JPH0832113A - Manufacture of p-type gan semiconductor - Google Patents

Manufacture of p-type gan semiconductor

Info

Publication number
JPH0832113A
JPH0832113A JP16247394A JP16247394A JPH0832113A JP H0832113 A JPH0832113 A JP H0832113A JP 16247394 A JP16247394 A JP 16247394A JP 16247394 A JP16247394 A JP 16247394A JP H0832113 A JPH0832113 A JP H0832113A
Authority
JP
Japan
Prior art keywords
semiconductor
layer
type
gan
type gan
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP16247394A
Other languages
Japanese (ja)
Other versions
JP3341948B2 (en
Inventor
Shinichi Watabe
信一 渡部
Takayuki Hashimoto
孝行 橋本
Kazuyuki Tadatomo
一行 只友
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Cable Industries Ltd
Original Assignee
Mitsubishi Cable Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Cable Industries Ltd filed Critical Mitsubishi Cable Industries Ltd
Priority to JP16247394A priority Critical patent/JP3341948B2/en
Publication of JPH0832113A publication Critical patent/JPH0832113A/en
Application granted granted Critical
Publication of JP3341948B2 publication Critical patent/JP3341948B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Semiconductor Lasers (AREA)
  • Led Devices (AREA)

Abstract

PURPOSE:To provide a p-type GaN semiconductor manufacturing method by which the fraction defective of a p-type GaN semiconductor can be reduced by suppressing the cracking of the semiconductor and the cost of the semiconductor can be reduced by simplifying the manufacturing process. CONSTITUTION:In a p-type GaN semiconductor manufacturing method, a GaN semiconductor doped with a p-type impurity is cooled at a cooling rate slower than the natural cooling rate in, desirably, an inert gas atmosphere after the semiconductor is grown. Therefore, no post-treatment-like heat treatment is required for the semiconductor after the semiconductor is grown and, since the semiconductor is gradually cooled, the cracking of the semiconductor is suppressed.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、p型GaN系半導体の
製造方法に関し、詳しくは製造工程を簡略化してコスト
を低減し得、かつ不良率を低減し得るp型GaN系半導
体の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a p-type GaN-based semiconductor, and more particularly to a method for manufacturing a p-type GaN-based semiconductor which can simplify the manufacturing process to reduce the cost and the defect rate. Regarding

【0002】[0002]

【従来技術】LED、LD等の発光デバイスを構成する
半導体として、例えば一般式AlxGay In1-x-y
(ただし0≦x≦1,0≦y≦1)で表されるような、
所謂GaN系半導体を用いると、常温で優れた発光特性
を示す青色発光素子が得られることが知られている。図
1はこのようなGaN系半導体を用いた一般的な発光ダ
イオード(LED)の一例であり、同図に示す発光ダイ
オードDは、例えば、サファイア、SiC等よりなる基
板1上に、GaN、ZnO等よりなるバッファ層2を介
してn型GaNクラッド層31、GaInN活性層32
およびp型GaNクラッド層33をこの順に気相成長法
により成長させることによって製造される。
2. Description of the Related Art As a semiconductor constituting a light emitting device such as an LED or an LD, for example, a general formula Al x Ga y In 1-xy N
(Where 0 ≦ x ≦ 1, 0 ≦ y ≦ 1),
It is known that a so-called GaN-based semiconductor can be used to obtain a blue light emitting device that exhibits excellent light emitting characteristics at room temperature. FIG. 1 is an example of a general light emitting diode (LED) using such a GaN-based semiconductor. A light emitting diode D shown in FIG. 1 is a substrate 1 made of, for example, sapphire, SiC, or the like. N-type GaN clad layer 31, GaInN active layer 32 via the buffer layer 2 made of
And the p-type GaN clad layer 33 are grown in this order by vapor phase epitaxy.

【0003】上記GaN系半導体においては、該半導体
をn型/p型の伝導型とするため、該半導体をn型/p
型の不純物をドープして成長させるようにしているが、
p型の場合は、p型不純物をドープして成長させただけ
では低抵抗のp型半導体とすることができない。これ
は、1)GaN系結晶では結晶性が悪く結晶中に窒素空孔
が多いため、不純物をドープしなくても低抵抗のn型半
導体となりやすく、このためp型不純物をドープしたも
のは高抵抗となることや、あるいは2)GaN系半導体の
成長中または成長後にN源であるNH3 が分解して水素
原子が発生し、この水素原子が、p型不純物であるM
g、Zn等と結合して、これらp型不純物がアクセプタ
ーとして機能するのを妨げ、その結果このp型不純物を
ドープしたGaN系半導体が高抵抗を示すこと、等が主
な原因であると考えられている。
In the above GaN-based semiconductor, since the semiconductor is of n-type / p-type conductivity type, the semiconductor is n-type / p-type.
I try to grow it by doping type impurities,
In the case of p-type, a low-resistance p-type semiconductor cannot be obtained only by growing it by doping with p-type impurities. This is because 1) GaN-based crystals have poor crystallinity and have many nitrogen vacancies in the crystals, so that an n-type semiconductor with low resistance is likely to be obtained without doping impurities. Or 2) during or after the growth of the GaN-based semiconductor, NH 3 which is an N source is decomposed to generate a hydrogen atom, and the hydrogen atom is a p-type impurity M
It is considered that the main cause is that these p-type impurities bind to g, Zn, etc. to prevent them from functioning as an acceptor, and as a result, the GaN-based semiconductor doped with the p-type impurities exhibits high resistance. Has been.

