JPS59169151A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPS59169151A
JPS59169151A JP4309983A JP4309983A JPS59169151A JP S59169151 A JPS59169151 A JP S59169151A JP 4309983 A JP4309983 A JP 4309983A JP 4309983 A JP4309983 A JP 4309983A JP S59169151 A JPS59169151 A JP S59169151A
Authority
JP
Japan
Prior art keywords
insulating film
film
etching
faster
etching rate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4309983A
Other languages
Japanese (ja)
Other versions
JPH0563940B2 (en
Inventor
Riyouichi Hazuki
巴月 良一
Takahiko Moriya
守屋 孝彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP4309983A priority Critical patent/JPS59169151A/en
Publication of JPS59169151A publication Critical patent/JPS59169151A/en
Publication of JPH0563940B2 publication Critical patent/JPH0563940B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Drying Of Semiconductors (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Abstract

PURPOSE:To prevent the disconnection of wirings in a through hole by accelerating the etching velocity of an insulating film of upper layer faster than that of an insulating film of lower layer, and etching the film, thereby eliminating an ultrafine groove in a hole. CONSTITUTION:An oxidized silicon film 14 is formed as the first insulating film between aluminum wiring patterns 13, a nitrided silicon film 15 is formed as the second insulating film, and an oxidized silicon film 16 is formed as the third insulating film. With photoresist 17 as a mask it is etched under the etching velocity of the film 16 faster than that of the film 15 until the surface of the film 15 is exposed by a reactive ion etching method, and the film 15 is etched under the condition faster than the film 14. Then, a fine and deep groove is not produced in the hole. The resist 17 is removed, and aluminum wiring pattern 18 is formed. The coating property in the hole is very good, and the disconnection does not occur, and the reliability of the element can be improved.

Description

【発明の詳細な説明】 〔発明の属する技術分野〕 本発明は、半導体装置の製造方法に係わシ、特に配線パ
ターンを断線なく形成する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical field to which the invention pertains] The present invention relates to a method of manufacturing a semiconductor device, and more particularly to a method of forming a wiring pattern without disconnection.

〔従来技術とその問題点〕[Prior art and its problems]

従来、配線層間の絶縁膜に配線相互の接続のための開口
部(スルーホール)をつくる加工方法によれは第1図に
示しだ如く、例えばアルミニウム配線3上に被着した絶
縁膜4に開口部を形成する際、マスクパターンのずれに
より開口部はアルミニウム配線3からずれるため、開口
部の端で絶縁膜4には開口を作る時のオーバーエッチに
よす細くて深い溝ができる。この溝のため、2層目のア
ルミニウム配線層5を形成した場合、その形状は第1図
に示したように開口部の片側の側壁で薄くなるため、配
線の断線を生じやすく、素子製造の歩留、および信頼性
の低下を招く。
Conventionally, as shown in FIG. 1, a processing method for creating an opening (through hole) in an insulating film between wiring layers for interconnection between wirings has been used to form an opening in an insulating film 4 deposited on an aluminum wiring 3, for example. When forming the opening, the opening is displaced from the aluminum wiring 3 due to a shift in the mask pattern, so a narrow and deep groove is formed in the insulating film 4 at the end of the opening for over-etching when forming the opening. Because of this groove, when the second aluminum wiring layer 5 is formed, its shape becomes thinner on one side wall of the opening as shown in FIG. This results in a decrease in yield and reliability.

この配線の断線を防ぐためには、開口部に対応したマス
クパターンを形成する際のパターンの合わせずれを考慮
に入れ、配線巾を開口部の寸法より大きくする必要があ
る。しかし、この場合は配線巾が大きくなるため素予め
集積度が低下する。
In order to prevent this wiring breakage, it is necessary to take into consideration misalignment of patterns when forming a mask pattern corresponding to the opening, and to make the wiring width larger than the dimension of the opening. However, in this case, the wiring width becomes large, so that the degree of integration is initially reduced.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、素子の集積度を低下させることなく、
スルーホールでの配線の断線を防止することができ、素
子信頼性の向上をはかり得る半導体装置の製造方法を提
供することにある。
The object of the present invention is to
It is an object of the present invention to provide a method for manufacturing a semiconductor device that can prevent wiring breakage in through holes and improve device reliability.

