JPS59154068A - Semiconductor memory device and manufacture thereof - Google Patents

Semiconductor memory device and manufacture thereof

Info

Publication number
JPS59154068A
JPS59154068A JP2810283A JP2810283A JPS59154068A JP S59154068 A JPS59154068 A JP S59154068A JP 2810283 A JP2810283 A JP 2810283A JP 2810283 A JP2810283 A JP 2810283A JP S59154068 A JPS59154068 A JP S59154068A
Authority
JP
Japan
Prior art keywords
dirt
pattern
gate electrode
electrode
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2810283A
Other languages
Japanese (ja)
Inventor
Kuniyoshi Yoshikawa
吉川 邦良
Yoshihide Nagakubo
長久保 吉秀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2810283A priority Critical patent/JPS59154068A/en
Publication of JPS59154068A publication Critical patent/JPS59154068A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/788Field effect transistors with field effect produced by an insulated gate with floating gate
    • H01L29/7881Programmable transistors with only two possible levels of programmation

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Non-Volatile Memory (AREA)

Abstract

PURPOSE:To increase the capacitance between the first and second gate electrodes and thus contrive to reduce the write voltage by a method wherein the first gate electrode is projected on an element isolation region in an almost vertical direction to a substrate, and the second gate electrode is provided on this first gate electrode via the second gate insulation film. CONSTITUTION:A PROM memory cell has a structure having the first gate electrode 21 which crosses a part of the element isolation region 13 via the first gate oxide film 20 and has the form that both ends extending on a field oxide film 12 are projecting in a vertical direction to the surface of the substrate 11 and the second gate electrode 23 laminated on said electrode 21 via the second gate oxide film 22. Thereby, since the surface area of the first gate electrode 21 to the second gate electrode 23 can be increased, the capacitance between the first and second gate electrodes 21 and 23 can be increased. Therefore, the write voltage into the second gate electrode 23 can be reduced.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は半導体記憶装置及びその製造方法に関し、特に
不揮発性半導体記憶装置及びその製造方法に係る。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a semiconductor memory device and a method for manufacturing the same, and more particularly to a nonvolatile semiconductor memory device and a method for manufacturing the same.

〔発明の技術的背景〕[Technical background of the invention]

不揮発性半導体記憶装置、例えばFROM(Progr
amable Read 0nly Memory )
としては従来、第1図及び第2図に示すメモリセル構造
を有するものが知られている。即ち、図中の1はP型半
導体基板であシ、この基板1には素子領域2を分離する
だめのフィールド酸化膜(素子分離領域)3が設けられ
ている。この素子領域2には互に電気的に分離されたn
増のソースドレイン領域4,5が設けられている。これ
らソース、ドレイン領域4,5間のチャンネル領域を含
む素子領域2部分上には第1ダート絶縁膜6を介し、て
例えば不純物ドーゾ多結晶シリコンからなる第1ダート
電極(フローティングゲート電極)7が設けられている
。更に、この第1パート電極7上には第2ダート絶縁膜
8を介して例えば不純物ドープ多結晶°シリコンからな
る第2ダート電極(コントロールゲート電極)9が積層
されている。なお、前記第1ダート電極7は両端がチャ
ンネル幅方向に延出してそれら両端の一部がフィールド
酸化膜3上にオーバーラツプしている。また、前記第1
ダート電極7の露出した側面及び第2ダート電極9周凹
には絶縁膜10が形成されている。こうしたFROMに
おいて、第2ダート電極9及び♂型ドレイン領域5に高
電圧を印加してチャンネル領域中で生成されたホットキ
ャリアを第1ダート絶縁膜6を通して第1ダート電極7
に注入、蓄積させ、しきい値電圧(V搗)を変化させる
ことにより、所定のメモリセルに記憶機能を保持させる
ものである。
Nonvolatile semiconductor memory devices, such as FROM (Progr.
amable Read Only Memory)
Conventionally, memory cells having the structure shown in FIGS. 1 and 2 are known. That is, 1 in the figure is a P-type semiconductor substrate, and this substrate 1 is provided with a field oxide film (element isolation region) 3 for isolating element regions 2. As shown in FIG. This element region 2 has n
Additional source and drain regions 4, 5 are provided. A first dirt electrode (floating gate electrode) 7 made of, for example, impurity-doped polycrystalline silicon is provided on a portion of the device region 2 including the channel region between these source and drain regions 4 and 5 via a first dirt insulating film 6. It is provided. Furthermore, a second dirt electrode (control gate electrode) 9 made of, for example, impurity-doped polycrystalline silicon is laminated on the first part electrode 7 with a second dirt insulating film 8 interposed therebetween. Note that both ends of the first dirt electrode 7 extend in the channel width direction, and parts of these ends overlap on the field oxide film 3. In addition, the first
An insulating film 10 is formed on the exposed side surface of the dirt electrode 7 and on the concave circumference of the second dirt electrode 9. In such a FROM, hot carriers generated in the channel region by applying a high voltage to the second dirt electrode 9 and the male drain region 5 are transferred to the first dirt electrode 7 through the first dirt insulating film 6.
By injecting and accumulating the ions and changing the threshold voltage (V), a predetermined memory cell retains its memory function.

