JP2880984B2 - Compound semiconductor substrate - Google Patents

Compound semiconductor substrate

Info

Publication number
JP2880984B2
JP2880984B2 JP25664097A JP25664097A JP2880984B2 JP 2880984 B2 JP2880984 B2 JP 2880984B2 JP 25664097 A JP25664097 A JP 25664097A JP 25664097 A JP25664097 A JP 25664097A JP 2880984 B2 JP2880984 B2 JP 2880984B2
Authority
JP
Japan
Prior art keywords
compound semiconductor
layer
substrate
iii
inp
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP25664097A
Other languages
Japanese (ja)
Other versions
JPH10226600A (en
Inventor
章憲 関
文弘 厚主
淳 工藤
正義 木場
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Consejo Superior de Investigaciones Cientificas CSIC
Original Assignee
Consejo Superior de Investigaciones Cientificas CSIC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Consejo Superior de Investigaciones Cientificas CSIC filed Critical Consejo Superior de Investigaciones Cientificas CSIC
Priority to JP25664097A priority Critical patent/JP2880984B2/en
Publication of JPH10226600A publication Critical patent/JPH10226600A/en
Application granted granted Critical
Publication of JP2880984B2 publication Critical patent/JP2880984B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 【0001】 【発明の属する技術分野】本発明は基板上にIII−V
族化合物半導体層を形成してなる化合物半導体基板の改
良に関するものである。 【0002】 【従来の技術】近年、化合物半導体の薄膜結晶成長技術
の発展は著しく、半導体レーザー、太陽電池や2次元電
子ガスを利用した超高速デバイスなど様々な特徴デバイ
スが作製されている。しかしながら、これらのデバイス
は基板にIII−V族半導体基板を用いているため、非
常に高価なものとなり、また結晶成長の困難さから大面
積化を狙うことも困難である。そこで、安価で結晶性が
良く、大面積の基板が得られるIV族半導体基板上にI
II−V族化合物半導体を形成する技術が注目され、特
にSi基板上へのGaAsの薄膜結晶成長技術に関する
研究が盛んに行われるようになった。 【0003】Si基板上にGaAs薄膜を成長させる従
来技術としては、GaAsを最初低温で薄く成長させ、
更に昇温してGaAsを厚く成長させる2段階成長法
(特公昭61−70715)、Si基板とGaAsの中
間層にGeを用いる方法(IEEE Electron
Device Lett.EDL−2,169(19
81))、GaAsと格子定数の近い他のIII−V族
系化合物半導体との交互層を中間層に用いる方法(特公
昭60−12724)、中間層に歪超格子を用いる方法
(J.App.Phys.57,4578(198
5))等が提案され、FETや発光ダイオード、半導体
レーザー等が試作されている。 【0004】一方、GaAsに比べて電子のピーク速度
及び飽和速度が大きく、また熱伝導率も大きいIII−
V族化合物半導体にInPがあり、GaAsよりも高い
周波数で動作し、かつより高出力のマイクロ波電力増幅
素子が得られる可能性があるとして有望視されている。 【0005】 【発明が解決しようとする課題】しかしながら、基板上
にIII−V族化合物半導体を形成する場合には、大き
な格子不整や応力の影響を緩和できず、成長させるII
I−V族化合物半導体の結晶品質の低下を招いていた。
例えば、Si基板上にInP層を形成する場合には、格
子定数差が8.1%と大きいことから、表面モフォロジ
ーや結晶性の優れたInP層が得られなかった。 【0006】従って、本発明は、基板上に格子不整の大
きいIII−V族化合物半導体を形成した基板におい
て、表面モフォロジーや結晶品質の優れたIII−V族
化合物半導体層が得られる構造の化合物半導体基板を提
供することを目的とする。 【0007】 【課題を解決するための手段】上記目的を達成するため
に、本発明の化合物半導体基板は、基板と、前記基板上
に形成された中間層としての第1のIII−V族化合物
半導体層と、前記中間層上に形成された第2のIII−
V族化合物半導体層と、前記基板と前記中間層との間
に、前記第1のIII−V族化合物半導体層の成長温度
より低温で形成した第1の低温形成III−V族化合物
半導体層と、前記中間層と前記第2のIII−V族化合
物半導体層との間に、前記第2のIII−V族化合物半
導体層の成長温度より低温で形成した第2の低温形成I
II−V族化合物半導体層とを備えるように構成してい
る。 【0008】 【発明の実施の形態】図1は本発明の実施例における化
合物半導体基板の構造断面図を示す図であり、同図にお
いて1はSi基板、4は中間層としての低温形成GaA
s層、5は中間層としてのGaAs層、6は低温形成I
nP層、7はInP層である。 【0009】上記図1に示す構造を実現する一方法とし
て減圧MOCVD法を用いた。ここでは反応管内圧は1
00〜25Torrに減圧して用いているが、大気圧に
おいても形成は可能である。 【0010】図2は、上記図1に示した構造の基板の形
成手順を成長温度の時間依存性により表したものであ
る。 【0011】下地基板1としては、結晶成長に先立ちH
F溶液中で洗浄された4インチ形状のSi基板を用い、
1000℃にて10分程度AsH3雰囲気にて熱処理8
を行う。続いて、400℃に降温し、低温形成GaAs
中間層4を1000Å以下の層厚(100〜1000
Å)にて形成後、600℃まで昇温し、GaAs中間層
5を500〜10000Åの層厚にて形成した。更に引
き続き、目的とするInP層の形成に於いても400℃
にて1000Å以下の層厚の低温形成InP層6の形成
後、600℃にて必要とする層厚(0.5〜10μm)
のInP層7の形成を行った。 【0012】ここで用いた原料ガスの供給条件としては
GaAs層2形成時には、トリエチルガリウム(TE
G)とアルシン(AsH3)を用い、又、InP層3形
成時には、トリメチルインジウム(TMI)とホスフィ
ン(PH3)を用いた。夫々の供給量はTEGでは2.
5×10-5(モル分率)、TMIでは5.6×10
-5(モル分率)であり、AsH3とTEGの供給比は1
00,PH3とTMIでは70〜200であり、本原料
ガスをH2にて希釈することにより、反応管内総流量と
して、15l/minとした。 【0013】この図1で示した実施例に於ける各層材料
の格子定数はSiが5.431Å、GaAsが5.64
2Å、InPが5.868Åであり、基体であるSiと
III−V族化合物半導体であるInPとの格子定数の
ミスフィットが8.1%ある。従ってSi上に直接In
Pを成長させると表面が平坦な膜が得られなかったり、
転位が多数成長膜中に存在し結晶性の良好なものが得ら
れなかったりする。一方、GaAsの格子定数はSiと
InPの格子定数のほぼ中間にあり、Siと4.1%、
InPと4.0%の格子定数差になる。また、SiとG
aAsならびにGaAsとInPは互いになじみがよ
い。 【0014】結果として、本実施例に於ける全条件に於
いて、4インチSi基板全面に亘り、鏡面な(平坦性の
良好な)InP層が得られ、その層厚分布としては、±
10%以下という良好な均一性を有したInP層7が得
られた。又、光学顕微鏡による観察より、約8μm層厚
のInP層においてもクラックの発生は認められない。
このことは、InP層の残留応力が少ない結果に対応す
るものであり、比較的厚い層厚を必要とするデバイス
(例えばLED等)を形成するには非常に有利である。
更に、HBr+H3PO4(臭化水素+リン酸)溶液によ
るエッチングパターン形状により、シングルドメインな
InP単結晶層が4インチSi基板全面に於いて得られ
ていることを確認した。 【0015】このように本実施例により、前述の低応力
化に加え、平坦性に優れた化合物半導体基板が4インチ
Si基板上に形成が可能になった。 【0016】なお、本発明は上記実施例に限定されるも
のではなく、例えばIV族半導体基板としてGeを用い
ても良く、また中間層としてGaPを用い、その上にI
nP層を形成した構造となす等の種々の変形、拡張が可
能であることは言うまでもない。 【0017】 【発明の効果】以上のように、本発明は、基板上に、I
II−V族化合物半導体層を形成する際、組成の異なる
中間層を設け、基板と中間層及び中間層とIII−V族
化合物半導体層との間に中間層、III−V族化合物半