【0004】上記1)の問題は、結晶成長の条件を最適化
してGaN系結晶の結晶性を良好とすることにより解消
される。一方、上記2)の問題を解消する方法として、p
型不純物をドープしたGaN系半導体を成長させた後
に、電子線照射処理(LEEBI)を施すことによって
該GaN系半導体を低抵抗化する方法が知られている。
The above problem 1) can be solved by optimizing the crystal growth conditions to improve the crystallinity of the GaN-based crystal. On the other hand, as a method to solve the problem of 2) above, p
A method is known in which a GaN-based semiconductor doped with a type impurity is grown and then subjected to electron beam irradiation treatment (LEEBI) to reduce the resistance of the GaN-based semiconductor.

【0005】ところが、上記の方法では、電子線が侵入
し得る半導体表層部しか低抵抗化できず、また電子線を
走査しながら照射するためウエハ面を均一に低抵抗化で
きないという問題があり、さらに、電子線の走査に長時
間を要し、またこのLEEBI処理を結晶成長の工程お
よび装置とは別の工程および装置で行わなければならな
いため製造コストが高くつくという問題があった。
However, the above method has a problem in that only the semiconductor surface layer portion into which the electron beam can penetrate can be made low in resistance, and since the electron beam is irradiated while scanning, the wafer surface cannot be made uniformly low in resistance. Further, there is a problem that it takes a long time to scan the electron beam, and this LEEBI treatment must be performed in a process and an apparatus different from the crystal growth step and the apparatus, resulting in high manufacturing cost.

【0006】そこで、半導体を成長させた後に窒素雰囲
気中で熱処理(アニーリング)を施すことによってp型
半導体を得る方法が提案されている(特開平5−183
189号公報参照)。この方法は、Mg、Zn等と結合
した水素原子を熱処理により解離させ、Mg、Zn等を
アクセプターとして正常に機能させることによって低抵
抗のp型半導体を得るものであり、これによれば、ウエ
ハ内部および面全体を均一に低抵抗化することができ
る。
Therefore, a method of obtaining a p-type semiconductor by performing heat treatment (annealing) in a nitrogen atmosphere after growing the semiconductor has been proposed (Japanese Patent Laid-Open No. 5-183).
189). According to this method, a hydrogen atom bonded to Mg, Zn or the like is dissociated by heat treatment to allow Mg, Zn or the like to function normally as an acceptor to obtain a low-resistance p-type semiconductor. It is possible to uniformly reduce the resistance inside and on the entire surface.

【0007】[0007]

【発明が解決しようとする課題】しかしながら上記方法
においては、熱処理後に冷却する過程で各半導体層間の
熱膨張係数や格子定数の違いによりクラックが発生しや
すいという問題があり、さらにまた、この場合も結晶成
長の工程・装置とは別に熱処理の工程・装置が必要であ
るため、依然として製造コストが高くつくという問題が
ある。
However, in the above method, there is a problem that cracks are likely to occur due to the difference in thermal expansion coefficient and lattice constant between the semiconductor layers in the process of cooling after the heat treatment, and in this case also. Since a heat treatment process / apparatus is required in addition to the crystal growth process / apparatus, the manufacturing cost is still high.

【0008】本発明の目的は、上記課題を解消し、クラ
ック等の発生を抑制して不良率を低減し得、かつ製造工
程を簡略化してコストを低減し得るp型GaN系半導体
の製造方法を提供することにある。
An object of the present invention is to solve the above problems, suppress the occurrence of cracks and the like, reduce the defect rate, and simplify the manufacturing process to reduce the cost, and a method for manufacturing a p-type GaN-based semiconductor. To provide.

【0009】[0009]

【課題を解決するための手段】本発明者等は、半導体を
成長させた後の冷却を徐々に行うことによっても、熱処
理と同等の効果が得られることを見出し、本発明を完成
するに至った。即ち、本発明のp型GaN系半導体の製
造方法は、p型不純物をドープしたGaN系半導体を成
長させた後、望ましくは不活性ガス雰囲気下で、自然冷
却よりも遅い速度で冷却することを特徴とするものであ
る。
The inventors of the present invention have found that an effect equivalent to that of heat treatment can be obtained by gradually cooling a semiconductor after it has been grown, and completed the present invention. It was That is, in the method for manufacturing a p-type GaN-based semiconductor of the present invention, after growing a GaN-based semiconductor doped with a p-type impurity, cooling is preferably performed in an inert gas atmosphere at a slower rate than natural cooling. It is a feature.

【0010】[0010]

【作用】本発明は、成長させた後の半導体を自然冷却よ
りも遅い速度で冷却することで半導体の温度をできるだ
け高い状態に維持し、これにより、熱処理を施した場合
と同等の効果を得るようにしたものである。即ち、半導
体の温度をできるだけ高い状態に維持することによっ
て、水素原子がp型不純物と結合するのを抑制して該p
型不純物をアクセプターとして正常に機能させ、これに
より低抵抗のp型半導体を得るようにしたものである。
したがって本発明においては、後処理的な熱処理が不要
であり、また半導体を徐々に冷却するため該半導体層に
おけるクラック等の発生が抑制される。
The present invention maintains the temperature of the semiconductor as high as possible by cooling the semiconductor after growth at a slower rate than natural cooling, thereby obtaining the same effect as in the case of performing heat treatment. It was done like this. That is, by maintaining the temperature of the semiconductor as high as possible, it is possible to suppress the bonding of hydrogen atoms with p-type impurities.
The p-type semiconductor having a low resistance is obtained by allowing the type impurities to function normally as an acceptor.
Therefore, in the present invention, a post-treatment heat treatment is not necessary, and since the semiconductor is gradually cooled, the generation of cracks or the like in the semiconductor layer is suppressed.