ところで、前述した第1図及び第2図のFROMは、書
き込み時の電気的な回路を模式的に示すと、第3図の如
くなり、フローティングゲート電極7の電圧VFGとコ
ントロールゲート電極9の電圧VCCの間には下記式に
示すような関係がある。
By the way, in the above-mentioned FROM shown in FIGS. 1 and 2, the electrical circuit at the time of writing is shown schematically as shown in FIG. There is a relationship between VCC as shown in the following formula.

ここでC1は基板1と70−テインググート電極7の間
の容量、C2はフローティングゲート電極7とコントロ
ールゲート電極9の間の容量、C3はドレイン領域5と
フローティングゲート電極7とのオーバーラツプした部
分の容量・vDはドレイン電圧、を示す。
Here, C1 is the capacitance between the substrate 1 and the electrode 70, C2 is the capacitance between the floating gate electrode 7 and the control gate electrode 9, and C3 is the capacitance between the drain region 5 and the floating gate electrode 7. Capacitance/vD indicates drain voltage.

FROMの書き込みはフローティングゲート電極7の電
圧VFGで決まり、VFGを実際に制御するのはコント
ロールダート電極9の電圧VCOである。即ち、VFG
とVCC間の比例係数はC2/cTで、低電圧で書き込
めるようにするには簡単にはフローティングゲート電極
2とコントロールゲート電極9間の容量C2を大きくで
きればよい。
Writing into the FROM is determined by the voltage VFG of the floating gate electrode 7, and what actually controls VFG is the voltage VCO of the control dart electrode 9. That is, VFG
The proportionality coefficient between and VCC is C2/cT, and in order to be able to write at a low voltage, simply increasing the capacitance C2 between the floating gate electrode 2 and the control gate electrode 9 is sufficient.

〔背景技術の問題点〕[Problems with background technology]

しかしながら、従来技術では64にのEFROMデバイ
ス等でもコントロールゲート電極に加える、いわゆる書
き込み電圧は21Vと高電圧を要する。特に、将来の素
子の微細化と共に書き込み電圧は低電圧化が要求される
。そこで、前記ダート電極間の容量C2を大きくする一
手法として、第1図に示す第2ダート絶縁膜8を薄膜化
することが考えられるが、保持特性等の信頼性で現状以
上に薄膜化することは困難である。
However, in the prior art, a so-called write voltage, which is applied to the control gate electrode even in a 64 EFROM device, requires a high voltage of 21V. In particular, as devices become smaller in the future, lower write voltages will be required. Therefore, one possible method for increasing the capacitance C2 between the dirt electrodes is to make the second dirt insulating film 8 shown in FIG. That is difficult.

〔発明の目的〕[Purpose of the invention]

本発明は素子特性の劣化を招くことなく、第1、第2ダ
ート電極間の容量を大きくでき、ひいては書き込み電圧
の低減化を達成した半導体記憶装置及びその製造方法を
提供しようとするものである。
The present invention aims to provide a semiconductor memory device and a method for manufacturing the same, which can increase the capacitance between the first and second dart electrodes without causing deterioration of device characteristics, and further reduce the write voltage. .

〔発明の概要〕[Summary of the invention]

本発明は第1ダート電極を素子分離領域上で基板に対し
てほぼ垂直方向に突出させ、との第1ダート電極上に第
2ダート絶縁膜を介して第2ダート電極を設けることに
よって第1.第2ゲート電極間の容量を増大させ、書き
込み電圧の低減化を図ることを骨子とするものである。
In the present invention, the first dirt electrode is made to protrude substantially perpendicularly to the substrate on the element isolation region, and the second dirt electrode is provided on the first dirt electrode with a second dirt insulating film interposed therebetween. .. The main idea is to increase the capacitance between the second gate electrodes and reduce the write voltage.