〔発明の概要〕[Summary of the invention]

上記目的を達成するだめの本発明の特徴は、配線導体間
の凹部のみを第1の絶縁膜で埋めた後、その上に、第2
および第3の絶縁膜を形成し、開口部のエツチングに際
し、順次上層の絶縁膜のエツチング速度が−F層の絶縁
膜のエツチング速度より速いエツチング方法を用いて、
前記第3および第2の絶縁膜をエツチングし、開口部に
微細な溝を生じないようにしたことにある。
The feature of the present invention for achieving the above object is that after only the recesses between the wiring conductors are filled with the first insulating film, a second insulating film is placed on top of the first insulating film.
and a third insulating film, and when etching the opening, use an etching method in which the etching rate of the upper insulating film is faster than the etching rate of the -F layer insulating film,
The third and second insulating films are etched so that no fine grooves are formed in the openings.

〔発明の効果〕〔Effect of the invention〕

本発明によれば開口部のエツチングに際し、マスクパタ
ーンのずれがあっても、開口部に絶縁膜の微細な溝がで
きないことから開口部での2層目の配線の断1vllj
iを防止でき、素子信頼性の向上をはかり得る。また1
層目の配線巾を大きくする必要がないので集積度を低下
させることがなく、高密度集積回路の多層配線形成にお
けるスルーホール形成に極めて有効となる。
According to the present invention, even if there is a misalignment of the mask pattern when etching the opening, fine grooves in the insulating film are not formed in the opening, so the second layer wiring can be disconnected at the opening.
i can be prevented and device reliability can be improved. Also 1
Since there is no need to increase the wiring width of each layer, there is no reduction in the degree of integration, and this method is extremely effective for forming through holes in the formation of multilayer wiring in high-density integrated circuits.

〔発明の実施例〕[Embodiments of the invention]

第2図(a)から(f)は本発明の−≠施例を示す工程
断面図である。まず、(a)に示す如く、素子が形成さ
れたシリコン基板11上に絶縁膜として例えば酸化シリ
コン膜12を被着した後、必要な接続孔を開けて、との
孔も含め前記酸化シリコン膜12上に第1の配線導体を
例えばマグネトロンスパッタ法により厚ざ〜0.8μm
のアルミニウム膜を被着した後、エツチングマスクを形
成し例えばCCl4とC12との混合ガスを用いた反応
性イオンエッチ7り(RIE)法によりアルミニウム配
線パターン13を形成し、その後、該アルミニウム配線
パターン13表面上を含む全面上に第1の絶縁膜として
例えばSiH4とN20ガスとを用いたプラズマ気相成
長法により〜300℃の温度で酸化シリコン膜14を〜
0.8μmの厚さ形成する。
FIGS. 2(a) to 2(f) are process cross-sectional views showing −≠embodiments of the present invention. First, as shown in (a), after depositing, for example, a silicon oxide film 12 as an insulating film on a silicon substrate 11 on which an element is formed, necessary connection holes are opened, and the silicon oxide film including the holes is formed. A first wiring conductor is formed on 12 by, for example, magnetron sputtering to a thickness of ~0.8 μm.
After depositing an aluminum film of A silicon oxide film 14 is formed as a first insulating film on the entire surface including the surface of 13 by plasma vapor deposition using, for example, SiH4 and N20 gas at a temperature of ~300°C.
A thickness of 0.8 μm is formed.