【0011】以下、本発明のp型GaN系半導体の製造
方法を、図1に示す一般的な発光ダイオードDを製造す
る場合を例としてさらに具体的に説明する。
Hereinafter, the method for manufacturing the p-type GaN-based semiconductor of the present invention will be described more specifically by taking the case of manufacturing the general light emitting diode D shown in FIG. 1 as an example.

【0012】(1)半導体層の形成 まず、基板1上に、バッファ層2を介してn型GaNク
ラッド層31、GaInN活性層32およびp型GaN
クラッド層33をこの順に成膜して、図1に示すものと
同様の多層部3を形成する。
(1) Formation of Semiconductor Layer First, the n-type GaN cladding layer 31, the GaInN active layer 32 and the p-type GaN are formed on the substrate 1 with the buffer layer 2 interposed therebetween.
The clad layer 33 is formed in this order to form the multilayer portion 3 similar to that shown in FIG.

【0013】上記基板1としては、形成を意図するバッ
ファ層2および多層部3の結晶性が良好となるよう、こ
れらと格子定数の近いものが好適であり、さらに、クラ
ック等の発生ができるだけ抑制されるよう、熱膨張係数
の近いものが好適である。このような材質として、サフ
ァイア、SiC、水晶、例えば一般式Alx Gay In
1-x-y N(ただし0≦x≦1,0≦y≦1)で表される
ようなGaN系半導体等が例示され、なかでもサファイ
アまたはGaN系半導体が好適である。
The substrate 1 is preferably one having a lattice constant close to that of the buffer layer 2 and the multilayer portion 3 intended to be formed so that the crystallinity of the buffer layer 2 and the multilayer portion 3 is good, and further, the occurrence of cracks is suppressed as much as possible. As described above, those having a close thermal expansion coefficient are preferable. As such a material, sapphire, SiC, quartz, for example, the general formula Al x Ga y In
Examples include GaN-based semiconductors represented by 1-xy N (where 0 ≦ x ≦ 1, 0 ≦ y ≦ 1), and among them, sapphire or GaN-based semiconductors are preferable.

【0014】上記基板1の厚さは特に限定されないが、
機械的強度が十分で、かつ経済的に安価となるよう20
0〜300μm程度とすることが適当である。
Although the thickness of the substrate 1 is not particularly limited,
It has sufficient mechanical strength and is economically inexpensive. 20
It is suitable that the thickness is about 0 to 300 μm.

【0015】上記バッファ層2は、基板1と多層部3と
の間の格子定数や熱膨張係数の違いを緩和するためのも
のである。このため、このバッファ層2としては、基板
1および多層部3を構成するそれぞれの結晶と格子定数
ができるだけ近いものが、多層部3の結晶性を良好とす
る上で好ましく、さらには、熱膨張係数ができるだけ近
いものを用いることが、クラック等の発生を防止する上
で好ましい。
The buffer layer 2 is for alleviating the difference in lattice constant and thermal expansion coefficient between the substrate 1 and the multilayer portion 3. For this reason, it is preferable that the buffer layer 2 has a lattice constant as close as possible to that of the crystals forming the substrate 1 and the multilayer portion 3 in order to improve the crystallinity of the multilayer portion 3, and further, the thermal expansion. It is preferable to use those having a coefficient as close as possible in order to prevent the occurrence of cracks and the like.

【0016】上記バッファ層2としては、一般式Alx
Gay In1-x-y N(ただし0≦x≦1,0≦y≦1)
で表されるようなGaN系半導体、ZnO、MgO、B
eO、BeO−ZnO系化合物、ZnO−HgO系化合
物、ZnO−MgO系化合物、BeO−ZnO−HgO
系化合物、BeO−ZnO−MgO系化合物等が例示さ
れ、特に、例えば多層部3がGaInN/GaAlNで
ある場合はAlNやGaNが好適である。
The buffer layer 2 has the general formula Al x
Ga y In 1-xy N (provided that 0 ≦ x ≦ 1,0 ≦ y ≦ 1)
GaN-based semiconductor represented by, ZnO, MgO, B
eO, BeO-ZnO compounds, ZnO-HgO compounds, ZnO-MgO compounds, BeO-ZnO-HgO
Examples thereof include a system compound and a BeO—ZnO—MgO system compound. Particularly, for example, when the multilayer portion 3 is GaInN / GaAlN, AlN or GaN is preferable.

【0017】上記バッファ層2の形成は、スパッタリン
グ、CVD、MOVPE等の方法により行われるが、例
えばバッファ層2としてGaN系半導体を用いる場合
は、該バッファ層2をMOVPEにより形成すると、該
バッファ層2の結晶性を良好とすることができ好まし
い。
The buffer layer 2 is formed by a method such as sputtering, CVD, MOVPE. When a GaN-based semiconductor is used as the buffer layer 2, for example, when the buffer layer 2 is formed by MOVPE, the buffer layer 2 is formed. It is preferable because the crystallinity of 2 can be improved.