即ち、本願用1の発明は素子分離領域で分離された半導
体基板の島状領域に2層以上のダート電極を備えた半導
体記憶装置において、第1ダート電極は前記島状領域の
一部を第1ダート絶縁膜を介して横切ると共に前記素子
分離領域上に延在した端部付近が基板表面に対してほぼ
垂直方向に突出した形状をなし、かつ該第1ダート電極
を含む領域上に第2ダート電極を第2ダート絶縁膜を介
して設けたことを特徴とするものである。
That is, the invention of Application No. 1 provides a semiconductor memory device including two or more layers of dirt electrodes in an island region of a semiconductor substrate separated by an element isolation region, in which a first dirt electrode covers a part of the island region. A second dirt electrode is formed on the region including the first dart electrode, and has a shape in which the vicinity of the end extending across the first dart insulating film and extending onto the element isolation region protrudes in a direction substantially perpendicular to the substrate surface. This is characterized in that the dirt electrode is provided via a second dirt insulating film.

上記ダート電極材料として−は、例えば不純物を含む多
結晶シリコン、不純物を含む非晶質シリコン、或いはモ
リブデンシリサイド、タングステンシリサイド、白金シ
リサイドなどの高融点金属シリサイド等を用いることが
できる。
As the dirt electrode material, for example, polycrystalline silicon containing impurities, amorphous silicon containing impurities, high melting point metal silicide such as molybdenum silicide, tungsten silicide, platinum silicide, etc. can be used.

また、本願用2の発明は素子分離領域で分離された半導
体基板の島状領域に2層以上のダート電極を備えた半導
体記憶装置の製造において、半導体基板の少なくとも島
状領域付近に位置する素子分離領域部分に絶縁材料から
なる厚い被膜パターンを形成する工程と、前記島状領域
に第1絶縁膜を介して被覆されると共に少なくとも端部
が前記被膜・母ターン状にオーバーラツプした第1ダー
ト電極となる電極材料パターンを形成する工程と、前記
被膜Aターンを除去する工程と、前記電極材料パターン
を含む全体に第2ゲート電極材料を該パターン周囲を形
成された第2絶縁膜を介して堆積する工程と、少なくと
も第2ダート電極材料膜から前記電極材料パターンまで
を順次選択的にエツチング除去し、前記素子分離領域上
の端部付近が基板表面に対してほぼ垂直方向に突出した
形状の第1ダート電極、第2ケ゛−ト絶縁膜及び第2ダ
ート電極を形成する工程とを具備したことを特徴とする
ものである。
Further, the invention of Application No. 2 provides a method for manufacturing a semiconductor memory device having two or more layers of dart electrodes in an island-like region of a semiconductor substrate separated by an element isolation region. a step of forming a thick film pattern made of an insulating material in the separation region, and a first dart electrode that is covered with the island-like region via a first insulating film and has at least an end overlapped with the film and the main pattern. a step of forming an electrode material pattern, a step of removing the coating A-turn, and depositing a second gate electrode material over the entire area including the electrode material pattern via a second insulating film formed around the pattern. and selectively etching away at least at least the second dirt electrode material film to the electrode material pattern to form a third electrode material having a shape in which the vicinity of the end portion above the element isolation region protrudes in a direction substantially perpendicular to the substrate surface. The method is characterized by comprising a step of forming a first dirt electrode, a second gate insulating film, and a second dirt electrode.

前記被膜・ぐターンは第1ダート電極となる電極材料パ
ターンの端部を基板表面に対してほぼ垂直方向に突出さ
せる役目をする。こうしたことから、被膜・ぐターンの
形成に際してはりアクティブイオンエツチング(RIE
 )等を用いた選択エツチングを行なうことにより、電
極材料パターンがオーバーラツプされる部分の側面を急
峻な形状にすることが望ましい。かがる被膜iRターン
の材料としては5to2.5i5N4或いはA7203
等の絶縁材料が用いられる。
The coating film serves to cause the end portion of the electrode material pattern, which will become the first dirt electrode, to protrude in a direction substantially perpendicular to the substrate surface. For this reason, active ion etching (RIE) is used when forming films and patterns.
) or the like to form a steep side surface of the portion where the electrode material patterns overlap. The material for the overcast coating iR turn is 5to2.5i5N4 or A7203.
Insulating materials such as

上記電極材料パターン周囲に第2絶縁膜を形成する工程
を、同パターンとして多結晶シリコンや非晶質シリコン
で形成した場合は熱酸化により行なうことができる。
The step of forming a second insulating film around the electrode material pattern can be performed by thermal oxidation when the same pattern is made of polycrystalline silicon or amorphous silicon.

