JPS62222626A - Semiconductor wafer - Google Patents

Semiconductor wafer

Info

Publication number
JPS62222626A
JPS62222626A JP6812186A JP6812186A JPS62222626A JP S62222626 A JPS62222626 A JP S62222626A JP 6812186 A JP6812186 A JP 6812186A JP 6812186 A JP6812186 A JP 6812186A JP S62222626 A JPS62222626 A JP S62222626A
Authority
JP
Japan
Prior art keywords
layer
inp
substrate
silicon
germanium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6812186A
Other languages
Japanese (ja)
Inventor
Atsushi Kudo
淳 工藤
Akinori Seki
章憲 関
Masayoshi Koba
木場 正義
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP6812186A priority Critical patent/JPS62222626A/en
Publication of JPS62222626A publication Critical patent/JPS62222626A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02538Group 13/15 materials
    • H01L21/02543Phosphides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02373Group 14 semiconducting materials
    • H01L21/02381Silicon, silicon germanium, germanium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/02433Crystal orientation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • H01L21/02441Group 14 semiconducting materials
    • H01L21/0245Silicon, silicon germanium, germanium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • H01L21/02455Group 13/15 materials
    • H01L21/02461Phosphides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02494Structure
    • H01L21/02496Layer structure
    • H01L21/02505Layer structure consisting of more than two layers
    • H01L21/02507Alternating layers, e.g. superlattice

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Recrystallisation Techniques (AREA)

Abstract

PURPOSE:To perform the epitaxial growth of good-quality InP on an Si substrate by forming an intermediate layer consisting of Ge or a Ge-Si mixed crystal between the substrate and the epitaxial layer. CONSTITUTION:As an Si single crystal substrate 7, a (100) orientation slipped off by 2-5 deg. in a direction of a (100) face is used in order to prevent the generation of an anti-phase in an InP layer 10. On the substrate 7, a Ge single layer 8 or a distorted superlattice layer consisting of a Ge-Si mixed crystal is formed as an intermediate layer, or an InP/InGaP supperlattice layer as a second intermediate layer is formed on the Ge layer 8. On the intermediate layers 8 and 9, the InP epitaxial growth layer 10 is formed.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明はシリコン(Si)基板上に良質のインジウム・
リン(InP)単結晶を得るだめの半導体ウェハ構造に
関するものである。
[Detailed Description of the Invention] <Industrial Application Field> The present invention provides high-quality indium on a silicon (Si) substrate.
The present invention relates to a semiconductor wafer structure for obtaining a phosphorus (InP) single crystal.

〈従来の技術〉 ■−■族化合物半導体は、光学的及び電気的特性に於い
て、■族元素半導体(Si、Ge)等では得られない特
徴を有しており、その特徴デバイスとしてLED(発光
ダイオード)、LD(レーザ・ダイオード)等のエレク
トロ・ルミネッセンス・デバイスや高速FET、ガン・
ダイオード、ホール素子等の電子デバイスが挙げられる
。従来、このようなデバイスは■−v族化合物半導体(
GaAs。
<Prior art> ■-■ group compound semiconductors have optical and electrical properties that cannot be obtained with group-■ element semiconductors (Si, Ge), etc., and their characteristic devices include LEDs ( Electroluminescent devices such as light emitting diodes), LDs (laser diodes), high speed FETs, gun
Examples include electronic devices such as diodes and Hall elements. Conventionally, such devices have been made using ■-v group compound semiconductors (
GaAs.

InP%GaP等)の結晶基板上にエピタキシャル成長
等のプロセスを施して作製したものであり、■−V族化
合物半導体のバルク結晶が常に必要となる。このバルク
結晶は結晶成長の困難さ等のため歩留りが悪く、価格と
しても非常に高価なものであり、また特にインジウム・
リン(InP)などは、現在までのところ2インチ形状
のものしか得られていなく、大面積化についても困難な
状態である。
It is manufactured by performing a process such as epitaxial growth on a crystal substrate of (InP%GaP, etc.), and a bulk crystal of a ■-V group compound semiconductor is always required. This bulk crystal has a low yield due to the difficulty of crystal growth and is extremely expensive.
Phosphorus (InP) and the like have so far only been available in a 2-inch shape, and it is difficult to increase the area.

