate with SiO 2 .

【0036】比較例1では、NdGaOのインゴット
をスライスして得られた基板をそのまま用いて結晶成長
させた。このとき、NdGaO基板の大きさは実施例
と同じで、基板の洗浄も実施例と同様とした。
In Comparative Example 1, a crystal was grown using a substrate obtained by slicing an NdGaO 3 ingot as it was. At this time, the size of the NdGaO 3 substrate was the same as that of the example, and the cleaning of the substrate was the same as that of the example.

【0037】この基板を用いてGaN化合物半導体結晶
を成長させたところ、得られたGaN化合物半導体結晶
は、Nd濃度が1.0〜1.3×17cm−3で実施例
に比較して一桁以上大きかった。また、FWHMは0.
4〜0.83であり、実施例に比較して結晶品質が劣っ
ていた。
When a GaN compound semiconductor crystal was grown using this substrate, the obtained GaN compound semiconductor crystal had an Nd concentration of 1.0 to 1.3 × 17 cm −3, which was smaller than that of the example. It was larger than an order of magnitude. The FWHM is 0.1.
4 to 0.83, and the crystal quality was inferior to that of the examples.

【0038】(比較例2)比較例2では、比較例1と同
様の基板を用いて成長温度1100℃でGaN化合物半
導体結晶を成長させた。ただし、成長温度以外の成長条
件はすべて実施例と同様とした。
Comparative Example 2 In Comparative Example 2, a GaN compound semiconductor crystal was grown at a growth temperature of 1100 ° C. using the same substrate as in Comparative Example 1. However, all the growth conditions other than the growth temperature were the same as in the example.

【0039】比較例2で得られたGaN化合物半導体結
晶は、Nd濃度が6.8×1017〜5.9×1018
cm−3であった。これは、比較例2では比較例1より
も高温で結晶を成長させたので、NdGaO基板から
Ndが分解されやすくなり、結晶中のNd濃度が大きく
なったためと考えられる。また、比較例2で得られたG
aN化合物半導体結晶は、FWHMが1.2付近であり
実施例に比較して結晶品質が劣っていた。
The GaN compound semiconductor crystal obtained in Comparative Example 2 has an Nd concentration of 6.8 × 10 17 to 5.9 × 10 18.
cm -3 . This is probably because the crystal was grown at a higher temperature in Comparative Example 2 than in Comparative Example 1, so that Nd was easily decomposed from the NdGaO 3 substrate, and the Nd concentration in the crystal was increased. In addition, G obtained in Comparative Example 2
The FWHM of the aN compound semiconductor crystal was around 1.2, and the crystal quality was inferior to that of the example.

【0040】以上、本発明者によってなされた発明を実
施形態に基づき具体的に説明したが、本発明は上記実施
の形態に限定されるものではない。例えば、NdGaO
基板の裏面をコーティングする材料としてSiO
外にもSiC,pBN等を利用することができる。ま
た、GaN化合物半導体結晶を成長させる場合に制限さ
れず、例えば、InGaN、AlGaN等のGaN系化
合物半導体結晶の成長方法に適用しても同様の効果を得
ることができる。また、基板として用いられる希土類1
3(3B)族ペロブスカイト結晶はNdGaO結晶に
制限されず、例えば、NdAlO,NdInO等を
用いることができる。
Although the invention made by the inventor has been specifically described based on the embodiment, the invention is not limited to the above embodiment. For example, NdGaO
As a material for coating the back surface of the three substrates, other than SiO 2 , SiC, pBN, or the like can be used. The present invention is not limited to the case where a GaN compound semiconductor crystal is grown. For example, a similar effect can be obtained by applying the present invention to a method of growing a GaN compound semiconductor crystal such as InGaN or AlGaN. Also, rare earth 1 used as a substrate
The 3 (3B) group perovskite crystal is not limited to NdGaO 3 crystal, and for example, NdAlO 3 , NdInO 3 or the like can be used.

【0041】また、結晶成長条件としては、GaCl分
圧が1.0×10−3〜1.0×10−2atm、NH
分圧が1.0×10−1〜4.0×10−1atm、
成長速度が30〜100μm/h、 成長温度が930
〜1050℃、冷却速度が4〜10℃/minであるこ
とが望ましい。
The crystal growth conditions include a GaCl partial pressure of 1.0 × 10 −3 to 1.0 × 10 −2 atm, NH 3
3 partial pressures of 1.0 × 10 −1 to 4.0 × 10 −1 atm,
Growth rate is 30 ~ 100μm / h, growth temperature is 930
It is desirable that the cooling rate is 4 to 10 ° C./min.