〔発明の実施例〕[Embodiments of the invention]

次に、本発明の一実施例であるFROMのメモリセルを
図示する製造工程を併記して詳細に説明する。
Next, a manufacturing process for illustrating a FROM memory cell, which is an embodiment of the present invention, will be described in detail.

(1)まず、例えばP型シリコン基板11を選択−化等
によりフィールド酸化膜(素子分離領域)12を形成し
た後つづいて、全面に厚さ約1μmの5i02膜をCV
D法に堆積した後、これをRIEを用いたフォトエツチ
ング技術によりパターニングして素子領域13を含む周
辺が開口され、かつ開口内側面が急峻な形状の5i02
パターン15をフィールド酸化膜12上に形成した(第
4図(a)図示)。フィールド酸化膜12で分離された
基板11の島状領域(素子領域)13表−面に熱酸化に
より第1ダート酸化膜となる厚さ500Xの第1熱酸化
膜14を形成した。
(1) First, a field oxide film (element isolation region) 12 is formed by, for example, selective conversion of a P-type silicon substrate 11, and then a 5i02 film with a thickness of about 1 μm is deposited on the entire surface by CVD.
After being deposited using the D method, it is patterned using a photoetching technique using RIE to open the periphery including the element region 13, and form 5i02 with a steep inner surface of the opening.
A pattern 15 was formed on the field oxide film 12 (as shown in FIG. 4(a)). A first thermal oxide film 14 having a thickness of 500× and becoming a first dirt oxide film was formed by thermal oxidation on the surface of an island region (device region) 13 of the substrate 11 separated by a field oxide film 12.

(11)次いで、全面に例えば厚さ4000Xのリンド
ープ多結晶シリコン膜16を形成した後、該多結晶シリ
コン膜16上に写真蝕刻法によりレヅストパターン17
を形成した(第4図(b)図示)。
(11) Next, after forming a phosphorus-doped polycrystalline silicon film 16 with a thickness of, for example, 4000× on the entire surface, a resist pattern 17 is formed on the polycrystalline silicon film 16 by photolithography.
was formed (as shown in FIG. 4(b)).

つづいて、レジストパターン17をマスクとして多結晶
シリコン膜16を選択的にエツチングした。これにより
、第4図(c)に示す如く前記第1熱酸化膜14上及び
フィールド酸化膜12上の3iQ2 ノJ?ターン15
の一部にオーバーラツプすると共に、チャンネル幅方向
の長さが規定された多結晶シリコンパターン18が形成
された。
Subsequently, polycrystalline silicon film 16 was selectively etched using resist pattern 17 as a mask. As a result, as shown in FIG. 4(c), 3iQ2-J? turn 15
A polycrystalline silicon pattern 18 was formed which overlapped a portion of the pattern and had a defined length in the channel width direction.

(IIl)次いで、レジストパターン17を除去した後
\5to2 ハターン15をフッ化アンモニウム液等に
より除去した。ひきつづき、熱酸化処理を施して多結晶
シリコンパターン18周囲に厚さ800Xの第2熱酸化
膜19を形成した(第4図(d)図示)。
(IIl) Next, after removing the resist pattern 17, the \5to2 pattern 15 was removed using an ammonium fluoride solution or the like. Subsequently, a thermal oxidation treatment was performed to form a second thermal oxide film 19 with a thickness of 800X around the polycrystalline silicon pattern 18 (as shown in FIG. 4(d)).

