JP4065055B2 - Method for growing gallium nitride compound semiconductor single crystal - Google Patents

Method for growing gallium nitride compound semiconductor single crystal Download PDF

Info

Publication number
JP4065055B2
JP4065055B2 JP16719498A JP16719498A JP4065055B2 JP 4065055 B2 JP4065055 B2 JP 4065055B2 JP 16719498 A JP16719498 A JP 16719498A JP 16719498 A JP16719498 A JP 16719498A JP 4065055 B2 JP4065055 B2 JP 4065055B2
Authority
JP
Japan
Prior art keywords
gallium nitride
single crystal
compound semiconductor
growing
semiconductor single
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP16719498A
Other languages
Japanese (ja)
Other versions
JP2000004045A (en
Inventor
洋二 関
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Mining Holdings Inc
Original Assignee
Nippon Mining and Metals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Mining and Metals Co Ltd filed Critical Nippon Mining and Metals Co Ltd
Priority to JP16719498A priority Critical patent/JP4065055B2/en
Publication of JP2000004045A publication Critical patent/JP2000004045A/en
Application granted granted Critical
Publication of JP4065055B2 publication Critical patent/JP4065055B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Led Devices (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、光デバイス,電子デバイスなどの半導体デバイスの製造に用いられる窒化ガリウム系化合物半導体単結晶の製造方法に関するものである。
【0002】
【従来の技術】
窒化ガリウム系化合物半導体(例えば、InxGayAl1-x-yN)(0≦x,y;x+y≦1;但し、x=1,y=0の場合は除く)は、禁制帯幅が広く、短波長発光素子,耐環境素子として期待され、広く研究されてきた。
【0003】
しかしながら、この窒化ガリウム系化合物半導体においては、未だ大型のバルク結晶が得られないため、異種結晶(例えばサファイアα−Al23)上へのヘテロエピタキシーによってGaN等の薄膜単結晶を形成したものが基板として用いられてきた。
【0004】
ところが、サファイアに代表されるように、多くの場合、基板に用いられる異種結晶とその上に成膜される窒化ガリウム系化合物半導体薄膜との格子不整合性が大きく、欠陥や熱歪みなどが発生し易いため、窒化ガリウム系化合物半導体単結晶は品質的に問題を抱えるものであった。
【0005】
そこで、本発明者等は、窒化ガリウム系化合物半導体をヘテロエピタキシーによって成長させる際に、種々の優れた特性を備える異種結晶基板の材料の一つとして希土類13(3B)族ペロブスカイトを用いた窒化ガリウム系化合物半導体単結晶の成長方法および窒化ガリウム系化合物半導体装置を提案した(特願平7−526233号)。
【0006】
この成長技術によれば、例えば希土類13(3B)族ペロブスカイトの一種としてNdGaO3を基板として用い、その基板上にGaNをエピタキシャル成長させる場合には、格子不整合を1.2%程度とすることができた。
【0007】
この格子不整合性は、サファイアやその代替品として用いられるSiCを基板とした場合と比較しても非常に小さく、窒化ガリウム系化合物半導体単結晶のヘテロエピタキシーに有効であると期待される。
【0008】
また、その後の研究により、例えばNdGaO3上にGaNをエピタキシャル成長させる場合に、低温でGaNの第1層を成長させた後に、高温で第2層を成長させるとより良質のGaN単結晶を得ることができることが分かってきた。
【0009】
【発明が解決しようとする課題】
しかし、一方で上述のようにNdGaO3上に低温でGaNの第1層を成長させた後に高温で第2層を成長させるという成長方法をとる場合に、GaNの第1層を成長後、第2層の成長温度までの熱処理工程を窒素源であるNH3を流しながら行うと、第1層に生じたピンホールを通してNH3がNdGaO3の表面まで達し、基板が窒化する反応を起こし、その影響で基板面から第1層のGaNが剥がれてしまうという不具合を生じることが明らかとなってきた。
【0010】
また、NdGaO3を基板としてGaNをエピタキシャル成長する場合、低温で成長するGaNの第1層は緩衝層としての役割を果たすほか、NdGaO3とNH3が反応して不要な層が生成されるのを防ぐ保護膜としての機能を有しているが、GaNの第1層を成長後、第2層の成長温度までの熱処理工程をNH3の雰囲気で行うと、この保護膜としての機能が低下するという障害を生じることが分かってきた。
【0011】
本発明は上述のような問題を解決すべく案出されたものであり、1または2種類以上の希土類元素を含む希土類13(3B)族ペロブスカイトの単結晶基板上に良質の窒化ガリウム系化合物半導体単結晶を成長させることのできる方法を提供することを主目的とするものである。
【0012】
【課題を解決するための手段】
上記目的を達成するために、本発明は、1または2種類以上の希土類元素を含む希土類13(3B)族ペロブスカイトの単結晶を基板とする窒化ガリウム系化合物半導体単結晶の成長方法において、第1の温度条件下で上記基板上に第1の窒化ガリウム層を成長させる第1の成膜工程と、上記基板を不活性ガス雰囲気中で所定温度まで昇温させて熱処理を施す熱処理工程と、前熱処理温工程の終了後に、前記第1の温度条件より高温に設定される第2の温度条件下で前記第1の窒化ガリウム層の上に第2の窒化ガリウム層を成長させる第2の成膜工程とを少なくとも有するようにしたものである。
【0013】
これにより、従来のように第1層のGaNが剥がれるという不具合を解消することができる。
【0014】
なお、上記第1の成膜工程における第1の温度条件は、400℃〜750℃、好ましくは550℃〜650℃、形成する第1の窒化ガリウム層の膜厚は、20nm〜350nm、好ましくは80nm〜120nmとすることが望ましい。
【0015】
ここで、400℃未満ではGaNが成膜せず、800℃を超えると基板と原料ガスが反応するため好ましくなく、又、80nm未満だと基板を完全に被覆することができず、120nmを超えると生成する膜質が悪くなるため好ましくない。
【0016】
また、上記熱処理工程における所定温度は、800℃〜1200℃、好ましくは950℃〜1050℃とするとよい。この範囲外では,第1の窒化ガリウム層が緩衝層あるいは保護膜としての機能が低下するので好ましくない。
【0017】
また、上記熱処理工程における不活性ガス雰囲気は、N2ガス雰囲気とすると効果的である。
【0018】
また、上記第2の成膜工程における第2の温度条件は、800℃〜1200℃、好ましくは950℃〜1050℃とすることが望ましい。
【0019】
ここで、800℃未満では成長速度gは遅く、1200℃を超えると生成する膜質が悪くなるため好ましくない。
【0020】
さらに、上記13(3B)族元素として、Al,Ga,Inのうち少なくとも1種類を含むようにすることができる。
【0021】
このようにして成長させた窒化ガリウム系化合物半導体単結晶を用いることにより、熱的,化学的に安定な高性能の青色発光ダイオードや半導体レーザ等の半導体装置を得ることが可能となる。
【0022】
【発明の実施の形態】
ここで、本発明の実施形態の一例について説明する。
【0023】