更に、今後、高機能デバイスとして、三次元回路素子や
機能分離型デバイス(信号受発部を■−V族化合物が、
信号処理部をシリコン(Si)が受は持っているような
デバイス)の開発を考慮した場合についても、安価で良
質のシリコン(Si)単結晶基板上に■−v族化合物を
形成することは重要な半導体素子形成技術である。
Furthermore, in the future, as high-performance devices, three-dimensional circuit elements and functionally separated devices (signal receiving and receiving parts may be made of ■-V group compounds,
Even when considering the development of a device in which the signal processing part is made of silicon (Si), it is difficult to form a ■-V group compound on a cheap and high quality silicon (Si) single crystal substrate. This is an important semiconductor element formation technology.

〈発明が解決しようとする問題点〉 しかし、シリコン(Si)基板上にインジウム・リ/の
エピタキシャル成長を行う場合には、その間に約8チの
格子不整があることや単原子結晶上に2原子化合物を成
長させる問題としてアンチフェイズ・ドメインの発生が
あり、結晶成長を困難にしている。
<Problems to be solved by the invention> However, when indium lithium is epitaxially grown on a silicon (Si) substrate, there is a lattice mismatch of about 8 cm between them, and two atoms are grown on a monoatomic crystal. A problem with growing compounds is the occurrence of antiphase domains, which makes crystal growth difficult.

本発明は、上記の点に鑑みて創案されたものであり、上
述のシリコン(Si)単結晶基板上への■−V族化合物
成長法の一手法として、多層薄膜形成を可能にするMO
CVD法又はMBE法等の各種成長法によりシリコン(
Si)単結晶基板上に良質なインジウム・す7(InP
)のエピタキシャル成長を行うのに適した構造の半導体
ウェハを提供することを目的としている。
The present invention was devised in view of the above points, and is a method for growing a -V group compound on the silicon (Si) single crystal substrate described above.
Silicon (
Si) high quality indium 7 (InP) on a single crystal substrate
) The purpose of the present invention is to provide a semiconductor wafer having a structure suitable for epitaxial growth.

く問題点を解決するだめの手段〉 上記の目的を達成するため、本発明の半導体ウェハは、
シリコン(Si)基板とインジウム・す/(InF’)
エピタキシャル層との間に、ゲルマニウム(Ge)’!
1cit’r’ルマニウムーシリコン(Ge −Si)
系の混晶からなる中間層を有してなるように構成してい
る。
Means for Solving the Problems> In order to achieve the above object, the semiconductor wafer of the present invention has the following features:
Silicon (Si) substrate and indium su/(InF')
Between the epitaxial layer, germanium (Ge)'!
1cit'r'rumanium-silicon (Ge-Si)
It is configured to have an intermediate layer made of a mixed crystal of the system.

即ち、本発明では、シリコン(Si)基板とインジウム
・リン(InP)エピタキシャル層の間に中間層として
、シリコン(Si)(格子定数5.43A)とインジウ
ム・リン(InP)(格子定数5.87A)の中間の格
子定数を持つゲルマニウム(Ge) (格子定数5.6
46A)またはゲルマニウム(Ge)トシリコン(Si
)との混晶により形成した層を用いることにより、良質
のインジウム・リン(InP)エピタキシャル層を形成
するようにしたものである。
That is, in the present invention, silicon (Si) (lattice constant 5.43A) and indium phosphide (InP) (lattice constant 5.43A) are used as an intermediate layer between a silicon (Si) substrate and an indium phosphide (InP) epitaxial layer. Germanium (Ge) with a lattice constant intermediate to 87A) (lattice constant 5.6
46A) or germanium (Ge) to silicon (Si)
), a high-quality indium phosphide (InP) epitaxial layer is formed by using a layer formed by a mixed crystal with .

〈実施例〉 以下、図面を参照して本発明の実施例を詳細に説明する
<Example> Hereinafter, an example of the present invention will be described in detail with reference to the drawings.

第1図は本発明の一実施例の半導体ウェハの構造を示す
断面図である。
FIG. 1 is a sectional view showing the structure of a semiconductor wafer according to an embodiment of the present invention.