(iV1次いで、全面に例えば厚さ4000Xのリンド
ープ多結晶シリコン膜を堆積して前記5to2・ぐター
ン15の除去箇所である多結晶シリコンパターン部分に
も十分回り込ませた。ひきつづき、この多結晶シリコン
膜の第2ダート電極形成部に写真蝕刻法によりレノス)
 1?ターン(図示せず)を形成した後、該レジストパ
ターンをマスクとしてリンドープ多結晶シリコン膜、第
2熱酸化膜、多結晶シリコン/、oターン及び第1熱酸
化膜をRIEにより選択的に除去した。これにより、基
板11側から第1ゲート酸化膜20、フィールド酸化膜
12付近の両端部が基板11表面に対してほぼ垂直方向
に突出した形状の第1ダート電極(フローティングゲー
ト電極)21、及び該ダート電極21上に第2ダート酸
化膜22を介して積層されると共に両端をフィールド酸
化膜12上のチャンネル幅方向に延在させた第2ケ゛−
ト電極(コントロールゲート電極)23が形成された。
(iV1) Next, a phosphorus-doped polycrystalline silicon film with a thickness of, for example, 4000X was deposited on the entire surface, and it was sufficiently wrapped around the polycrystalline silicon pattern portion where the 5to2/guturn 15 was removed.Subsequently, this polycrystalline silicon film was (Renos is applied to the second dart electrode forming part by photolithography)
1? After forming a turn (not shown), the phosphorus-doped polycrystalline silicon film, second thermal oxide film, polycrystalline silicon/, O-turn, and first thermal oxide film were selectively removed by RIE using the resist pattern as a mask. . As a result, from the substrate 11 side, the first gate oxide film 20, the first dart electrode (floating gate electrode) 21 having both ends protruding near the field oxide film 12 in a direction substantially perpendicular to the surface of the substrate 11, and the first dirt electrode (floating gate electrode) 21 are formed. A second cage is laminated on the dirt electrode 21 with a second dirt oxide film 22 interposed therebetween, and has both ends extending in the channel width direction on the field oxide film 12.
A gate electrode (control gate electrode) 23 was formed.

ひきつづき、レジストパターンを除去した後、第2ダー
ト電極23及びフィールド酸化膜12をマスクとしてn
型不純物、例えば砒素をイオン注入し、活性化、拡散を
行なって討型のソース、ドレイン領域24゜25を形成
しFROMのメモリセルを製造した(第4図(e)及び
第5図図示)。なお、第5図は第4〃も′平面図である
Subsequently, after removing the resist pattern, using the second dirt electrode 23 and field oxide film 12 as a mask, an n.
A type impurity such as arsenic was ion-implanted, activated, and diffused to form double-type source and drain regions 24 and 25, thereby manufacturing a FROM memory cell (as shown in FIGS. 4(e) and 5). . Incidentally, FIG. 5 is a plan view of the fourth embodiment.

しかして、本発明のFROMのメモリセルは第4図(、
)及び第5図に示す如くシリコン基板11の素子領域1
3の一部を第1ダート酸化膜20を介して横切シ、フィ
ールド酸化膜12に延在する両端部が基板11表面に対
して垂直方向に突出した形状の第1ダート電極21と、
この第1ダート電極21上に第2ダート酸化膜22を介
して積層された第2ダート電極23とを備えた構造にな
っている。しかるに、第1図図示の従来のメモリセルに
比べて第2ケ゛−ト電極23に対する第1ケ゛−ト電極
21の赤面積を大きくできるので、第1.第2ダート電
極21.23間の容量を増大できる。事実、本実施例で
の容量を02′とし、従来構造の第1.第2ケ゛−ト電
極間の容量を02とした場合、C2’ # 1.7 C
2’となり、従来に比べて容量を増大できる。したがっ
て、第2ダート電極23への書き込み電圧を低減でき、
ひいては微細化に対応して低電圧化できる。しかも、従
来構造と同等の容量にする場合には、フローティングゲ
ート電極21の面積縮小化が可能となシ、ひいては素子
(メモリセル)の微細化を達成できる。
Therefore, the memory cell of the FROM of the present invention is shown in FIG.
) and the element region 1 of the silicon substrate 11 as shown in FIG.
a first dirt electrode 21 having a shape in which both ends thereof protrude perpendicularly to the surface of the substrate 11;
The structure includes a second dirt electrode 23 laminated on the first dirt electrode 21 with a second dirt oxide film 22 interposed therebetween. However, compared to the conventional memory cell shown in FIG. 1, the red area of the first gate electrode 21 relative to the second gate electrode 23 can be increased. The capacitance between the second dart electrodes 21 and 23 can be increased. In fact, the capacitance in this embodiment is 02', and the first . When the capacitance between the second gate electrode is 02, C2'# 1.7 C
2', and the capacity can be increased compared to the conventional one. Therefore, the write voltage to the second dart electrode 23 can be reduced,
In turn, it is possible to lower the voltage in response to miniaturization. Furthermore, when the capacitance is the same as that of the conventional structure, it is possible to reduce the area of the floating gate electrode 21, and further miniaturize the element (memory cell).