本実施形態では、希土類ガリウムペロブスカイトとしてNdGaO3の単結晶基板の(001)面上に窒化ガリウム系化合物半導体としてのGaN単結晶を成長させる場合について述べる。
【0024】
まず、厚さ350μmの(001)面NdGaO3単結晶基板を有機溶剤で洗浄した後に、ハイドライドVPE装置にセットした。
【0025】
次いで、窒素ガスを流しながら、基板部の温度を600℃に、Ga原料の温度を850℃に昇温した。
【0026】
そして、Ga原料の上流側から窒素(N2)ガスで希釈されたHClガスを流し、同時にGa原料をバイパスして基板の直上にNH3ガスを流して、基板上に第1のGaN層の薄膜を10分間成長させた。
【0027】
これにより得られた第1のGaN層の薄膜の厚さは約100nmであった。
【0028】
続いて不活性ガスとしてのN2ガスの雰囲気中で基板部の温度を1000℃まで昇温して熱処理を施した後、Ga原料の上流側からN2ガスで希釈されたHClガスを流すと同時にGa原料をバイパスして基板の直上にNH3ガスを流して、前記第1のGaN層の上に第2のGaN層を60分間にわたって成長させた。
【0029】
これにより、約20μmの厚さのGaN厚膜を得ることができた。このGaN層からなる厚膜を観察したところ、表面に異常成長が見られない平坦な鏡面状のエピタキシャル膜であった。
【0030】
また、X線回折分析した結果、良質な膜質の(0001)面の単結晶であることが確認された。
【0031】
このように、本発明に係る成長方法によれば、希土類ガリウムペロブスカイトの(001)面上に良質なGaN単結晶を成長させ得ることが実験的に確かめられた。
【0032】
よって、この良質なGaN単結晶を用いることにより熱的,化学的に安定な高性能の青色発光ダイオードや半導体レーザ等の半導体装置を製造することが可能となる。
【0033】
なお、本実施形態では、希土類ガリウムペロブスカイトとしてNdGaO3単結晶基板を用い、GaN単結晶を成長させる場合について説明したが、これに限られるものではなく、その他の1または2種類以上の希土類元素を含む希土類13(3B)族ペロブスカイトの単結晶基板上にGaN以外の窒化ガリウム系化合物半導体単結晶を成長させる場合にも適用することができる。
【0034】
また、本実施形態では、不活性ガスとしてN2ガスを用いる場合について述べたがこれに限定されずその他の不活性ガスを用いることも可能である。
【0035】
【発明の効果】
本発明は、1または2種類以上の希土類元素を含む希土類13(3B)族ペロブスカイトの単結晶を基板とする窒化ガリウム系化合物半導体単結晶の成長方法において、第1の温度条件下で上記基板上に第1の窒化ガリウム層を成長させる第1の成膜工程と、上記基板を不活性ガス雰囲気中で所定温度まで昇温させて熱処理を施す熱処理工程と、前記熱処理工程の終了後に、前記第1の温度条件より高温に設定される第2の温度条件下で前記第1の窒化ガリウム層の上に第2の窒化ガリウム層を成長させる第2の成膜工程とを少なくとも有するようにしたので、従来のように第1層のGaNが剥がれるなどの不具合を解消することができ、良質の窒化ガリウム系化合物半導体単結晶を得ることができるという優れた効果がある。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for manufacturing a gallium nitride-based compound semiconductor single crystal used for manufacturing semiconductor devices such as optical devices and electronic devices.
[0002]
[Prior art]
Gallium nitride compound semiconductors (for example, In x Ga y Al 1-xy N) (0 ≦ x, y; x + y ≦ 1; except when x = 1 and y = 0) have a wide forbidden band width Expected as a short wavelength light emitting element and an environment resistant element, it has been widely studied.
[0003]
However, in this gallium nitride compound semiconductor, since a large bulk crystal cannot be obtained yet, a thin film single crystal such as GaN is formed by heteroepitaxy on a different crystal (for example, sapphire α-Al 2 O 3 ). Have been used as substrates.
[0004]
However, as represented by sapphire, in many cases, the lattice mismatch between the dissimilar crystal used for the substrate and the gallium nitride compound semiconductor thin film formed thereon is large, and defects and thermal strain are generated. Therefore, the gallium nitride compound semiconductor single crystal has a quality problem.
[0005]
Accordingly, the present inventors have developed gallium nitride using rare earth 13 (3B) group perovskite as one of the materials of different crystal substrates having various excellent characteristics when growing gallium nitride compound semiconductors by heteroepitaxy. And a gallium nitride compound semiconductor device have been proposed (Japanese Patent Application No. 7-526233).
[0006]
According to this growth technique, for example, when NdGaO 3 is used as a substrate as a kind of rare earth 13 (3B) group perovskite and GaN is epitaxially grown on the substrate, the lattice mismatch may be about 1.2%. did it.
[0007]
This lattice mismatch is very small as compared with the case where sapphire or SiC used as an alternative is used as a substrate, and is expected to be effective for heteroepitaxy of a gallium nitride compound semiconductor single crystal.
[0008]
Further, by subsequent research, for example, when GaN is epitaxially grown on NdGaO 3 , if a first layer of GaN is grown at a low temperature and then a second layer is grown at a high temperature, a higher quality GaN single crystal can be obtained. I know that I can do it.
[0009]
[Problems to be solved by the invention]