導体層よりもそれぞれ低温で形成した低温形成層を設け
ることによって、格子不整による格子歪みが緩和され、
かつ、残留応力が少ないIII−V族化合物半導体層が
形成できる。これによって、表面モフォロジーと結晶性
のよいIII−V族化合物半導体基板を得ることができ
る。
Description: BACKGROUND OF THE INVENTION [0001] 1. Field of the Invention
The present invention relates to an improvement of a compound semiconductor substrate having a group III compound semiconductor layer formed thereon. 2. Description of the Related Art In recent years, the technology for growing a thin film crystal of a compound semiconductor has been remarkably developed, and various characteristic devices such as a semiconductor laser, a solar cell, and an ultra-high-speed device using a two-dimensional electron gas have been manufactured. However, since these devices use a III-V semiconductor substrate as a substrate, they are very expensive, and it is difficult to increase the area due to the difficulty of crystal growth. Therefore, on a group IV semiconductor substrate which is inexpensive, has good crystallinity, and has a large area,
Attention has been paid to a technique for forming a II-V compound semiconductor, and in particular, research on a technique for growing a GaAs thin film crystal on a Si substrate has been actively conducted. As a conventional technique for growing a GaAs thin film on a Si substrate, GaAs is first grown thinly at a low temperature.
A two-step growth method for growing GaAs thicker by further raising the temperature (Japanese Patent Publication No. 61-70715), a method using Ge for the intermediate layer between the Si substrate and GaAs (IEEE Electron)
Device Lett. EDL-2, 169 (19
81)), a method using an alternating layer of GaAs and another III-V compound semiconductor having a similar lattice constant as the intermediate layer (Japanese Patent Publication No. 60-12724), a method using a strained superlattice in the intermediate layer (J. App. Phys. 57, 4578 (198
5)) and the like have been proposed, and FETs, light-emitting diodes, semiconductor lasers, and the like have been prototyped. On the other hand, compared with GaAs, the peak speed and saturation speed of electrons are higher and the thermal conductivity is higher.
It is promising that InP is a group V compound semiconductor, operates at a higher frequency than GaAs, and may provide a higher power microwave power amplifier. [0005] However, when a group III-V compound semiconductor is formed on a substrate, the influence of large lattice irregularities and stress cannot be reduced, and the II is grown.
This has led to a decrease in the crystal quality of the IV group compound semiconductor.
For example, when an InP layer is formed on a Si substrate, an InP layer having excellent surface morphology and crystallinity cannot be obtained because of a large lattice constant difference of 8.1%. Accordingly, the present invention provides a compound semiconductor having a structure in which a group III-V compound semiconductor layer having excellent surface morphology and crystal quality can be obtained on a substrate having a large lattice irregularity formed on the substrate. It is intended to provide a substrate. In order to achieve the above object, a compound semiconductor substrate according to the present invention comprises a substrate and a first III-V compound as an intermediate layer formed on the substrate. A semiconductor layer; and a second III- layer formed on the intermediate layer.
A first group III-V compound semiconductor layer formed at a temperature lower than a growth temperature of the first group III-V compound semiconductor between the substrate and the intermediate layer; A second low-temperature formation I formed between the intermediate layer and the second III-V compound semiconductor layer at a temperature lower than the growth temperature of the second III-V compound semiconductor layer.
And a group II-V compound semiconductor layer. FIG. 1 is a sectional view showing the structure of a compound semiconductor substrate according to an embodiment of the present invention. In FIG. 1, reference numeral 1 denotes a Si substrate, and 4 denotes GaAs formed at a low temperature as an intermediate layer.
s layer, 5 a GaAs layer as an intermediate layer, 6 a low temperature formation I
An nP layer 7 is an InP layer. As one method for realizing the structure shown in FIG. 1, a reduced pressure MOCVD method was used. Here, the internal pressure of the reaction tube is 1