第1図において、1はシリコン(Si)単結晶基板であ
り、この基板l上に中間層2としてゲルマニウム(Ge
)層を膜厚1〜lOμmに形成し、このゲルマニウム(
Ge)中間層2の上にインジウム・リン(Ink)単結
晶層3を得るように構成している0 上記のシリコン(Si)基板1は、インジウム・リン(
InP)層におけるアンチフェーズの発生を防ぐ目的で
(100)面方向に2〜5オンした(100)方位を用
いる。またゲルマニウム(Ge)中間層2は分子線エピ
タキシ或いはクラスタイオンビーム法等により形成して
好適である。またゲルマニウム(Ge)中間層2の上に
インジウム・リン(InP)を成長させる方法としてM
OCVD 、ハライドVPE等を用いて好適である。
In FIG. 1, reference numeral 1 denotes a silicon (Si) single crystal substrate, and an intermediate layer 2 made of germanium (Ge) is formed on this substrate l.
) layer is formed to a thickness of 1 to 10 μm, and this germanium (
The above silicon (Si) substrate 1 is configured to obtain an indium phosphide (Ink) single crystal layer 3 on an indium phosphide (Ink) intermediate layer 2.
In order to prevent the occurrence of anti-phase in the (InP) layer, a (100) orientation with 2 to 5 degrees of orientation in the (100) plane direction is used. The germanium (Ge) intermediate layer 2 is preferably formed by molecular beam epitaxy, cluster ion beam method, or the like. In addition, M
OCVD, halide VPE, etc. are preferably used.

上記第1図に示したように、中間層2としてゲルマニウ
ム(Ge)単層を用いることにより、その上に良質なイ
ンジウム・リン(I n? )の結晶成長を行なうこと
が出来るが、第2図に示すように、ゲルマニウム−シリ
コン(Ge−Si)混晶からなる歪超格子層を中間層と
して用いる、あるいはゲルマニウム−シリコ:y(Ge
−Si)混晶からなる歪超格子層を介してゲルマニウム
層を積層することにより更に欠陥低減をはかることが出
来る。
As shown in FIG. 1 above, by using a germanium (Ge) single layer as the intermediate layer 2, high-quality indium phosphide (In?) crystal growth can be performed thereon. As shown in the figure, a strained superlattice layer made of germanium-silicon (Ge-Si) mixed crystal is used as an intermediate layer, or germanium-silico:y(Ge
-Si) Defects can be further reduced by stacking germanium layers via a strained superlattice layer made of mixed crystal.

即ち、第2図はより望ましい本発明の他の実施例の構造
を示す断面図であり、シリコン(Si)単結晶基板4と
インジウム・リン(InP)成長層6との間にゲルマニ
ウム(Ge )−シリコン(Si)系超格子層5を設け
ることにより、インジウム・す/(InP)成長層6と
の格子整合をはかり、良質の単結晶エピタキシャル層を
得るようにしたものである。
That is, FIG. 2 is a cross-sectional view showing the structure of another preferred embodiment of the present invention, in which germanium (Ge 2 ) is formed between the silicon (Si) single crystal substrate 4 and the indium phosphide (InP) growth layer 6 - By providing a silicon (Si)-based superlattice layer 5, lattice matching with the indium/su/(InP) growth layer 6 is achieved, and a high quality single crystal epitaxial layer is obtained.

この場合、上記ゲルマニウム(Ge)−シリコン(Si
)系超格子層5は例えばMOCVD法により形成したシ
リコ7(Si)とゲルマニウム(Ge )の極薄膜交互
成長層(超格子層)で構成しても良く、17’cゲルマ
ニウム(Ge)−シリコン(Si)混晶よりなる極薄膜
をゲルマニウム(Ge )の混晶比が順次増加するよう
に積層した組成傾斜成長層(超格子層)で構成して、格
子整合を行なうように成しても良い。
In this case, the germanium (Ge)-silicon (Si)
) system superlattice layer 5 may be composed of ultrathin film alternate growth layers (superlattice layer) of silicon 7 (Si) and germanium (Ge) formed by MOCVD method, for example, and 17'c germanium (Ge)-silicon. It is also possible to achieve lattice matching by constructing an ultra-thin film made of (Si) mixed crystal with compositionally graded growth layers (superlattice layers) stacked so that the germanium (Ge) mixed crystal ratio increases sequentially. good.