【0042】[0042]

【発明の効果】本発明によれば、1または2種類以上の
希土類元素を含む希土類13(3B)族ペロブスカイト
結晶を基板としてその表面にGaN系化合物半導体結晶
を成長させる方法において、前記基板の少なくとも裏面
をSiOでコーティングするようにしたので、基板の
裏面で希土類元素(例えばNd)が分解するのを抑制で
きるので、分解した希土類元素によりGaN系化合物半
導体結晶にコンタミネーションが発生するのを効果的に
防ぐことができ、GaN系化合物半導体結晶の結晶性を
向上させることができるという効果を奏する。
According to the present invention, there is provided a method for growing a GaN-based compound semiconductor crystal on the surface of a rare earth 13 (3B) group perovskite crystal containing one or more rare earth elements as a substrate. Since the back surface is coated with SiO 2 , the decomposition of the rare earth element (for example, Nd) on the back surface of the substrate can be suppressed, so that contamination of the GaN-based compound semiconductor crystal by the decomposed rare earth element can be reduced. And the crystallinity of the GaN-based compound semiconductor crystal can be improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】GaN化合物半導体結晶中のNd濃度とX線ロ
ッキングカーブの半値幅との関係を示すグラフである。
FIG. 1 is a graph showing the relationship between the Nd concentration in a GaN compound semiconductor crystal and the half width of an X-ray rocking curve.

─────────────────────────────────────────────────────
────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成13年6月29日(2001.6.2
9)
[Submission date] June 29, 2001 (2001.6.2
9)

【手続補正1】[Procedure amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0034[Correction target item name] 0034

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0034】得られたGaN化合物半導体結晶は、Nd
濃度が5.4×1015cm−3で、FWHMが0.1
°である結晶性に優れた単結晶であった。
The obtained GaN compound semiconductor crystal has Nd
The concentration is 5.4 × 10 15 cm −3 and the FWHM is 0.1
It was a single crystal having excellent crystallinity of 8 ° .

【手続補正2】[Procedure amendment 2]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0037[Correction target item name] 0037

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0037】この基板を用いてGaN化合物半導体結晶
を成長させたところ、得られたGaN化合物半導体結晶
は、Nd濃度が1.0〜1.3×17cm−3で実施例
に比較して一桁以上大きかった。また、FWHMは0.
4〜0.83°であり、実施例に比較して結晶品質が劣
っていた。
When a GaN compound semiconductor crystal was grown using this substrate, the obtained GaN compound semiconductor crystal had an Nd concentration of 1.0 to 1.3 × 17 cm −3, which was smaller than that of the example. It was larger than an order of magnitude. The FWHM is 0.1.
4 to 0.83 ° , and the crystal quality was inferior to the examples.

【手続補正3】[Procedure amendment 3]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0039[Correction target item name] 0039

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0039】比較例2で得られたGaN化合物半導体結
晶は、Nd濃度が6.8×1017〜5.9×1018
cm−3であった。これは、比較例2では比較例1より
も高温で結晶を成長させたので、NdGaO基板から
Ndが分解されやすくなり、結晶中のNd濃度が大きく
なったためと考えられる。また、比較例2で得られたG
aN化合物半導体結晶は、FWHMが1.2°付近であ
り実施例に比較して結晶品質が劣っていた。
The GaN compound semiconductor crystal obtained in Comparative Example 2 has an Nd concentration of 6.8 × 10 17 to 5.9 × 10 18.
cm -3 . This is probably because the crystal was grown at a higher temperature in Comparative Example 2 than in Comparative Example 1, so that Nd was easily decomposed from the NdGaO 3 substrate, and the Nd concentration in the crystal was increased. In addition, G obtained in Comparative Example 2
The FWHM of the aN compound semiconductor crystal was around 1.2 ° , and the crystal quality was inferior to that of the example.

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 4G077 AA03 AB01 BE15 DB05 EB06 EE06 TK01 5F045 AB14 AB32 AC03 AC12 AD10 AD14 AF05 AF11 AF13 BB06 BB07 BB12 BB14 CA10 EB13 EE12 HA04  ──────────────────────────────────────────────────続 き Continued on the front page F term (reference) 4G077 AA03 AB01 BE15 DB05 EB06 EE06 TK01 5F045 AB14 AB32 AC03 AC12 AD10 AD14 AF05 AF11 AF13 BB06 BB07 BB12 BB14 CA10 EB13 EE12 HA04