Although the pressure is reduced to 00 to 25 Torr, it can be formed even at atmospheric pressure. FIG. 2 shows the procedure for forming the substrate having the structure shown in FIG. 1 described above in terms of the time dependence of the growth temperature. As the base substrate 1, H
Using a 4-inch Si substrate washed in an F solution,
Heat treatment at 1000 ° C for about 10 minutes in an AsH 3 atmosphere 8
I do. Subsequently, the temperature is lowered to 400 ° C.
The intermediate layer 4 has a thickness of 1000 ° or less (100 to 1000
After the formation in Å), the temperature was raised to 600 ° C., and the GaAs intermediate layer 5 was formed with a thickness of 500 to 10000Å. Further, the formation of the target InP layer was continued at 400 ° C.
After forming the low-temperature formed InP layer 6 having a thickness of 1000 ° or less, the required layer thickness (0.5 to 10 μm) at 600 ° C.
Was formed. The source gas used here is supplied under the conditions of triethylgallium (TE) when forming the GaAs layer 2.
G) and arsine (AsH 3 ), and when forming the InP layer 3, trimethylindium (TMI) and phosphine (PH 3 ) were used. Each supply amount is 2.
5 × 10 −5 (molar fraction), 5.6 × 10 5 in TMI
-5 (molar fraction), and the supply ratio of AsH 3 and TEG is 1
00, a PH 3 and 70 to 200 in TMI, by diluting the source gas with H 2, as a reaction tube total flow rate was set to 15l / min. In the embodiment shown in FIG. 1, the lattice constant of each layer material is 5.431 ° for Si and 5.64 for GaAs.
2Å and InP are 5.868Å, and the lattice constant misfit between Si as the base and InP as the III-V compound semiconductor is 8.1%. Therefore, In directly on Si
When P is grown, a film with a flat surface cannot be obtained,
Many dislocations are present in the grown film, and a crystal having good crystallinity cannot be obtained. On the other hand, the lattice constant of GaAs is approximately halfway between the lattice constants of Si and InP, and is 4.1%
A lattice constant difference of 4.0% from InP is obtained. Also, Si and G
aAs and GaAs and InP are well compatible with each other. As a result, under all the conditions in this embodiment, a mirror-finished (good flatness) InP layer was obtained over the entire surface of the 4-inch Si substrate, and the thickness distribution of the InP layer was ±
The InP layer 7 having a good uniformity of 10% or less was obtained. From the observation with an optical microscope, no cracks were observed in the InP layer having a thickness of about 8 μm.
This corresponds to the result that the residual stress of the InP layer is small, and is very advantageous for forming a device (for example, an LED or the like) requiring a relatively large layer thickness.
Further, it was confirmed that a single-domain InP single crystal layer was obtained over the entire surface of the 4-inch Si substrate by the etching pattern shape using the HBr + H 3 PO 4 (hydrogen bromide + phosphoric acid) solution. As described above, according to the present embodiment, a compound semiconductor substrate having excellent flatness can be formed on a 4-inch Si substrate in addition to the aforementioned reduction in stress. The present invention is not limited to the above embodiment. For example, Ge may be used as a group IV semiconductor substrate, GaP may be used as an intermediate layer, and
It goes without saying that various modifications and expansions such as a structure having an nP layer are possible. As described above, according to the present invention, I
When forming the II-V compound semiconductor layer, an intermediate layer having a different composition is provided, and the intermediate layer and the III-V compound semiconductor layer are disposed between the intermediate layer and the intermediate layer and the III-V compound semiconductor layer. Also, by providing a low-temperature formation layer formed at each low temperature, lattice distortion due to lattice irregularity is reduced,
In addition, a group III-V compound semiconductor layer having small residual stress can be formed. Thus, a group III-V compound semiconductor substrate having good surface morphology and crystallinity can be obtained.