次に、本発明者等が先に提案した反応性イオンエツチン
グ法を利用した絶縁層の平坦化法(%願昭55−130
754号、t¥f願昭55−150179号)を用いて
前記酸化シリコン膜14を平坦化する。即、ち、酸化シ
リコン膜14上に窒化シリコン膜を形成し、例えばCF
”4とHzとを用いた反応性イオン°エツチング法によ
り窒化シリコン膜をエツチングする際の平坦化現象を利
用して、酸化シリコン膜14を平坦化し、アルミニウム
配線層くクーン13の上部表面の酸化シリコン膜14が
除去される壕でこのエツチングを進めた状態を(b)に
示す。
Next, a method for planarizing the insulating layer using the reactive ion etching method previously proposed by the present inventors (1986-130) was proposed.
The silicon oxide film 14 is planarized using a silicon oxide film (No. 754, t¥f Application No. 55-150179). That is, a silicon nitride film is formed on the silicon oxide film 14, and a silicon nitride film is formed on the silicon oxide film 14.
Utilizing the flattening phenomenon when etching a silicon nitride film by the reactive ion etching method using 4 and Hz, the silicon oxide film 14 is flattened, and the upper surface of the aluminum wiring layer 13 is oxidized. (b) shows the state in which this etching has proceeded in the trench where the silicon film 14 is removed.

次に、第2の絶縁膜として例えば8 iH4とNHaガ
スとを用いたプラズマ気相成長法により〜300℃の温
度で窒化シリコン@15f〜0,2μm (7) Wさ
形成し、さらにその上に第3の絶縁膜として、゛例えば
第1の絶縁膜と同様にSiH4とN20ガスとを用いた
プラズマ気相成長法による酸化シリコン膜16を〜0,
8μmの厚さ形成した後、該酸化シリコン膜16上にマ
スクとして例えばホトレジスト】7を塗布後、バターニ
ングを行ない、エツチングマスクを形成した状態を(C
)に示す。(C)において、マスクパターンの開口部の
「1コはアルミニウムパターン13の配線巾と同一寸法
であるが、パターンの合わせずれのため、(C)に示し
た状態となる。
Next, as a second insulating film, silicon nitride @ 15f~0.2 μm (7) W is formed at a temperature of ~300°C by plasma vapor deposition using, for example, 8 iH4 and NHa gas, and then a As the third insulating film, for example, a silicon oxide film 16 formed by plasma vapor deposition using SiH4 and N20 gas, similar to the first insulating film, is
After forming the silicon oxide film 16 to a thickness of 8 μm, for example, a photoresist [7] is applied as a mask on the silicon oxide film 16, and buttering is performed to form the etching mask (C).
). In (C), one of the openings in the mask pattern has the same dimension as the wiring width of the aluminum pattern 13, but due to misalignment of the patterns, the state shown in (C) is obtained.