【0018】上記バッファ層2は、厚さ50〜1000
Å、好ましくは200〜500Åとなるように形成する
ことが好ましい。上記バッファ層2の厚さが50Å以上
であれば、基板1と多層部3との格子定数や熱膨張係数
の違いを十分に緩和することができ、一方1000Å以
下であれば、バッファ層2上のGaNエピタキシャル成
長層を2次元成長した高品質なものとできる。
The buffer layer 2 has a thickness of 50 to 1000.
Å, preferably 200 to 500Å. If the thickness of the buffer layer 2 is 50 Å or more, the difference in the lattice constant and the thermal expansion coefficient between the substrate 1 and the multilayer portion 3 can be sufficiently relaxed, while if the thickness is 1000 Å or less, the buffer layer 2 on the The high-quality GaN epitaxial growth layer can be obtained by two-dimensional growth.

【0019】上記多層部3を構成する活性層32/クラ
ッド層31,33のそれぞれの半導体材料の組合せとし
ては、結晶性が良好となるようなるべく互いに格子定数
の近いものが好ましく、例えば図1に示すようなGaI
nN/AlGaNや、GaInN/GaN、GaInN
/AlGaInN等が好適であり、なかでもGaInN
/AlGaNが好適である。
As a combination of the respective semiconductor materials of the active layer 32 / cladding layers 31 and 33 constituting the above-mentioned multilayer portion 3, those having lattice constants close to each other so as to obtain good crystallinity are preferable. For example, as shown in FIG. GaI as shown
nN / AlGaN, GaInN / GaN, GaInN
/ AlGaInN and the like are preferable, and GaInN among them is preferable.
/ AlGaN is preferred.

【0020】上記多層部3の形成方法としては、MOV
PE、MBE、GS−MBE、MO−MBE、CBE、
HVPE等の気相成長方法が例示されるが、例えば該多
層部3がGaInN/GaNで構成される場合はMOV
PEが好適に用いられる。
As a method of forming the multi-layer portion 3, MOV is used.
PE, MBE, GS-MBE, MO-MBE, CBE,
A vapor phase growth method such as HVPE is exemplified. For example, when the multilayer portion 3 is made of GaInN / GaN, MOV is used.
PE is preferably used.

【0021】上記n型クラッド層31、活性層32およ
びp型クラッド層33の厚さは特に限定されないが、各
層の結晶性および電子・正孔の閉じ込めの点からそれぞ
れ1〜5μm、100〜2000Å、0.3〜1μm程
度であることが適当である。
The thicknesses of the n-type clad layer 31, the active layer 32 and the p-type clad layer 33 are not particularly limited, but in view of crystallinity of each layer and confinement of electrons and holes, 1 to 5 μm and 100 to 2000 Å, respectively. , 0.3 to 1 μm is suitable.

【0022】上記多層部3の構成としては、Homo
型、SH(シングルヘテロ)型、DH(ダブルヘテロ)
型、量子井戸型、多層量子井戸型等が可能であるが、な
かでもDH型とすると、活性層上下に形成したクラッド
層が該活性層からの発光を吸収せず、また発光のための
電子と正孔とが効率良く活性層に閉じ込められるため、
発光素子の輝度を向上させることができる。
As the structure of the multi-layer part 3, Homo is
Type, SH (single hetero) type, DH (double hetero)
Type, quantum well type, multi-layer quantum well type, and the like. Among them, when the DH type is used, the cladding layers formed above and below the active layer do not absorb light emitted from the active layer, and electrons for light emission are used. And holes are efficiently confined in the active layer,
The brightness of the light emitting element can be improved.

【0023】n型/p型不純物を多層部3にドープする
方法としては自体既知の方法を用いればよく、例えば多
層部3を気相成長法により成長させている間、反応容器
内に不純物ガスを供給すればよい。n型不純物として
は、Si、Ge等が例示され、なかでもドーピング効率
および母体結晶の結晶性の点でSiが好適である。な
お、前記したようにGaN系半導体の場合は不純物をド
ープしなくても低抵抗のn型半導体を得ることができ
る。p型不純物としては、Zn、Cd、Be、Mg、C
a、Ba等が例示され、なかでもドーピング効率、キャ
リアの活性化率および不純物準位の点でMgまたはZn
が好適である。
A method known per se may be used as a method for doping the n-type / p-type impurities into the multi-layer portion 3. For example, while the multi-layer portion 3 is being grown by the vapor phase epitaxy method, an impurity gas is introduced into the reaction vessel. Should be supplied. Examples of the n-type impurity include Si and Ge. Among them, Si is preferable in terms of doping efficiency and crystallinity of the host crystal. As described above, in the case of the GaN-based semiconductor, it is possible to obtain an n-type semiconductor with low resistance without doping impurities. The p-type impurities include Zn, Cd, Be, Mg and C.
a, Ba, etc. are exemplified, and among them, Mg or Zn is preferable in terms of doping efficiency, carrier activation rate, and impurity level.
Is preferred.

【0024】(2)半導体層の冷却 ついで、上記のようにして成長させた多層部3を、成長
時の高温(通常1050℃程度)から室温まで冷却す
る。
(2) Cooling of the semiconductor layer Next, the multilayer portion 3 grown as described above is cooled from the high temperature during growth (usually about 1050 ° C.) to room temperature.