【図面の簡単な説明】 【図1】本発明に係る実施例の模式的な断面を示す図で
ある。 【図2】図1に示す構造の化合物半導体基板を形成する
場合の成長温度の時間依存性を示す図である。 【符号の説明】 1 Si基板 2 GaAs中間層 3 目的とするInP層 4 低温形成GaAs層(中間層) 5 GaAs層(中間層) 6 低温形成InP層 7 InP層
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a diagram showing a schematic cross section of an embodiment according to the present invention. FIG. 2 is a diagram showing time dependence of a growth temperature when a compound semiconductor substrate having the structure shown in FIG. 1 is formed. [Description of Signs] 1 Si substrate 2 GaAs intermediate layer 3 Target InP layer 4 Low-temperature formed GaAs layer (intermediate layer) 5 GaAs layer (intermediate layer) 6 Low-temperature formed InP layer 7 InP layer

───────────────────────────────────────────────────── フロントページの続き (72)発明者 木場 正義 大阪府大阪市阿倍野区長池町22番22号 シャープ株式会社内 (56)参考文献 特開 昭63−108707(JP,A) 特開 昭61−26216(JP,A) (58)調査した分野(Int.Cl.6,DB名) C30B 28/00 - 35/00 H01L 21/205 ──────────────────────────────────────────────────続 き Continuation of the front page (72) Inventor Masayoshi Kiba 22-22 Nagaikecho, Abeno-ku, Osaka-shi, Osaka Inside Sharp Corporation (56) References JP-A-63-108707 (JP, A) JP-A-61- 26216 (JP, A) (58) Fields investigated (Int. Cl. 6 , DB name) C30B 28/00-35/00 H01L 21/205