However, on the other hand, when the growth method in which the second layer is grown at a high temperature after the first layer of GaN is grown on NdGaO 3 at a low temperature as described above, the first layer of GaN is grown after the first layer is grown. When the heat treatment process to the growth temperature of the second layer performs while flowing NH 3 as a nitrogen source, NH 3 through the pin hole occurs in the first layer reaches to the surface of NdGaO 3, reacts the substrate is nitrided, the It has become clear that the first layer of GaN peels off from the substrate surface due to the influence.
[0010]
In addition, when epitaxially growing GaN using NdGaO 3 as a substrate, the first layer of GaN grown at a low temperature serves as a buffer layer, and NdGaO 3 and NH 3 react to generate an unnecessary layer. Although the protective film functions as a protective film, if the heat treatment step up to the growth temperature of the second layer is performed in an NH 3 atmosphere after the growth of the first layer of GaN, the function as the protective film is reduced. It has been found that this causes a failure.
[0011]
The present invention has been devised to solve the above problems, and a high-quality gallium nitride compound semiconductor is formed on a single crystal substrate of a rare earth 13 (3B) group perovskite containing one or more rare earth elements. The main object is to provide a method capable of growing a single crystal.
[0012]
[Means for Solving the Problems]
To achieve the above object, the present invention provides a method for growing a gallium nitride compound semiconductor single crystal using a rare earth 13 (3B) group perovskite single crystal containing one or more rare earth elements as a substrate. A first film-forming step for growing a first gallium nitride layer on the substrate under the temperature conditions, a heat treatment step for heating the substrate to a predetermined temperature in an inert gas atmosphere, Second film formation for growing a second gallium nitride layer on the first gallium nitride layer under a second temperature condition set higher than the first temperature condition after completion of the heat treatment temperature step And at least a process.
[0013]
Thereby, the problem that the first layer of GaN peels off as in the conventional case can be solved.
[0014]
The first temperature condition in the first film formation step is 400 ° C. to 750 ° C., preferably 550 ° C. to 650 ° C., and the thickness of the first gallium nitride layer to be formed is 20 nm to 350 nm, preferably It is desirable to set it as 80 nm-120 nm.
[0015]
Here, if the temperature is lower than 400 ° C., GaN does not form a film, and if it exceeds 800 ° C., the substrate and the source gas react with each other, which is not preferable. Since the film quality to be produced deteriorates, it is not preferable.
[0016]
The predetermined temperature in the heat treatment step is 800 ° C. to 1200 ° C., preferably 950 ° C. to 1050 ° C. Outside this range, the function of the first gallium nitride layer as a buffer layer or a protective film is not preferable.
[0017]
Further, it is effective that the inert gas atmosphere in the heat treatment step is an N 2 gas atmosphere.
[0018]
The second temperature condition in the second film formation step is 800 ° C. to 1200 ° C., preferably 950 ° C. to 1050 ° C.
[0019]
Here, if it is less than 800 degreeC, the growth rate g is slow, and if it exceeds 1200 degreeC, the quality of the film | membrane produced will deteriorate, and it is not preferable.
[0020]
Furthermore, at least one of Al, Ga, and In can be included as the 13 (3B) group element.
[0021]
By using the gallium nitride compound semiconductor single crystal thus grown, it is possible to obtain a semiconductor device such as a high-performance blue light-emitting diode or semiconductor laser that is thermally and chemically stable.
[0022]
DETAILED DESCRIPTION OF THE INVENTION