【0025】本発明においては、上記多層部3の冷却を
自然冷却よりも遅い速度で行うようにする。さらに具体
的には、1分間に0.1〜3℃程度、好ましくは0.5
〜1.5℃程度の割合で温度が降下するように行うこと
が望ましい。上記温度降下の割合が3℃/分以下であれ
ば、水素原子がp型不純物と結合するのを抑制する効
果、ならびにクラック等の発生を抑制する効果が十分と
なり、一方0.1℃/分以上であると、冷却時間が過度
に長くなることがなく製造効率が良好な程度に維持され
る。
In the present invention, the cooling of the multilayer portion 3 is performed at a slower rate than natural cooling. More specifically, about 0.1 to 3 ° C. per minute, preferably 0.5.
It is desirable that the temperature be lowered at a rate of about 1.5 ° C. When the rate of temperature drop is 3 ° C./min or less, the effect of suppressing the bonding of hydrogen atoms with p-type impurities and the effect of suppressing the occurrence of cracks and the like become sufficient, while 0.1 ° C./minute With the above, the cooling time does not become excessively long and the manufacturing efficiency is maintained at a good level.

【0026】上記冷却の速度は、一般に自体既知の温度
コントローラーを用いることにより制御することができ
るが、より正確な制御を行うにはPID (proportional
integral differential) 制御によることが好ましい。
The cooling rate can be controlled by using a temperature controller known per se, but for more accurate control, PID (proportional) is used.
Preferably by integral differential control.

【0027】上記多層部3の成長後は、反応容器内から
NH3 等の水素含有物質を可及的に除去しておくことが
望ましい。これにより、該水素含有物質が分解して発生
する水素原子とp型不純物との結合をさらに効果的に抑
制することができる。
After the growth of the multilayer portion 3, it is desirable to remove the hydrogen-containing substance such as NH 3 from the reaction vessel as much as possible. This makes it possible to more effectively suppress the bond between the hydrogen atom and the p-type impurity generated by the decomposition of the hydrogen-containing substance.

【0028】上記のように反応容器内から水素含有物質
を除去し、該容器内をできるだけ真空に近い状態として
多層部3の冷却を行うようにしてもよいが、該容器内を
不活性ガス雰囲気下とすることがさらに望ましい。これ
によれば、半導体層中の窒素が分解して出ていくのを抑
制することができ、半導体層の結晶性を良好とすること
ができる。このような不活性ガスとしては、N2 、H
e、Ne、Arあるいはこれらの混合ガス等が例示さ
れ、なかでもN2 が好適である。なおこの不活性ガス
は、冷却前の温度における半導体層の分解圧以上に加圧
すると、窒素の分解を抑制する上でさらに望ましい。
As described above, the hydrogen-containing substance may be removed from the reaction vessel and the multi-layer section 3 may be cooled by keeping the inside of the reaction vessel as close to vacuum as possible. It is more desirable to set below. According to this, it is possible to suppress decomposition and release of nitrogen in the semiconductor layer, and it is possible to improve the crystallinity of the semiconductor layer. Examples of such an inert gas include N 2 and H
Examples of the gas include e, Ne, Ar, and mixed gases thereof, and among them, N 2 is preferable. It should be noted that this inert gas is more desirable for suppressing the decomposition of nitrogen when it is pressurized to a pressure higher than the decomposition pressure of the semiconductor layer at the temperature before cooling.

【0029】(3)電極形成およびチップ化 上記のようにして冷却した後、多層部3上面には上部電
極4を、基板1下面には下部電極5を形成し、この後こ
の積層体をダイシングしてチップ化し、発光ダイオード
Dを得る。
(3) Electrode formation and chip formation After cooling as described above, the upper electrode 4 is formed on the upper surface of the multilayer portion 3 and the lower electrode 5 is formed on the lower surface of the substrate 1, and then this laminated body is diced. To obtain a light emitting diode D.

【0030】上記上部電極4は、直下層がp層の場合、
AuBe、AuZn、Au等を、また直下層がn層の場
合、AuGe、In等を多層部3上面に真空蒸着等によ
り被着した後、パターニング、アニーリング等の処理に
より該面の適当な位置に任意の形状に成形することによ
り形成される。この上部電極4の形状は特に限定されな
いが、形成の容易なこと等からドット状電極とすること
が好ましい。
The upper electrode 4 has a p-layer directly below,
When AuBe, AuZn, Au, etc., or when the immediate underlying layer is an n-layer, AuGe, In, etc. are deposited on the upper surface of the multilayer portion 3 by vacuum deposition or the like, and then patterning, annealing, etc. are applied to an appropriate position on the surface. It is formed by molding into an arbitrary shape. The shape of the upper electrode 4 is not particularly limited, but it is preferable to use a dot electrode because it is easy to form.

【0031】また上記下部電極5は、直上層がp層の場
合、AuBe、AuZn、Au等を、また直上層がn層
の場合、AuGe、In、Al等を基板1下面に被着し
た後、アニーリング処理により基板1と合金化させるこ
とにより形成される。
The lower electrode 5 is formed by depositing AuBe, AuZn, Au or the like on the lower surface of the substrate 1 when the immediately upper layer is the p layer and by depositing AuGe, In, Al or the like on the lower electrode 5 when the directly upper layer is the n layer. , Is formed by alloying with the substrate 1 by an annealing process.

【0032】なお本発明においては、上記と同様にし
て、発光ダイオード以外にもレーザーダイオード(L
D)等の発光素子を製造することもできる。
In the present invention, in addition to the light emitting diode, a laser diode (L
It is also possible to manufacture a light emitting device such as D).