また、本発明によれば第1.第2ダート電極21.23
間の容量を増大させるために、それら電極21.23間
の第2ケ゛−ト酸化膜22を= 薄膜化する必要がないので、耐圧低下を回避できる。
Further, according to the present invention, the first. 2nd dart electrode 21.23
Since it is not necessary to make the second gate oxide film 22 between the electrodes 21 and 23 thinner in order to increase the capacitance between them, a decrease in breakdown voltage can be avoided.

更に本発明方法によれば、フィールド酸化膜12上に厚
い5i02パターン15を形成し、この・やターン15
上にオーバーラツプするように第1ダート電極となる電
極材料パターン弓8を形成し、その後sto’2パター
ン15の除去、該電極パターン18のパターニングによ
りフィールド酸化膜12上の両端部が基板11表面に対
してほぼ垂直方向に突出した表面積の大きい第1ダート
電極21を簡単に形成できる。しかも、5i02パター
ン(被膜パターン)15の膜厚を変化することにより、
フィールド酸化膜上の第1ケ゛−ト電極端部の突出高さ
を任意に調節でき、ひいては第1.第2ダート電極21
.23間の容量を簡単に制御できる。
Furthermore, according to the method of the present invention, a thick 5i02 pattern 15 is formed on the field oxide film 12, and the thick turn 15 is formed on the field oxide film 12.
An electrode material pattern arch 8 that will become a first dirt electrode is formed so as to overlap thereon, and then the sto'2 pattern 15 is removed and the electrode pattern 18 is patterned so that both ends of the field oxide film 12 are brought to the surface of the substrate 11. The first dirt electrode 21 having a large surface area and protruding in a substantially perpendicular direction can be easily formed. Moreover, by changing the film thickness of the 5i02 pattern (coating pattern) 15,
The protruding height of the end of the first gate electrode on the field oxide film can be adjusted arbitrarily, and the height of the first gate electrode end can be adjusted as desired. Second dirt electrode 21
.. Capacity between 23 can be easily controlled.

なお、上記実施例では第2ケ゛−ト絶縁膜の材料として
リンドープ多結晶シリコンからなる第1ダート電極の熱
酸化によシ形成された熱酸化膜を用いたが、CVD−8
i02膜を用いてもよい。
In the above embodiment, a thermal oxide film formed by thermal oxidation of the first dirt electrode made of phosphorus-doped polycrystalline silicon was used as the material for the second gate insulating film, but CVD-8
An i02 film may also be used.

〔発明の効果〕〔Effect of the invention〕

以上詳述した如く、本発明によれば素子特性の劣化を招
くことなく、第1.第2ダート電極間の容量を大きくで
き、ひいては書き込み電圧の低減化を達成した半導体記
憶装置並びにかかる半導体記憶装置を簡単に製造し得る
方法を提供できる。
As described in detail above, according to the present invention, the first. It is possible to provide a semiconductor memory device in which the capacitance between the second dart electrodes can be increased and a write voltage can be reduced, as well as a method for easily manufacturing such a semiconductor memory device.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来のFROMのメモリセルを示す断面図、第
2図は第1図のメモリセルの2層ダート電極部をチャン
ネル長方向に切断した断面図、第3図はFROMのメモ
リセルの書き込み時の電気的な回路を模式的に示す概略
図、第4図(a)〜(e)は本発明の実施例におけるF
ROMのメモリセルの製造工程を示す断面図、第5図は
第4図(e)の平面図である。 11・・・P型シリコン基板、12・・・フィールド”
酸化膜(素子分離9域)、13・・・素子領域、15・
・・5i02パターン、18・・・多結晶シリコン1?
ターン、20・・・第1ダート酸化膜、21・・・第1
ダート電極(フローティングゲート電極)、22・・・
第2ダート酸化膜、23・・・第2ゲート電極(コント
ロールケ゛−ト電極)、24・・・n増ソース領域、2
5・・・n懺ドレイン領域。
Fig. 1 is a cross-sectional view of a conventional FROM memory cell, Fig. 2 is a cross-sectional view of the two-layer dirt electrode section of the memory cell of Fig. 1 cut in the channel length direction, and Fig. 3 is a cross-sectional view of a FROM memory cell. Schematic diagrams schematically showing electrical circuits during writing, FIGS. 4(a) to 4(e) are F in the embodiment of the present invention.
FIG. 5 is a cross-sectional view showing the manufacturing process of a ROM memory cell, and FIG. 5 is a plan view of FIG. 4(e). 11...P-type silicon substrate, 12...Field"
Oxide film (element isolation region 9), 13... element region, 15.
...5i02 pattern, 18...polycrystalline silicon 1?
turn, 20...first dirt oxide film, 21...first
Dart electrode (floating gate electrode), 22...
second dirt oxide film, 23... second gate electrode (control gate electrode), 24... n increased source region, 2
5...n drain region.