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 1または2種類以上の希土類元素を含む
希土類13(3B)族ペロブスカイト結晶を基板として
その表面にGaN系化合物半導体結晶を成長させる方法
において、 前記基板の少なくとも裏面をSiOで被覆することを
特徴とするGaN系化合物半導体結晶の製造方法。
1. A method for growing a GaN-based compound semiconductor crystal on a surface of a rare earth 13 (3B) group perovskite crystal containing one or more rare earth elements, wherein at least the back surface of the substrate is covered with SiO 2 . A method for producing a GaN-based compound semiconductor crystal.
【請求項2】 基板として用いられる上記希土類13
(3B)族ペロブスカイト結晶を構成する13(3B)
族元素は、Al,Ga,Inの中の少なくとも1つであ
ることを特徴とする請求項1に記載のGaN系化合物半
導体結晶の製造方法。
2. The rare earth element 13 used as a substrate.
13 (3B) constituting a (3B) group perovskite crystal
The method according to claim 1, wherein the group III element is at least one of Al, Ga, and In.
【請求項3】 前記希土類13(3B)族ペロブスカイ
ト結晶基板は、NdGaO結晶であることを特徴とす
る請求項2に記載のGaN系化合物半導体結晶の製造方
法。
3. The method according to claim 2, wherein the rare earth 13 (3B) group perovskite crystal substrate is a NdGaO 3 crystal.
【請求項4】 前記GaN系化合物半導体結晶は、前記
基板上にハイドライドVPE法により形成されることを
特徴とする請求項1から請求項3の何れかに記載のGa
N系化合物半導体結晶の製造方法。
4. The Ga according to claim 1, wherein the GaN-based compound semiconductor crystal is formed on the substrate by a hydride VPE method.
A method for producing an N-based compound semiconductor crystal.
【請求項5】 前記SiOの厚みは0.1から10μ
mであることを特徴とする請求項1から請求項4の何れ
かに記載のGaN系化合物半導体結晶の製造方法。
5. The thickness of the SiO 2 is 0.1 to 10 μm.
The method for producing a GaN-based compound semiconductor crystal according to claim 1, wherein m is m.
【請求項6】 Nd濃度が1.0×1016cm−3
満で、かつX線ロッキングカーブの半値幅が0.25°
未満であることを特徴とする半導体デバイス用GaN化
合物半導体結晶。
6. The Nd concentration is less than 1.0 × 10 16 cm −3 , and the half width of the X-ray rocking curve is 0.25 °.
A GaN compound semiconductor crystal for a semiconductor device, wherein
JP2001119759A 2001-04-18 2001-04-18 GaN BASED COMPOUND SEMICONDUCTOR CRYSTAL AND ITS MANUFACTURING METHOD Pending JP2002313741A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001119759A JP2002313741A (en) 2001-04-18 2001-04-18 GaN BASED COMPOUND SEMICONDUCTOR CRYSTAL AND ITS MANUFACTURING METHOD

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001119759A JP2002313741A (en) 2001-04-18 2001-04-18 GaN BASED COMPOUND SEMICONDUCTOR CRYSTAL AND ITS MANUFACTURING METHOD

Publications (1)

Publication Number Publication Date
JP2002313741A true JP2002313741A (en) 2002-10-25

Family

ID=18969924

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001119759A Pending JP2002313741A (en) 2001-04-18 2001-04-18 GaN BASED COMPOUND SEMICONDUCTOR CRYSTAL AND ITS MANUFACTURING METHOD

Country Status (1)

Country Link
JP (1) JP2002313741A (en)

Similar Documents

Publication Publication Date Title
US7976630B2 (en) Large-area seed for ammonothermal growth of bulk gallium nitride and method of manufacture
WO2019033975A1 (en) Method for manufacturing gan substrate material
JP4150527B2 (en) Crystal production method
JP2003197541A (en) Method of manufacturing iii nitride film
JP2002305155A (en) CRYSTAL GROWING APPARATUS FOR GaN-BASED COMPOUND SEMICONDUCTOR CRYSTAL
JP2002274997A (en) METHOD FOR MANUFACTURING GaN SEMICONDUCTOR CRYSTAL
KR100243623B1 (en) Epitaxial wafer and fabricating method thereof
JP2897821B2 (en) Method for growing semiconductor crystalline film
US6875272B2 (en) Method for preparing GaN based compound semiconductor crystal
JP2003037069A (en) Method for manufacturing iii nitride based compound semiconductor
US11735419B2 (en) Method for processing of semiconductor films with reduced evaporation and degradation
JP2000281499A (en) Preparation of gallium nitride single crystal
JP2002293697A (en) METHOD OF GROWING GaN EPITAXIAL LAYER
JP2002313741A (en) GaN BASED COMPOUND SEMICONDUCTOR CRYSTAL AND ITS MANUFACTURING METHOD
JP4355232B2 (en) GaN compound semiconductor crystal manufacturing method and GaN compound semiconductor crystal
JP4673514B2 (en) GaN compound semiconductor crystal manufacturing method
JP2003218043A (en) METHOD OF MANUFACTURING GaN-BASED COMPOUND SEMICONDUCTOR CRYSTAL
JP2000012901A (en) Manufacture of gallium nitride-based compound semiconductor single crystal
JP2002211999A (en) Method of producing crystal growth substrate of group iii nitride-based compound semiconductor
JP2000277440A (en) Nitride iii-v compound semiconductor crystal film, semiconductor device, and semiconductor laser using the same
JPH08186078A (en) Growth method for gallium nitride based semiconductor crystal
JP2002231640A (en) Gallium nitride substrate and manufacturing method therefor
JP2010132550A (en) Method of manufacturing nitride semiconductor substrate, and nitride semiconductor substrate
JP2005236260A (en) Manufacturing method of nitride semiconductor substrate, and nitride semiconductor substrate
US20110215439A1 (en) Epitaxial growth substrate, manufacturing method thereof, nitride-based compound semiconductor substrate, and nitride-based compound semiconductor self-supporting substrate