次に、(d)に示したように例えばCF4とHzとの混
合ガスを用いた反応性イオンエツチング法によシホトレ
ジスト17をマスクとして、開口部の酸化シリコン膜1
6をその下層の窒化シリコン膜15の表面が露出する壕
で、酸化シリコン膜16のエツチング速度が窒化シリコ
ン膜15のエンチング速度より速い条件でエツチングす
る。例えば、CF4流量を24 cc/min 、 H
2流量を15 cc/min 、圧力を1.33Pa、
高周波電力を150Wとした場合、酸化シリコン膜のエ
ツチング速度が〜4oo5.7m1nに対して窒化シリ
コン膜のエツチング速度は〜20 A/mi n と遅
いので、窒化シリコン膜150表面が露出した後は、は
とんどエツチングは進まないので(d)に示したように
なる。 −次いで、(e)に示したように、先はどと同
様、例えばCF4とH2との混合ガスを用いた反応性イ
オンエツチング法により、ホトレジスト17をマスクと
して、開口部の窒化シリコン膜15をアルミニウム配線
パターン130表面が露出するまで、窒化シリコン膜1
5のエツチング速度が酸化シリコン膜14のエツチング
速度より速い条件でエツチングする。例えば、CF4流
量を24 cc/ini n 、 H2流量を3 cc
/1nin 、圧力を1.33Pa、高周波電力を15
0Wとした場合、窒化シリコン膜のエツチング速度が〜
1000^/m l nに対して酸化シリコン膜のエツ
チング速度は〜450 A/minと遅く、またアルミ
ニウムは全くエツチングされ〃いので、アルミニウム配
線パターン13の表面が露出した後開口部での酸化シリ
コン膜14はほとんどエツチングきれず、(e)に示し
たように、アルミニウム配線パターン130表面と酸化
シリコン膜14の表面とはほぼ同一の高さになり、エツ
チングされた開口部には、第1図で示したような細くて
深い溝は生じない。
Next, as shown in (d), using the photoresist 17 as a mask, the silicon oxide film 1 in the opening is etched by reactive ion etching using, for example, a mixed gas of CF4 and Hz.
6 is etched in a trench where the surface of the underlying silicon nitride film 15 is exposed under conditions such that the etching rate of the silicon oxide film 16 is faster than the etching rate of the silicon nitride film 15. For example, if the CF4 flow rate is 24 cc/min, H
2 Flow rate: 15 cc/min, pressure: 1.33 Pa,
When the high frequency power is 150 W, the etching rate of the silicon nitride film is slower at ~20 A/min while the etching rate of the silicon oxide film is ~4oo5.7m1n, so after the surface of the silicon nitride film 150 is exposed, Since etching hardly progresses, the result is as shown in (d). - Next, as shown in (e), as before, the silicon nitride film 15 in the opening is etched using the photoresist 17 as a mask, using a reactive ion etching method using a mixed gas of CF4 and H2, for example. The silicon nitride film 1 is removed until the surface of the aluminum wiring pattern 130 is exposed.
Etching is performed under the conditions that the etching rate of No. 5 is faster than the etching rate of the silicon oxide film 14. For example, the CF4 flow rate is 24 cc/in, the H2 flow rate is 3 cc
/1 nin, pressure 1.33 Pa, high frequency power 15
When set to 0W, the etching rate of the silicon nitride film is ~
The etching rate of the silicon oxide film is as slow as ~450 A/min for 1000^/ml n, and since aluminum is not etched at all, the silicon oxide film is etched at the opening after the surface of the aluminum wiring pattern 13 is exposed. The film 14 is hardly etched, and as shown in FIG. Thin and deep grooves as shown in Figure 2 do not occur.

次いで、前記ホトレジスト17を除去した後、第2の配
線導体として、例えばマグネトロンスパッタ法ニよp厚
さ〜1μmのアルミニウム膜を被着した後、エツチング
マスクを形成し、例えばCC4’ 4とC12との混合
ガスを用いた反応性イオンエツチング法によシ、アルミ
ニウム配線パターン18を形成した状態を(f)に示す
。かくして形成はれたアルミニウム配線パターン18は
(f)からも判るように、第1の配線導体であるアルミ
ニウム配線パターン13との接続のために設けられた開
口部での被覆性は非常によく、開口部での断線はなく、
素子信頼性が向上することが判明した。
Next, after removing the photoresist 17, an aluminum film with a thickness of 1 μm to 1 μm is deposited as a second wiring conductor by, for example, magnetron sputtering, and an etching mask is formed to form, for example, CC4' 4 and C12. (f) shows the aluminum wiring pattern 18 formed by the reactive ion etching method using a mixed gas. As can be seen from (f), the thus formed aluminum wiring pattern 18 has very good coverage at the opening provided for connection with the aluminum wiring pattern 13, which is the first wiring conductor. There is no disconnection at the opening,
It was found that device reliability was improved.