また、上記超格子層5上にゲルマニウム層を積層し、そ
の上にインジウム・リン(InP)成長層6を形成して
も良い。
Alternatively, a germanium layer may be laminated on the superlattice layer 5, and an indium phosphide (InP) growth layer 6 may be formed thereon.

なお、上記第1図及び第2図に示したように構成した場
合においても、インジウム−リン(Ink)とゲルマニ
ウム(Ge)との間には、まだ4襲程度の格子不整合が
残っているが、第3図に示すように、シリコン(Si)
単結晶基板7上に形成したゲルマニウム(Ge)中間層
8の上にInP/InGaP超格子層あるいはInP低
温低温成長7フルフアス第2の中間層9として形成する
ことにより、インジウム・リン(InP)との格子整合
をとり、比較的容易に高品質のインジウム・リン(In
P)エピタキシャル層10を得ることが出来る。
Note that even in the case of the configuration shown in Figures 1 and 2 above, there is still a lattice mismatch of about 4 bands between indium-phosphide (Ink) and germanium (Ge). However, as shown in Figure 3, silicon (Si)
By forming an InP/InGaP superlattice layer or an InP low-temperature low-temperature growth 7 full-length second intermediate layer 9 on the germanium (Ge) intermediate layer 8 formed on the single crystal substrate 7, indium phosphide (InP) and lattice matching and relatively easily produce high quality indium phosphide (In
P) An epitaxial layer 10 can be obtained.

〈発明の効果〉 以上に説明した本発明に係る中間層構造を用いることに
よりシリコy(Si)基板上に直接インジウム・リン(
InP)を形成することによっては得られない良質のイ
ンジウム・リン(InP)結晶を得ることができる。こ
のような半導体ウェハ及び成長技術は、大面積で低価格
のインジウム・リン(InP)基板の供給や機能分割型
デバイス等の複合化デバイス実現等に於いて非常に有用
となるものである。
<Effects of the Invention> By using the intermediate layer structure according to the present invention described above, indium phosphide (
Indium phosphide (InP) crystals of high quality, which cannot be obtained by forming InP), can be obtained. Such semiconductor wafers and growth techniques are extremely useful in supplying large-area, low-cost indium phosphide (InP) substrates and in realizing complex devices such as functionally divided devices.

【図面の簡単な説明】[Brief explanation of drawings]

第1図乃至第3図はそれぞれシリコン(Si)基板上に
形成したインジウム・リン(I nP)単結晶ウェハの
実施例を示す断面図である。 1.4.7・・・シリコ/(Si)単結晶基板、2゜8
・・・ゲルマニウム(Ge)中間層、3,6.10・・
・インジウム・リン(Ink)成長層、5・・・ゲルマ
ニウム(Ge )−シリコン(Si)系超格子層、9・
・・InP−InGaP系超格子層。
1 to 3 are cross-sectional views showing examples of indium phosphide (InP) single crystal wafers formed on silicon (Si) substrates, respectively. 1.4.7...Silico/(Si) single crystal substrate, 2°8
...Germanium (Ge) intermediate layer, 3,6.10...
・Indium phosphide (Ink) growth layer, 5... germanium (Ge)-silicon (Si) based superlattice layer, 9.
...InP-InGaP superlattice layer.