【0033】[0033]

【実施例】以下、実施例を示し本発明をより具体的に説
明する。なおこれら実施例は本発明を何ら限定するもの
ではない。
EXAMPLES Hereinafter, the present invention will be described more specifically by showing examples. These examples do not limit the present invention.

【0034】実施例1 (半導体層の形成)厚さ300μmのn型GaN基板を
反応容器内に設置し、容器内を真空排気した後、Al源
としてトリメチルアルミニウム(TMA)を25μmol/
分、N源としてNH3 を5 リットル/分の割合で流入させて
AlN層を成長させ、厚さ250Åのバッファ層を形成
した。ついで、上記ガスに加えGa源としてトリメチル
ガリウム(TMG)を30μmol/分、Si源として10
ppmのSiH4 を4nmol/分の割合で流入させて、上記
バッファ層上に、Siをドープした厚さ4μmのn型G
aNクラッド層を成長させた。ついで、上記ガスに加え
てIn源としてトリメチルインジウム(TMI)を25
μmol/分、TMGを2μmol/分、SiH4 にかえてZn
源としてジメチル亜鉛(DMZ)を3μmol/分の割合で
流入させて、上記n型GaNクラッド層上に、Znをド
ープした厚さ200ÅのGaInN層を成長させた。つ
いで、上記ガスのうち、DMZにかえてMg源としてビ
ス(シクロペンタジエニル)マグネシウム(Cp2
g)を5μmol/分の割合で流入させて、TMIを止め、
上記GaInN層上に、Mgをドープした厚さ0.8μm
のGaN層を成長させた。
Example 1 (Formation of Semiconductor Layer) An n-type GaN substrate having a thickness of 300 μm was placed in a reaction vessel, the vessel was evacuated, and trimethylaluminum (TMA) was used as an Al source at 25 μmol / mol.
As a source of N, NH 3 was introduced at a rate of 5 liters / minute to grow an AlN layer to form a buffer layer having a thickness of 250 Å. Then, in addition to the above gases, 30 μmol / min of trimethylgallium (TMG) as a Ga source and 10 as a Si source.
SiN 4 of 4 ppm was introduced at a rate of 4 nmol / min, and Si-doped n-type G having a thickness of 4 μm was formed on the buffer layer.
An aN clad layer was grown. Then, in addition to the above-mentioned gas, trimethylindium (TMI) 25
μmol / min, TMG 2 μmol / min, Zn instead of SiH 4
Dimethylzinc (DMZ) was introduced as a source at a rate of 3 μmol / min to grow a Zn-doped GaInN layer having a thickness of 200 Å on the n-type GaN cladding layer. Then, of the above gases, bis (cyclopentadienyl) magnesium (Cp 2 M) was used as the Mg source instead of DMZ.
g) at a rate of 5 μmol / min to stop the TMI,
Mg-doped layer having a thickness of 0.8 μm on the GaInN layer
GaN layer was grown.

【0035】(半導体層の冷却)上記GaN層成長後、
反応容器内を窒素置換し、PID制御の温度コントロー
ラーにより温度を0.5℃/分の速度で降下させるよう
にして室温まで冷却し、電極の形成およびダイシングを
行って、図1に示すものと同様のLEDチップを得た。
(Cooling of Semiconductor Layer) After the growth of the GaN layer,
The inside of the reaction vessel was replaced with nitrogen, the temperature was lowered at a rate of 0.5 ° C./min by a temperature controller for PID control, and the temperature was cooled to room temperature. A similar LED chip was obtained.

【0036】実施例2〜3および比較例1〜2 上記実施例1において、半導体層の冷却速度を表1に示
すように変量する以外は全て同様にしてLEDチップを
作製した。
Examples 2 to 3 and Comparative Examples 1 to 2 LED chips were manufactured in the same manner as in Example 1 except that the cooling rate of the semiconductor layer was changed as shown in Table 1.

【0037】[0037]

【表1】 [Table 1]

【0038】(半導体の評価)上記実施例1〜3および
比較例1〜2で得られたLEDチップのそれぞれについ
て、p型GaNクラッド層のホール測定を行ったとこ
ろ、表1に示す結果が得られた。また、冷却後の半導体
層のクラックの発生の程度を調べたところ、表1に示す
通りであった。
(Evaluation of Semiconductor) When the hole of the p-type GaN cladding layer was measured for each of the LED chips obtained in Examples 1 to 3 and Comparative Examples 1 to 2, the results shown in Table 1 were obtained. Was given. Further, when the extent of cracking of the semiconductor layer after cooling was examined, it was as shown in Table 1.

【0039】[0039]

【発明の効果】本発明のp型GaN系半導体の製造方法
によれば、半導体を成長させた後、自然冷却よりも遅い
速度で冷却することで半導体の温度をできるだけ高い状
態に維持するので、水素原子がp型不純物と結合するの
が抑制され、その結果熱処理を施した場合と同様にp型
不純物がアクセプターとして正常に機能し、これによっ
て低抵抗のp型半導体が得られる。したがって半導体成
長後に後処理的な熱処理が不要であり、また半導体を徐
々に冷却するため該半導体層におけるクラック等の発生
が抑制される。
According to the method for manufacturing a p-type GaN-based semiconductor of the present invention, after the semiconductor is grown, the temperature of the semiconductor is maintained as high as possible by cooling it at a slower rate than natural cooling. The binding of hydrogen atoms to the p-type impurities is suppressed, and as a result, the p-type impurities normally function as an acceptor as in the case of performing heat treatment, whereby a low-resistance p-type semiconductor is obtained. Therefore, no post-treatment heat treatment is required after the semiconductor growth, and the semiconductor is gradually cooled, so that the generation of cracks or the like in the semiconductor layer is suppressed.