〔発明の他の実施例〕 上記実施例では、第1のアルミニウム配線パターyの凹
部を埋め、かつそのアルミニウムパターンの上部表面を
露出して、第1の絶縁膜を形成する方法として、窒化シ
リコン膜の反応性イオンエツチングによる平坦化効果を
利用する場合について述べたが、他に、例えば、第1の
絶縁膜上にレジスト、オルガノシリケートガラス、高分
子樹脂膜等の有機膜を塗布して、前記第1の絶縁膜表面
をなだらかにした後、前記第1の絶縁膜と有機膜のエツ
チング速度がほぼ等しくなるエツチング方法により第1
の絶縁膜表面をエツチング除去してもよい。また、第1
の絶縁膜として、流動性高分子膜であるポリイミド樹脂
膜等を用い、その平坦な表向全体をエツチングしてアル
ミニウム配線パターンの表面を露出させる方法でもよい
[Other Embodiments of the Invention] In the above embodiments, silicon nitride is used as a method of filling the recesses of the first aluminum wiring pattern y and exposing the upper surface of the aluminum pattern to form the first insulating film. Although we have described the case where the flattening effect of the film is utilized by reactive ion etching, for example, it is also possible to apply an organic film such as a resist, organosilicate glass, or polymer resin film on the first insulating film. After smoothing the surface of the first insulating film, the first insulating film is etched using an etching method that makes the etching rate of the first insulating film and the organic film almost equal.
The surface of the insulating film may be removed by etching. Also, the first
Alternatively, a polyimide resin film, which is a fluid polymer film, may be used as the insulating film, and the entire flat surface thereof may be etched to expose the surface of the aluminum wiring pattern.

また、本実施例では、第1および第3の絶縁膜として酸
化シリコン膜、第2の絶縁膜として窒化シリコン膜を用
いた場合について説明した。即ちこの場合、第2の絶縁
膜の膜厚を薄くすることにより、配線間のキャパシタン
スを低くできるという利点がある。゛しかしながら、第
1.第2.および第3の絶縁膜の種類と組合わせは、実
施例に限られるのではなく、順次、上層の絶縁膜のエツ
チング速度が下層の絶縁膜のエツチング速度より速いエ
ツチング方法を用いることにより、本発明は有効となる
から、その絶縁膜の種類と組合わせは、エツチング方法
、エツチングガスおよびエツチング条件により任意に選
べることがわかる。また、反応性イオンエツチング法の
反応ガスとしては、CF4とH2との混合ガスの他に、
C2F6 、CaFs 、CF3Br等とH2との混合
ガスを用いることが出来、さらにH2の代わυにCHI
”3を用いてもよい。
Further, in this embodiment, a case has been described in which a silicon oxide film is used as the first and third insulating films, and a silicon nitride film is used as the second insulating film. That is, in this case, there is an advantage that the capacitance between wirings can be lowered by reducing the thickness of the second insulating film.゛However, first. Second. The types and combinations of the third insulating film are not limited to the embodiments, but the present invention can be achieved by sequentially using an etching method in which the etching rate of the upper insulating film is faster than the etching rate of the lower insulating film. is effective, so it can be seen that the type and combination of insulating films can be arbitrarily selected depending on the etching method, etching gas, and etching conditions. In addition to the mixed gas of CF4 and H2, as the reactive gas for the reactive ion etching method,
A mixed gas of C2F6, CaFs, CF3Br, etc. and H2 can be used, and CHI can be used instead of H2.
``3 may be used.