Claims (1)

(57)【特許請求の範囲】 1.基板と、 前記基板上に形成された中間層としての第1のIII−
V族化合物半導体層と、 前記中間層上に形成された第2のIII−V族化合物半
導体層と、 前記基板と前記中間層との間に、前記第1のIII−V
族化合物半導体層の成長温度より低温で形成した第1の
低温形成III−V族化合物半導体層と、 前記中間層と前記第2のIII−V族化合物半導体層と
の間に、前記第2のIII−V族化合物半導体層の成長
温度より低温で形成した第2の低温形成III−V族化
合物半導体層とを備えることを特徴とする化合物半導体
基板。
(57) [Claims] A substrate, and a first III- as an intermediate layer formed on the substrate.
A group III-V compound semiconductor layer; a second group III-V compound semiconductor layer formed on the intermediate layer; and a first group III-V between the substrate and the intermediate layer.
A first low-temperature-formed III-V compound semiconductor layer formed at a temperature lower than the growth temperature of the group-III compound semiconductor layer, and the second layer formed between the intermediate layer and the second III-V compound semiconductor layer. A second III-V compound semiconductor layer formed at a lower temperature than the growth temperature of the III-V compound semiconductor layer.
JP25664097A 1987-05-13 1997-09-22 Compound semiconductor substrate Expired - Lifetime JP2880984B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25664097A JP2880984B2 (en) 1987-05-13 1997-09-22 Compound semiconductor substrate

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP62-117575 1987-05-13
JP11757587 1987-05-13
JP25664097A JP2880984B2 (en) 1987-05-13 1997-09-22 Compound semiconductor substrate

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP62169162A Division JPH0760790B2 (en) 1987-05-13 1987-07-06 Compound semiconductor substrate

Publications (2)

Publication Number Publication Date
JPH10226600A JPH10226600A (en) 1998-08-25
JP2880984B2 true JP2880984B2 (en) 1999-04-12

Family

ID=26455667

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25664097A Expired - Lifetime JP2880984B2 (en) 1987-05-13 1997-09-22 Compound semiconductor substrate

Country Status (1)

Country Link
JP (1) JP2880984B2 (en)

Also Published As

Publication number Publication date
JPH10226600A (en) 1998-08-25

Similar Documents

Publication Publication Date Title
US4876219A (en) Method of forming a heteroepitaxial semiconductor thin film using amorphous buffer layers
US5011550A (en) Laminated structure of compound semiconductors
JPH07307259A (en) Manufacture of compound semiconductor layer on silicon substrate
JPH11162847A (en) Semiconductor substrate and formation thereof
JPH0794420A (en) Manufacture of compound semiconductor crystal substrate
JP3147316B2 (en) Method for manufacturing semiconductor light emitting device
US7951694B2 (en) Semiconductor structure and method of manufacture of same
JP3196833B2 (en) Method of growing III-V compound semiconductor and method of manufacturing semiconductor light emitting device using this method
CN112397374A (en) Low threading dislocation density silicon-based gallium arsenide layer growth method based on nano-cavities
JPH0760791B2 (en) Compound semiconductor substrate
JP2925004B2 (en) Gallium nitride crystal growth method
JP2880984B2 (en) Compound semiconductor substrate
JP3350855B2 (en) Method for manufacturing group III nitride semiconductor substrate
JP2000150388A (en) Iii nitride semiconductor thin film and manufacture thereof
JP2004307253A (en) Method for manufacturing semiconductor substrate
JPH0760790B2 (en) Compound semiconductor substrate
KR20100063058A (en) Compound semiconductor epitaxial wafer and process for producing the same
JP2737748B2 (en) Compound semiconductor bonding method
JP2001126985A (en) Compound semiconductor substrate
JP2946280B2 (en) Semiconductor crystal growth method
JPS6066811A (en) Manufacture of compound semiconductor device
JP2004063635A (en) Method of manufacturing nitride semiconductor, semiconductor wafer, and semiconductor device
JPH0714785A (en) Semiconductor epitaxial substrate and production thereof
JPS621224A (en) Semiconductor element structure
JPH02156522A (en) Manufacture of semiconductor device

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term
FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 9

Free format text: PAYMENT UNTIL: 20080129