【0040】したがって本発明によって、p型GaN系
半導体の製造において製造工程を簡略化してコストを低
減し、かつ不良率を低減することが可能となる。
Therefore, according to the present invention, it becomes possible to simplify the manufacturing process in the manufacture of the p-type GaN-based semiconductor, reduce the cost, and reduce the defective rate.

【図面の簡単な説明】[Brief description of drawings]

【図1】GaN系半導体を用いた一般的な発光ダイオー
ド(LED)の一例を示す模式断面図である。
FIG. 1 is a schematic cross-sectional view showing an example of a general light emitting diode (LED) using a GaN-based semiconductor.

【符号の説明】[Explanation of symbols]

1 基板 2 バッファ層 3 多層部 31 n型GaNクラッド層 32 GaInN活性層 33 p型GaNクラッド層 4 上部電極 5 下部電極 D 発光ダイオード(LED) 1 substrate 2 buffer layer 3 multilayer part 31 n-type GaN cladding layer 32 GaInN active layer 33 p-type GaN cladding layer 4 upper electrode 5 lower electrode D light emitting diode (LED)

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 p型不純物をドープしたGaN系半導体
を成長させた後、自然冷却よりも遅い速度で冷却するこ
とを特徴とするp型GaN系半導体の製造方法。
1. A method of manufacturing a p-type GaN-based semiconductor, which comprises growing a GaN-based semiconductor doped with a p-type impurity and then cooling it at a slower rate than natural cooling.
【請求項2】 冷却を不活性ガス雰囲気下で行う請求項
1記載のp型GaN系半導体の製造方法。
2. The method for producing a p-type GaN-based semiconductor according to claim 1, wherein cooling is performed in an inert gas atmosphere.
JP16247394A 1994-07-14 1994-07-14 Method for manufacturing p-type GaN-based semiconductor Expired - Lifetime JP3341948B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16247394A JP3341948B2 (en) 1994-07-14 1994-07-14 Method for manufacturing p-type GaN-based semiconductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16247394A JP3341948B2 (en) 1994-07-14 1994-07-14 Method for manufacturing p-type GaN-based semiconductor

Publications (2)

Publication Number Publication Date
JPH0832113A true JPH0832113A (en) 1996-02-02
JP3341948B2 JP3341948B2 (en) 2002-11-05

Family

ID=15755300

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16247394A Expired - Lifetime JP3341948B2 (en) 1994-07-14 1994-07-14 Method for manufacturing p-type GaN-based semiconductor

Country Status (1)

Country Link
JP (1) JP3341948B2 (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08125222A (en) * 1994-10-25 1996-05-17 Toyoda Gosei Co Ltd Method for manufacture of group iii nitride semiconductor
WO1997008759A1 (en) * 1995-08-31 1997-03-06 Kabushiki Kaisha Toshiba Blue light emitting device and production method thereof
US6200382B1 (en) 1998-07-14 2001-03-13 Nec Corporation Method of manufacturing a semiconductor laser device and a crystal growth apparatus for use in a semiconductor laser device
US6281522B1 (en) 1996-06-14 2001-08-28 Matsushita Electric Industrial Co., Ltd. Method of manufacturing a semiconductor and a semiconductor light-emitting device
US6462354B1 (en) 1999-05-24 2002-10-08 Sony Corporation Semiconductor device and semiconductor light emitting device
US6525345B1 (en) 1998-08-17 2003-02-25 Murata Manufacturing Co., Ltd. Semiconductor photonic device
US6924512B2 (en) 2000-05-29 2005-08-02 Sharp Kabushiki Kaisha Nitride semiconductor light-emitting device and optical apparatus including the same
JP2006140530A (en) * 2006-01-23 2006-06-01 Matsushita Electric Ind Co Ltd Method of manufacturing p-type nitride semiconductor
US7229493B2 (en) 2002-01-31 2007-06-12 Sumitomo Chemical Company, Limited 3-5 group compound semiconductor, process for producing the same, and compound semiconductor element using the same
JP2011093803A (en) * 2011-02-02 2011-05-12 Jx Nippon Mining & Metals Corp Method for manufacturing gallium nitride-based compound semiconductor single crystal
JP4728460B2 (en) * 1999-03-17 2011-07-20 Jx日鉱日石金属株式会社 Method for producing gallium nitride compound semiconductor single crystal
US8513694B2 (en) 2009-03-04 2013-08-20 Panasonic Corporation Nitride semiconductor device and manufacturing method of the device
US20130258719A1 (en) * 2012-03-29 2013-10-03 Fujitsu Limited Compound semiconductor device and manufacturing method of the same
US8906159B2 (en) 2005-10-04 2014-12-09 Seoul Viosys Co., Ltd. (Al, Ga, In)N-based compound semiconductor and method of fabricating the same