また、本実施例では、配線導体としてアルミニウム膜を
用いたが、Mo、W、Ptおよびそれらのシリサイド合
金膜でもよい。
Further, in this embodiment, an aluminum film is used as the wiring conductor, but it may also be a film of Mo, W, Pt, or a silicide alloy thereof.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の製造方法により製造された半導体装置の
断面図、第2図(a)〜(f)は本発明の一実施例を示
す工程断面図である。 1.11・・・シリコン基板、2.12・・・酸化7リ
コン膜、3.13・・・第1の配′m導体(アルミニウ
ム膜)、4・・・絶縁膜、5,18・・・第2の配線導
体(アルミニウム膜)、14・・・第1の絶縁膜(酸化
シリコン膜)、15・・・第2の絶縁膜(♀化シリコン
膜)、16・・・第3の絶縁膜(酸化シリコン膜)、1
7・・・ホトレジスト。 代理人 弁理士    則 近 憲 佑 (ほか1名)
第1図 ) 第2図 (α) CI/)+ Lt) 覧 2 宙 (e)
FIG. 1 is a sectional view of a semiconductor device manufactured by a conventional manufacturing method, and FIGS. 2(a) to 2(f) are process sectional views showing an embodiment of the present invention. 1.11... Silicon substrate, 2.12... Seven silicon oxide film, 3.13... First wiring conductor (aluminum film), 4... Insulating film, 5, 18...・Second wiring conductor (aluminum film), 14...first insulating film (silicon oxide film), 15...second insulating film (silicone oxide film), 16...third insulating film Film (silicon oxide film), 1
7...Photoresist. Agent Patent attorney Kensuke Chika (and 1 other person)
Figure 1) Figure 2 (α) CI/) + Lt) View 2 Air (e)

Claims (3)

【特許請求の範囲】[Claims] (1)第1の配線導体を形成した半導体基板上に第1の
配線導体の凹部を埋め、かつ第1の配線導体の上部表面
を露出する形に第1の絶縁膜を形成する工程と、この全
面に第2の絶縁膜を形成し、さらにこの第2の絶縁膜上
に第3の絶縁膜を形成する工程と、この第3の絶縁膜上
に選択的にマスクを形成した後、前記第3の絶縁膜のエ
ツチング速度が前記第2の絶縁膜のエツチング速度より
速いエツチング方法を用いて前記第3の絶縁膜をエツチ
ングする工程と、前記第2の絶縁膜のエツチング速度が
前記第1の絶縁膜のエツチング速度より速いエツチング
方法を用いて前記第2の絶縁膜のエツチングを行ない所
定領域に接続窓を形成し、前記マスクを除去した後、第
2の配線導体を形成する工程とを含むことを特徴とする
半導体装置の製造方法。
(1) forming a first insulating film on the semiconductor substrate on which the first wiring conductor is formed, filling the recess of the first wiring conductor and exposing the upper surface of the first wiring conductor; After forming a second insulating film on this entire surface and further forming a third insulating film on this second insulating film, and selectively forming a mask on this third insulating film, etching the third insulating film using an etching method in which the etching rate of the third insulating film is faster than the etching rate of the second insulating film; etching the second insulating film using an etching method faster than the etching rate of the insulating film to form a connection window in a predetermined region, removing the mask, and then forming a second wiring conductor. A method of manufacturing a semiconductor device, comprising:
(2)前記第1および第3の絶縁膜として、酸化シリコ
ン膜を用い、前記第2の絶縁膜として、窒化シリコン膜
を用いたことを特徴とする特許求の範囲第1項記載の半
導体装置の製造方法。
(2) The semiconductor device according to claim 1, wherein a silicon oxide film is used as the first and third insulating films, and a silicon nitride film is used as the second insulating film. manufacturing method.
(3)前記第3の絶縁膜のエツチング速度が前記第2の
絶縁膜のエツチング速度よシ速いエツチング方法、およ
び前記第2の絶縁膜のエツチング速度が前記第1の絶縁
膜のエツチング速度よジ速いエツチング方法として、反
応性イオンエツチング法を用いたことを特徴とする前記
特許請求の範囲第1項記載の半導体装置の製造方法。
(3) An etching method in which the etching rate of the third insulating film is faster than the etching rate of the second insulating film, and the etching rate of the second insulating film is faster than the etching rate of the first insulating film. 2. The method of manufacturing a semiconductor device according to claim 1, wherein a reactive ion etching method is used as the fast etching method.
JP4309983A 1983-03-17 1983-03-17 Manufacture of semiconductor device Granted JPS59169151A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4309983A JPS59169151A (en) 1983-03-17 1983-03-17 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4309983A JPS59169151A (en) 1983-03-17 1983-03-17 Manufacture of semiconductor device