Here, an example of the embodiment of the present invention will be described.
[0023]
In this embodiment, a case will be described in which a GaN single crystal as a gallium nitride compound semiconductor is grown on the (001) plane of a single crystal substrate of NdGaO 3 as a rare earth gallium perovskite.
[0024]
First, a (001) plane NdGaO 3 single crystal substrate having a thickness of 350 μm was washed with an organic solvent, and then set in a hydride VPE apparatus.
[0025]
Next, while flowing nitrogen gas, the temperature of the substrate portion was raised to 600 ° C., and the temperature of the Ga raw material was raised to 850 ° C.
[0026]
Then, HCl gas diluted with nitrogen (N 2 ) gas is flowed from the upstream side of the Ga raw material, and at the same time, NH 3 gas is flowed directly above the substrate, bypassing the Ga raw material, and the first GaN layer on the substrate. The thin film was grown for 10 minutes.
[0027]
The thickness of the first GaN layer thin film thus obtained was about 100 nm.
[0028]
Subsequently, when the temperature of the substrate portion is increased to 1000 ° C. in an atmosphere of N 2 gas as an inert gas and heat treatment is performed, HCl gas diluted with N 2 gas is flowed from the upstream side of the Ga raw material. At the same time, NH 3 gas was allowed to flow immediately above the substrate while bypassing the Ga material, and a second GaN layer was grown on the first GaN layer for 60 minutes.
[0029]
Thereby, a GaN thick film having a thickness of about 20 μm could be obtained. When the thick film composed of the GaN layer was observed, it was a flat mirror-like epitaxial film with no abnormal growth on the surface.
[0030]
Further, as a result of X-ray diffraction analysis, it was confirmed that the single crystal had a good quality (0001) plane.
[0031]
As described above, according to the growth method of the present invention, it has been experimentally confirmed that a high-quality GaN single crystal can be grown on the (001) plane of the rare earth gallium perovskite.
[0032]
Therefore, by using this high-quality GaN single crystal, it is possible to manufacture a semiconductor device such as a thermally and chemically stable high-performance blue light-emitting diode or semiconductor laser.
[0033]
In the present embodiment, the case where a NdGaO 3 single crystal substrate is used as a rare earth gallium perovskite and a GaN single crystal is grown has been described. However, the present invention is not limited to this, and one or more other rare earth elements are added. The present invention can also be applied to the case where a gallium nitride compound semiconductor single crystal other than GaN is grown on a rare earth 13 (3B) group perovskite single crystal substrate.
[0034]
In this embodiment, the case where N 2 gas is used as the inert gas has been described. However, the present invention is not limited to this, and other inert gases can also be used.
[0035]
【The invention's effect】
The present invention provides a method for growing a gallium nitride-based compound semiconductor single crystal using a single crystal of a rare earth 13 (3B) group perovskite containing one or more rare earth elements as a substrate, on the substrate under a first temperature condition. A first film-forming process for growing a first gallium nitride layer, a heat-treating process in which the substrate is heated to a predetermined temperature in an inert gas atmosphere, and after the heat-treating process, At least a second film-forming step for growing a second gallium nitride layer on the first gallium nitride layer under a second temperature condition set higher than the first temperature condition. Thus, it is possible to solve the problems such as the conventional peeling of the first layer of GaN and to obtain a good quality gallium nitride compound semiconductor single crystal.