Claims (1)

【特許請求の範囲】 (1)  素子分離領域で分離された半導体基板の島状
領域に2層以上のゲート電極を備えた半導体記憶装置に
おいて、第1ゲート電極は前記島状領域の一部を第1ダ
ート絶縁膜を介して横切ると共に前記素子分離領域上に
延在した端部付近が基板表面に対してほぼ垂直方向に突
出した形状をなし、かつ該第1ゲート電極を含む領域上
に第2ケ゛−ト電極を第2ダート絶縁膜を介して設けた
ことを特徴とする半導体記憶装置。 (2)  素子分離領域で分離された半導体基板の島状
領域に2層以上のケ゛−ト電極を備えた半導体記憶装置
の製造において、半導体基板の少なくとも島状領域付近
に位置する素子分離領域部分に絶縁材料からなる厚い被
膜・ぐターンを形成する工程と、前記島状領域に第1絶
縁膜を介して被覆されると共に少なくとも端部が前記被
膜パターン状にオーバーラツプした第1ケ゛−ト電極と
なる電極材料パターンを形成する工程と、前記被膜パタ
ーンを除去する工程と、前記電極材料パターンを含む全
体に第2ケ゛−ト電極材料を該パターン周囲を形成され
た第2絶縁膜を介して堆積する工程と、少なくとも第、
2ケ゛−ト電極材料膜から前記電極材料・母ターンまで
を順次選択的にエツチング除去し、前記素子分離領域上
の端部付近が基板表面に対してほぼ垂直方向に突出した
形状の第1ダート電極、第2ダート酸化膜及び第2ダー
ト電極を形成する工程とを具備したことを特徴とする半
導体記憶装置の製造方法。 (3)絶縁材料が5i02又はSi3N4であることを
特徴とする特許請求の範囲第2項記載の半導体記憶装置
の製造方法。 、(4)電極材料・母ターンが不純物ドーグ多結晶シリ
コン又は不純物ドープ非晶質シリコンからなシ、該電極
材料パターンを熱酸化処理することによシ同パターン周
囲に第2絶縁膜を形成することを特徴とする特許請求の
範囲第2項記載の半導体記憶装置の製造方法。 (5)被膜パターンはりアクティブイオンエツチングを
用いた選択エツチングにより形成され、急峻な形状の側
面を有することを特徴とする特許請求の範囲第2項記載
の半導体記憶装置の製造方法。
[Claims] (1) In a semiconductor memory device having two or more layers of gate electrodes in an island region of a semiconductor substrate separated by an element isolation region, the first gate electrode covers a part of the island region. The vicinity of the end portion extending across the first dirt insulating film and extending onto the element isolation region has a shape protruding in a direction substantially perpendicular to the substrate surface, and a first dirt insulating film is formed on the region including the first gate electrode. A semiconductor memory device characterized in that a two-gate electrode is provided with a second dirt insulating film interposed therebetween. (2) In the manufacture of a semiconductor memory device having two or more layers of gate electrodes in an island region of a semiconductor substrate separated by an element isolation region, the element isolation region portion located at least near the island region of the semiconductor substrate a step of forming a thick film or pattern made of an insulating material on the island; and a first gate electrode that is covered with a first insulating film on the island-like region and has at least an end portion overlapping with the pattern of the film. a step of forming an electrode material pattern, a step of removing the film pattern, and a step of depositing a second gate electrode material over the entire area including the electrode material pattern through a second insulating film formed around the pattern. at least a step of
The parts from the two-gate electrode material film to the electrode material/mother turn are sequentially and selectively etched away to form a first dirt having a shape in which the vicinity of the end above the element isolation region protrudes in a direction substantially perpendicular to the substrate surface. A method for manufacturing a semiconductor memory device, comprising the steps of forming an electrode, a second dirt oxide film, and a second dirt electrode. (3) The method of manufacturing a semiconductor memory device according to claim 2, wherein the insulating material is 5i02 or Si3N4. (4) If the electrode material/mother turn is made of impurity-doped polycrystalline silicon or impurity-doped amorphous silicon, a second insulating film is formed around the pattern by thermally oxidizing the electrode material pattern. A method of manufacturing a semiconductor memory device according to claim 2, characterized in that: (5) The method of manufacturing a semiconductor memory device according to claim 2, wherein the film pattern is formed by selective etching using active ion etching and has steeply shaped side surfaces.
JP2810283A 1983-02-22 1983-02-22 Semiconductor memory device and manufacture thereof Pending JPS59154068A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2810283A JPS59154068A (en) 1983-02-22 1983-02-22 Semiconductor memory device and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2810283A JPS59154068A (en) 1983-02-22 1983-02-22 Semiconductor memory device and manufacture thereof