Publications (2)

Publication Number Publication Date
JPS59169151A true JPS59169151A (en) 1984-09-25
JPH0563940B2 JPH0563940B2 (en) 1993-09-13

Family

ID=12654385

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4309983A Granted JPS59169151A (en) 1983-03-17 1983-03-17 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPS59169151A (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6212130A (en) * 1985-07-10 1987-01-21 Sony Corp Manufacture of semiconductor device
JPS6267825A (en) * 1985-09-20 1987-03-27 フィリップス エレクトロニクス ネムローゼ フェンノートシャップ Flattening method for surface of semiconductor device
JPS62102544A (en) * 1985-10-28 1987-05-13 インタ−ナショナル ビジネス マシ−ンズ コ−ポレ−ション Formation of multilayer metal/insulator structure
JPS62176147A (en) * 1985-10-03 1987-08-01 ビュル エス.アー. Method for forming multilayer metal wiring network for mutual connection between components ofhigh density integrated circuit and integrated circuit formed by the method
JPS62265724A (en) * 1986-03-27 1987-11-18 ゼネラル・エレクトリツク・カンパニイ Method of forming via aperture without frame by employing dielectric etching stopper
JPS63119534A (en) * 1986-11-08 1988-05-24 Mitsubishi Electric Corp Manufacture of semiconductor device
JPH0276233A (en) * 1988-09-12 1990-03-15 Hitachi Ltd Semiconductor integrated circuit
US4966870A (en) * 1988-04-14 1990-10-30 International Business Machines Corporation Method for making borderless contacts
JPH03154331A (en) * 1989-10-31 1991-07-02 Internatl Business Mach Corp <Ibm> Formation of conducting layer
US5141897A (en) * 1990-03-23 1992-08-25 At&T Bell Laboratories Method of making integrated circuit interconnection
US5286674A (en) * 1992-03-02 1994-02-15 Motorola, Inc. Method for forming a via structure and semiconductor device having the same
JPH09115888A (en) * 1995-10-13 1997-05-02 Nec Corp Manufacture of semiconductor device
US5702981A (en) * 1995-09-29 1997-12-30 Maniar; Papu D. Method for forming a via in a semiconductor device
JP2000077526A (en) * 1998-08-27 2000-03-14 Samsung Electronics Co Ltd Contact hole formation method for semiconductor element
JP2000294631A (en) * 1999-04-05 2000-10-20 Mitsubishi Electric Corp Semiconductor device and manufacture of the same
US6768898B2 (en) 1998-11-20 2004-07-27 Murata Manufacturing Co., Ltd. Composite high frequency component and mobile communication apparatus including the same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5135292A (en) * 1974-09-20 1976-03-25 Matsushita Electric Ind Co Ltd Handotaisochi oyobi sonoseizohoho
JPS5731155A (en) * 1980-07-31 1982-02-19 Fujitsu Ltd Manufacture of semiconductor device
JPS588578A (en) * 1981-07-08 1983-01-18 Kazutami Saito Device for cleaning and circulating water in septic tank

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5135292A (en) * 1974-09-20 1976-03-25 Matsushita Electric Ind Co Ltd Handotaisochi oyobi sonoseizohoho
JPS5731155A (en) * 1980-07-31 1982-02-19 Fujitsu Ltd Manufacture of semiconductor device
JPS588578A (en) * 1981-07-08 1983-01-18 Kazutami Saito Device for cleaning and circulating water in septic tank