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08125222A (en) * 1994-10-25 1996-05-17 Toyoda Gosei Co Ltd Method for manufacture of group iii nitride semiconductor
WO1997008759A1 (en) * 1995-08-31 1997-03-06 Kabushiki Kaisha Toshiba Blue light emitting device and production method thereof
GB2310083A (en) * 1995-08-31 1997-08-13 Toshiba Kk Blue light emitting device and production method thereof
GB2310083B (en) * 1995-08-31 1999-07-28 Toshiba Kk Blue light emitting element and method of manufacturing same
US6258617B1 (en) * 1995-08-31 2001-07-10 Kabushiki Kaisha Toshiba Method of manufacturing blue light emitting element
US6281522B1 (en) 1996-06-14 2001-08-28 Matsushita Electric Industrial Co., Ltd. Method of manufacturing a semiconductor and a semiconductor light-emitting device
US6200382B1 (en) 1998-07-14 2001-03-13 Nec Corporation Method of manufacturing a semiconductor laser device and a crystal growth apparatus for use in a semiconductor laser device
US6525345B1 (en) 1998-08-17 2003-02-25 Murata Manufacturing Co., Ltd. Semiconductor photonic device
JP4728460B2 (en) * 1999-03-17 2011-07-20 Jx日鉱日石金属株式会社 Method for producing gallium nitride compound semiconductor single crystal
US6462354B1 (en) 1999-05-24 2002-10-08 Sony Corporation Semiconductor device and semiconductor light emitting device
US6924512B2 (en) 2000-05-29 2005-08-02 Sharp Kabushiki Kaisha Nitride semiconductor light-emitting device and optical apparatus including the same
US7229493B2 (en) 2002-01-31 2007-06-12 Sumitomo Chemical Company, Limited 3-5 group compound semiconductor, process for producing the same, and compound semiconductor element using the same
US8906159B2 (en) 2005-10-04 2014-12-09 Seoul Viosys Co., Ltd. (Al, Ga, In)N-based compound semiconductor and method of fabricating the same
JP2006140530A (en) * 2006-01-23 2006-06-01 Matsushita Electric Ind Co Ltd Method of manufacturing p-type nitride semiconductor
US8513694B2 (en) 2009-03-04 2013-08-20 Panasonic Corporation Nitride semiconductor device and manufacturing method of the device
JP2011093803A (en) * 2011-02-02 2011-05-12 Jx Nippon Mining & Metals Corp Method for manufacturing gallium nitride-based compound semiconductor single crystal
US20130258719A1 (en) * 2012-03-29 2013-10-03 Fujitsu Limited Compound semiconductor device and manufacturing method of the same
US8933489B2 (en) * 2012-03-29 2015-01-13 Transphorm Japan, Inc. Compound semiconductor device and manufacturing method of the same
US9224848B2 (en) 2012-03-29 2015-12-29 Transphorm Japan, Inc. Compound semiconductor device and manufacturing method of the same

Also Published As

Publication number Publication date
JP3341948B2 (en) 2002-11-05

Similar Documents

Publication Publication Date Title
US5998810A (en) Semiconductor light-emitting diode having a p-type semiconductor layer formed on a light-emitting layer
JP5549338B2 (en) Nitrogen compound semiconductor LED for ultraviolet light radiation and method for producing the same
US7550368B2 (en) Group-III nitride semiconductor stack, method of manufacturing the same, and group-III nitride semiconductor device
JP3758390B2 (en) Nitride semiconductor light emitting device and manufacturing method thereof
KR101074178B1 (en) Method for manufacturing group ⅲ nitride compound semiconductor light-emitting device, group ⅲ nitride compound semiconductor light-emitting device, and lamp
US20090239357A1 (en) AlGaN SUBSTRATE AND PRODUCTION METHOD THEREOF
JP2007103774A (en) Group iii nitride semiconductor stacked structure and its manufacturing method
JP4641812B2 (en) Gallium nitride compound semiconductor laminate and method for producing the same
JP3341948B2 (en) Method for manufacturing p-type GaN-based semiconductor
JP2009021638A (en) Nitride gallium based compound semiconductor luminous element
JP2008034444A (en) Group iii nitride semiconductor light emitting device, method of manufacturing same, and lamp
JPH11340510A (en) Semiconductor element and manufacture thereof
JP4974635B2 (en) Film forming method of group III nitride compound semiconductor multilayer structure
JP4103309B2 (en) Method for manufacturing p-type nitride semiconductor
JP2005277401A (en) Gallium nitride-based compound semiconductor laminate and manufacturing method thereof
US20090140286A1 (en) Production Method of Group III Nitride Semiconductor Element
JP2002176196A (en) Photonic device and its fabricating method
JP2005340762A (en) Group iii nitride semiconductor light-emitting element
JP4284944B2 (en) Method for manufacturing gallium nitride based semiconductor laser device
JP6242238B2 (en) Method for producing nitride semiconductor multi-element mixed crystal
JP4222287B2 (en) Group III nitride semiconductor crystal manufacturing method
JP2008098245A (en) Film forming method of group iii nitride compound semiconductor laminate structure
JP2006344930A (en) Manufacturing method of group iii nitride semiconductor device
JP3642199B2 (en) Method for manufacturing gallium nitride compound semiconductor light emitting device
JP2005210091A (en) Group iii nitride semiconductor element and light emitting element

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080823

Year of fee payment: 6

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080823

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080823

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090823

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100823

Year of fee payment: 8

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313114

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100823

Year of fee payment: 8

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100823

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110823

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120823

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130823

Year of fee payment: 11

EXPY Cancellation because of completion of term