Claims (6)

1または2種類以上の希土類元素を含む希土類13(3B)族ペロブスカイトの単結晶を基板とする窒化ガリウム系化合物半導体単結晶の成長方法において、第1の温度条件下で上記基板上に第1の窒化ガリウム層を成長させる第1の成膜工程と、上記基板を不活性ガス雰囲気中で所定温度まで昇温させて熱処理を施す熱処理工程と、前記熱処理工程の終了後に、前記第1の温度条件より高温に設定される第2の温度条件下で前記第1の窒化ガリウム層の上に第2の窒化ガリウム層を成長させる第2の成膜工程と、を少なくとも有することを特徴とする窒化ガリウム系化合物半導体単結晶の成長方法。  In a method for growing a gallium nitride compound semiconductor single crystal using a rare earth 13 (3B) group perovskite single crystal containing one or more kinds of rare earth elements as a substrate, A first film-forming process for growing a gallium nitride layer; a heat-treating process in which the substrate is heated to a predetermined temperature in an inert gas atmosphere; and a heat-treating process after the heat-treating process is completed. And a second film-forming step of growing a second gallium nitride layer on the first gallium nitride layer under a second temperature condition set at a higher temperature. For growing a compound-based compound semiconductor single crystal. 上記第1の成膜工程における第1の温度条件は、400℃〜750℃であり、形成する第1の窒化ガリウム層の膜厚は、20nm〜350nmであることを特徴とする請求項1記載の窒化ガリウム系化合物半導体単結晶の成長方法。The first temperature condition in the first film forming step is 400 ° C. to 750 ° C., and the thickness of the first gallium nitride layer to be formed is 20 nm to 350 nm. A method for growing a gallium nitride-based compound semiconductor single crystal as described. 上記熱処理工程における所定温度は、800℃〜1200℃であることを特徴とする請求項1または請求項2に記載の窒化ガリウム系化合物半導体単結晶の成長方法。The method for growing a gallium nitride-based compound semiconductor single crystal according to claim 1 or 2, wherein the predetermined temperature in the heat treatment step is 800 ° C to 1200 ° C. 上記熱処理工程における不活性ガス雰囲気は、N2ガス雰囲気であることを特徴とする請求項1から請求項3の何れかに記載の窒化ガリウム系化合物半導体単結晶の成長方法。The method for growing a gallium nitride-based compound semiconductor single crystal according to any one of claims 1 to 3, wherein the inert gas atmosphere in the heat treatment step is an N 2 gas atmosphere. 上記第2の成膜工程における第2の温度条件は、800℃〜1200℃であることを特徴とする請求項1から請求項4の何れかに記載の窒化ガリウム系化合物半導体単結晶の成長方法。5. The method for growing a gallium nitride-based compound semiconductor single crystal according to claim 1, wherein the second temperature condition in the second film formation step is 800 ° C. to 1200 ° C. 6. . 上記13(3B)族元素として、Al,Ga,Inのうち少なくとも1種類を含むことを特徴とする請求項1から請求項5の何れかに記載の窒化ガリウム系化合物半導体単結晶の成長方法。  6. The method for growing a gallium nitride-based compound semiconductor single crystal according to claim 1, wherein the 13 (3B) group element includes at least one of Al, Ga, and In.
JP16719498A 1998-06-15 1998-06-15 Method for growing gallium nitride compound semiconductor single crystal Expired - Fee Related JP4065055B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16719498A JP4065055B2 (en) 1998-06-15 1998-06-15 Method for growing gallium nitride compound semiconductor single crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16719498A JP4065055B2 (en) 1998-06-15 1998-06-15 Method for growing gallium nitride compound semiconductor single crystal