Publications (1)

Publication Number Publication Date
JPS59154068A true JPS59154068A (en) 1984-09-03

Family

ID=12239434

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2810283A Pending JPS59154068A (en) 1983-02-22 1983-02-22 Semiconductor memory device and manufacture thereof

Country Status (1)

Country Link
JP (1) JPS59154068A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62145872A (en) * 1985-12-17 1987-06-29 アドバンスト・マイクロ・デイバイシズ・インコ−ポレ−テツド Improved mos integrated circuit structure and formation of the same
JPS6317551A (en) * 1986-04-01 1988-01-25 テキサス インスツルメンツ インコ−ポレイテツド Integrated circuit and manufacture of the same

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5546502A (en) * 1978-09-28 1980-04-01 Toshiba Corp Nonvolatile semiconductor memory

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5546502A (en) * 1978-09-28 1980-04-01 Toshiba Corp Nonvolatile semiconductor memory

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62145872A (en) * 1985-12-17 1987-06-29 アドバンスト・マイクロ・デイバイシズ・インコ−ポレ−テツド Improved mos integrated circuit structure and formation of the same
JPS6317551A (en) * 1986-04-01 1988-01-25 テキサス インスツルメンツ インコ−ポレイテツド Integrated circuit and manufacture of the same

Similar Documents

Publication Publication Date Title
KR100375235B1 (en) Sonos flash memory device and a method for fabricating the same
US5872036A (en) Method of manufacturing a split-gate flash memory cell
JPH04211177A (en) Nonvolatile semiconductor storage device and its manufacture
JP3148976B2 (en) Flash memory device and method of manufacturing the same
KR970004772B1 (en) A semiconductor device and method of fabricating the same
JPH09223754A (en) Manufacture of flash eeprom cell
JPS59154068A (en) Semiconductor memory device and manufacture thereof
JP2004228575A (en) Eeprom cell and manufacturing method for the same
JPS6362382A (en) Floating gate nonvolatile semiconductor storage device and manufacture thereof
JP2564673B2 (en) Nonvolatile semiconductor memory device
JPH05251711A (en) Semiconductor integrated circuit and its manufacture
JPS59154067A (en) Semiconductor memory device and manufacture thereof
JPH04356969A (en) Nonvolatile semiconductor device
JPS59154070A (en) Manufacture of semiconductor memory device
KR0142642B1 (en) Nonvolatile Memory Cell Manufacturing Method
JP4292849B2 (en) Method for manufacturing nonvolatile semiconductor memory device
JPS59154069A (en) Semiconductor memory device and manufacture thereof
JPH08293564A (en) Semiconductor memory device and manufacture thereof
JPH0410564A (en) Semiconductor integrated circuit device and manufacture thereof
KR0136997B1 (en) Manufacturing method of non-volatile memory
JPH1065026A (en) Manufacturing method of nonvolatile semiconductor memory device
JPH0196963A (en) Manufacture of semiconductor nonvolatile memory
JPS62179769A (en) Semiconductor nonvolatile memory and manufacture thereof
JPS6153869B2 (en)
JPH01128472A (en) Semiconductor nonvolatile memory