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6212130A (en) * 1985-07-10 1987-01-21 Sony Corp Manufacture of semiconductor device
JPS6267825A (en) * 1985-09-20 1987-03-27 フィリップス エレクトロニクス ネムローゼ フェンノートシャップ Flattening method for surface of semiconductor device
JPS62176147A (en) * 1985-10-03 1987-08-01 ビュル エス.アー. Method for forming multilayer metal wiring network for mutual connection between components ofhigh density integrated circuit and integrated circuit formed by the method
JPH0546983B2 (en) * 1985-10-28 1993-07-15 Ibm
JPS62102544A (en) * 1985-10-28 1987-05-13 インタ−ナショナル ビジネス マシ−ンズ コ−ポレ−ション Formation of multilayer metal/insulator structure
JPS62265724A (en) * 1986-03-27 1987-11-18 ゼネラル・エレクトリツク・カンパニイ Method of forming via aperture without frame by employing dielectric etching stopper
JPS63119534A (en) * 1986-11-08 1988-05-24 Mitsubishi Electric Corp Manufacture of semiconductor device
US4966870A (en) * 1988-04-14 1990-10-30 International Business Machines Corporation Method for making borderless contacts
JPH0276233A (en) * 1988-09-12 1990-03-15 Hitachi Ltd Semiconductor integrated circuit
JPH03154331A (en) * 1989-10-31 1991-07-02 Internatl Business Mach Corp <Ibm> Formation of conducting layer
US5141897A (en) * 1990-03-23 1992-08-25 At&T Bell Laboratories Method of making integrated circuit interconnection
US5286674A (en) * 1992-03-02 1994-02-15 Motorola, Inc. Method for forming a via structure and semiconductor device having the same
US5702981A (en) * 1995-09-29 1997-12-30 Maniar; Papu D. Method for forming a via in a semiconductor device
JPH09115888A (en) * 1995-10-13 1997-05-02 Nec Corp Manufacture of semiconductor device
JP2000077526A (en) * 1998-08-27 2000-03-14 Samsung Electronics Co Ltd Contact hole formation method for semiconductor element
US6768898B2 (en) 1998-11-20 2004-07-27 Murata Manufacturing Co., Ltd. Composite high frequency component and mobile communication apparatus including the same
JP2000294631A (en) * 1999-04-05 2000-10-20 Mitsubishi Electric Corp Semiconductor device and manufacture of the same

Also Published As

Publication number Publication date
JPH0563940B2 (en) 1993-09-13

Similar Documents

Publication Publication Date Title
US4617193A (en) Planar interconnect for integrated circuits
JPS59169151A (en) Manufacture of semiconductor device
JP2739853B2 (en) Semiconductor device manufacturing method and etching method
JPS60138940A (en) Manufacture of semiconductor device
JPH01503021A (en) Flattening method for forming through conductors in silicon wafers
KR900001834B1 (en) Method of manufacturing semiconductor device
US6376357B1 (en) Method for manufacturing a semiconductor device with voids in the insulation film between wirings
JPH08279488A (en) Fabrication of semiconductor device
JPH1041385A (en) Semiconductor device and manufacture thereof
JPH0259618B2 (en)
JP3413697B2 (en) Wiring formation method
JP3196847B2 (en) Wiring structure and method of manufacturing the same
JPH0766178A (en) Fabrication of semiconductor device
TW202141694A (en) Semiconductor structure and method of fabricating the same
JPS5966149A (en) Manufacture of semiconductor device
JP2959619B2 (en) Method for manufacturing semiconductor device
JPS58169938A (en) Manufacture of semiconductor device
JPS5928358A (en) Manufacture of semiconductor device
JPH0214525A (en) Manufacture of semiconductor integrated circuit
JPS61239646A (en) Formation of multilayer interconnection
JPS6039849A (en) Manufacture of semiconductor device
JPH0425159A (en) Forming method of electrode wiring
JPH02281622A (en) Manufacture of semiconductor device
JPS6043844A (en) Manufacture of semiconductor device
JPH03203325A (en) Manufacture of semiconductor device