Claims (1)

【特許請求の範囲】[Claims] 1、シリコン(Si)基板とインジウム・リン(InP
)エピタキシャル層との間に、ゲルマニウム(Ge)ま
たはゲルマニウム−シリコン(Ge−Si)系の混晶か
らなる中間層を有してなることを特徴とする半導体ウェ
ハ。
1. Silicon (Si) substrate and indium phosphide (InP)
) A semiconductor wafer comprising an intermediate layer made of germanium (Ge) or germanium-silicon (Ge-Si) based mixed crystal between an epitaxial layer.
JP6812186A 1986-03-24 1986-03-24 Semiconductor wafer Pending JPS62222626A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6812186A JPS62222626A (en) 1986-03-24 1986-03-24 Semiconductor wafer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6812186A JPS62222626A (en) 1986-03-24 1986-03-24 Semiconductor wafer

Publications (1)

Publication Number Publication Date
JPS62222626A true JPS62222626A (en) 1987-09-30

Family

ID=13364594

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6812186A Pending JPS62222626A (en) 1986-03-24 1986-03-24 Semiconductor wafer

Country Status (1)

Country Link
JP (1) JPS62222626A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009177170A (en) * 2007-12-28 2009-08-06 Sumitomo Chemical Co Ltd Semiconductor substrate and method of manufacturing the same, and electronic device
WO2019173630A1 (en) * 2018-03-09 2019-09-12 Atomera Incorporated Semiconductor device and method including compound semiconductor materials and an impurity and point defect blocking superlattice
US10468245B2 (en) 2018-03-09 2019-11-05 Atomera Incorporated Semiconductor device including compound semiconductor materials and an impurity and point defect blocking superlattice
US10727049B2 (en) 2018-03-09 2020-07-28 Atomera Incorporated Method for making a semiconductor device including compound semiconductor materials and an impurity and point defect blocking superlattice

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009177170A (en) * 2007-12-28 2009-08-06 Sumitomo Chemical Co Ltd Semiconductor substrate and method of manufacturing the same, and electronic device
WO2019173630A1 (en) * 2018-03-09 2019-09-12 Atomera Incorporated Semiconductor device and method including compound semiconductor materials and an impurity and point defect blocking superlattice
US10468245B2 (en) 2018-03-09 2019-11-05 Atomera Incorporated Semiconductor device including compound semiconductor materials and an impurity and point defect blocking superlattice
US10727049B2 (en) 2018-03-09 2020-07-28 Atomera Incorporated Method for making a semiconductor device including compound semiconductor materials and an impurity and point defect blocking superlattice
CN112005340A (en) * 2018-03-09 2020-11-27 阿托梅拉公司 Semiconductor device including compound semiconductor material and superlattice for blocking impurities and point defects, and method thereof

Similar Documents

Publication Publication Date Title
US9406506B2 (en) Lattice matched aspect ratio trapping to reduce defects in III-V layer directly grown on silicon
KR20010090165A (en) Semiconductor Device with Quantum dot buffer in heterojunction structures
US20140131722A1 (en) Dual phase gallium nitride material formation on (100) silicon
US4789421A (en) Gallium arsenide superlattice crystal grown on silicon substrate and method of growing such crystal
JPS62222626A (en) Semiconductor wafer
JPH02306680A (en) Optoelectronic integrated circuit device and manufacture thereof
JP2642645B2 (en) Method of manufacturing semiconductor substrate and method of manufacturing semiconductor device
EP0284437A2 (en) III - V Group compound crystal article and process for producing the same
JPS621225A (en) Semiconductor wafer
JP2002016009A (en) Method of manufacturing iii nitride semiconductor single- crystal, and method for using the iii nitride single- crystal semiconductor
JPH03247597A (en) Epitaxial growth method of iii-v compound semiconductor on silicon substrate
JP2880984B2 (en) Compound semiconductor substrate
JPS61189619A (en) Compound semiconductor device
JPS61189620A (en) Compound semiconductor device
JPS6066811A (en) Manufacture of compound semiconductor device
JPS63184320A (en) Semiconductor device
KR100425092B1 (en) method for fabricating silicon compliant substrate
US20220254633A1 (en) Semiconductor Layered Structure
JPH01238113A (en) Manufacture of semiconductor substrate
JPH0372680A (en) Semiconductor material, photoelectric integrated circuit element, and crystal growth method of material
JP3421234B2 (en) Semiconductor device and manufacturing method thereof
JPS59148321A (en) Method for crystal growth for three-dimensional integrated circuit
JP2599576B2 (en) Method for growing two-dimensional thin film of group III-V compound semiconductor
JPH0633224B2 (en) Method for epitaxial growth of compound semiconductor on heterogeneous substrate
JPS63239186A (en) Crystal article and its formation