Publications (2)

Publication Number Publication Date
JP2000004045A JP2000004045A (en) 2000-01-07
JP4065055B2 true JP4065055B2 (en) 2008-03-19

Family

ID=15845179

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16719498A Expired - Fee Related JP4065055B2 (en) 1998-06-15 1998-06-15 Method for growing gallium nitride compound semiconductor single crystal

Country Status (1)

Country Link
JP (1) JP4065055B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4673514B2 (en) * 2001-08-06 2011-04-20 Jx日鉱日石金属株式会社 GaN compound semiconductor crystal manufacturing method
JP2003218043A (en) * 2002-01-28 2003-07-31 Nikko Materials Co Ltd METHOD OF MANUFACTURING GaN-BASED COMPOUND SEMICONDUCTOR CRYSTAL
JP4150527B2 (en) 2002-02-27 2008-09-17 日鉱金属株式会社 Crystal production method
CN113930745A (en) * 2021-09-30 2022-01-14 北京工业大学 Preparation method of high-crystallization GaN film

Also Published As

Publication number Publication date
JP2000004045A (en) 2000-01-07

Similar Documents

Publication Publication Date Title
US6524932B1 (en) Method of fabricating group-III nitride-based semiconductor device
KR101321654B1 (en) Substrate for growing group-iii nitride semiconductors, epitaxial substrate for group-iii nitride semiconductors, group-iii nitride semiconductor element, stand-alone substrate for group-iii nitride semiconductors, and methods for manufacturing the preceding
US20010037760A1 (en) Epitaxial film produced by sequential hydride vapor phase epitaxy
JP2002284600A (en) Method for manufacturing gallium nitride crystal substrate and the same
JPH10321911A (en) Method for manufacturing epitaxial layer of compound semiconductor on single-crystal silicon and light-emitting diode manufactured therewith
KR100531178B1 (en) Growth method of nitride epitaxial layer using conversion of nitride interlayer into metallic phase
JPH11145514A (en) Gallium nitride semiconductor device and manufacture thereof
US20030012984A1 (en) Buffer layer and growth method for subsequent epitaxial growth of III-V nitride semiconductors
JP3100644B2 (en) Semiconductor light emitting device and method of manufacturing the same
JPH07235692A (en) Compound semiconductor device and forming method thereof
EP1137077A2 (en) A semiconductor device, a method for manufacturing a semiconductor device and an epitaxial growth substrate for a semiconductor device
JP3353527B2 (en) Manufacturing method of gallium nitride based semiconductor
JP2004107114A (en) Method of manufacturing group iii nitride compound semiconductor substrate
JP3094965B2 (en) Crystal growth method of gallium nitride thick film
JP2002053399A (en) Nitride semiconductor substrate and method for producing the same
JP4065055B2 (en) Method for growing gallium nitride compound semiconductor single crystal
KR100243623B1 (en) Epitaxial wafer and fabricating method thereof
JPH11340147A (en) Manufacture of nitride semiconductor wafer and element
KR100504180B1 (en) crystal growth method of nitride compound semiconductor
JP4728460B2 (en) Method for producing gallium nitride compound semiconductor single crystal
JP2011093803A (en) Method for manufacturing gallium nitride-based compound semiconductor single crystal
JP2003037069A (en) Method for manufacturing iii nitride based compound semiconductor
JP2000150388A (en) Iii nitride semiconductor thin film and manufacture thereof
KR100691251B1 (en) emitting apparatus and thereof fabricating method
JPH10229218A (en) Manufacture of nitride semiconductor substrate and nitride semiconductor substrate

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20040122

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041214

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070921

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071002

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071129

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071225

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071228

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110111

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110111

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110111

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120111

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120111

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130111

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130111

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140111

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees