JPS59154069A - Semiconductor memory device and manufacture thereof - Google Patents

Semiconductor memory device and manufacture thereof

Info

Publication number
JPS59154069A
JPS59154069A JP2810383A JP2810383A JPS59154069A JP S59154069 A JPS59154069 A JP S59154069A JP 2810383 A JP2810383 A JP 2810383A JP 2810383 A JP2810383 A JP 2810383A JP S59154069 A JPS59154069 A JP S59154069A
Authority
JP
Japan
Prior art keywords
electrode
dirt
electrode material
film
semiconductor memory
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2810383A
Other languages
Japanese (ja)
Inventor
Yoshihide Nagakubo
長久保 吉秀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2810383A priority Critical patent/JPS59154069A/en
Publication of JPS59154069A publication Critical patent/JPS59154069A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/788Field effect transistors with field effect produced by an insulated gate with floating gate
    • H01L29/7881Programmable transistors with only two possible levels of programmation

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Non-Volatile Memory (AREA)

Abstract

PURPOSE:To increase the capacitance between the first and second gate electrodes and thus reduce the write voltage into the second gate electrode by a method wherein the first gate electrode is so provided as to cross a part of an island region of a substrate, and the second gate electrode is so provided that a part thereof bites into the side surface of the first gate electrode. CONSTITUTION:A PROM memory cell has a structure having the first gate electrode 24 crossing a part on the element region 13 via the first gate oxide film 23 and having constrictions 19a and 19b, which direct inward, on side surfaces at both ends and the second gate electrode 26 which is laminated on said electrode 24 via the second gate oxide film 25 and has the form that a part bites into the constrictions 19a and 19b of said electrode 24 via said film 25. Thereby, since the surface area of the first gate electrode 24 to the second gate electrode 26 can be increased, the capacitance between the first and second gate electrodes 24 and 26 can be remarkably increased. Therefore, the write voltage into the second gate electrode 26 can be reduced.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は半導体記憶装置及びその製造方法に関し、特に
不揮発生半導体記憶装置及びその製造方法に係る。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a semiconductor memory device and a method for manufacturing the same, and more particularly to a non-volatile semiconductor memory device and a method for manufacturing the same.

〔発明の技術的背景〕[Technical background of the invention]

不揮発生半導体記憶装置、例えばFROM(Progr
amable Read 0nly Memory)と
しては従来、第1図及び第2図に示すメモリセル構造を
有するものが知られている。即ち、図中の1はp型半導
体基板であシ、この基板1には素子領域2を分離するた
めのフィールド酸化膜(素子分離領域)3が設けられて
いる。この素子領域2には互に電気的に分離されたn十
型のソース、ドレイン領域4,5が設けられている。こ
れらソース、ドレイン領域4,5間のチャンネル領域を
含む素子領域2部分上には第1ゲート絶縁膜6を介して
例えば不純物ドープ多結晶シリコンからなる第1ダート
電極(フローティングダート電極)7が設けられている
。更に、この第1ダート電極7上には第2ダート絶縁膜
8を介して例え°ば不純物ドーグ多結晶シリコンからな
る第2ダート電極(コントロールゲート電極)9が積層
されている。なお、前記第1ダート電極7は両端がチャ
ンネル幅方向に延出してそれら両端ノ一部がフィールド
酸化膜3上にオーバラップしている。また、前記第1ダ
ート電極7の露出した側面及び第2ダート電極9周囲に
は絶縁膜10が形成されている。こうしたFROMにお
いて、第2ダート電極9及びn十型ドレイン領域5に高
電圧を印加してチャンネル領域中で生成されたホットキ
ャリアを第1ダート絶縁膜6を通して第1ダート電極7
に注入、蓄積させ、しき(り値電圧(Vth)を変化さ
せることによシ、所定のメモリセルに記憶機能を保持さ
せるものである。
Non-volatile semiconductor memory devices, such as FROM (Progr.
2. Description of the Related Art As an available read only memory, one having a memory cell structure shown in FIGS. 1 and 2 is conventionally known. That is, 1 in the figure is a p-type semiconductor substrate, and this substrate 1 is provided with a field oxide film (element isolation region) 3 for isolating element regions 2. As shown in FIG. This element region 2 is provided with n+ type source and drain regions 4 and 5 which are electrically isolated from each other. A first dirt electrode (floating dirt electrode) 7 made of, for example, impurity-doped polycrystalline silicon is provided on a portion of the device region 2 including the channel region between these source and drain regions 4 and 5 via a first gate insulating film 6. It is being Further, a second dirt electrode (control gate electrode) 9 made of, for example, impurity doped polycrystalline silicon is laminated on the first dirt electrode 7 with a second dirt insulating film 8 interposed therebetween. Note that both ends of the first dirt electrode 7 extend in the channel width direction, and parts of these ends overlap on the field oxide film 3. Further, an insulating film 10 is formed on the exposed side surface of the first dirt electrode 7 and around the second dirt electrode 9. In such a FROM, hot carriers generated in the channel region by applying a high voltage to the second dirt electrode 9 and the n-type drain region 5 are transferred to the first dirt electrode 7 through the first dirt insulating film 6.
The memory function is maintained in a predetermined memory cell by injecting and accumulating the voltage and changing the threshold voltage (Vth).

ところで、前述した第1図及び第2図の、FROMは書
き込み時の電気的な回路を模式的に示すと、第3図の如
くなシ、フローティングゲ−ト電極7の電圧vFoとコ
ントロールゲ−ト電極9の電圧V。Gの間には下記式に
示すような関係がある。
By the way, when the FROM shown in FIGS. 1 and 2 mentioned above schematically shows the electrical circuit at the time of writing, the voltage vFo of the floating gate electrode 7 and the control gate are as shown in FIG. Voltage V of the top electrode 9. There is a relationship between G as shown in the following formula.

ここでC1は基板1と70−チイングケゝ−ト電極7の
間の容量、C2はフローティングゲート電極7とコント
ロールゲート電極9の間の容量、c、3はドレイン領域
5と70−ティンググー)を極7とのオーバラップした
部、分の容量、VDはドレイン電圧、を示す。
Here, C1 is the capacitance between the substrate 1 and the 70-channel electrode 7, C2 is the capacitance between the floating gate electrode 7 and the control gate electrode 9, and c, 3 is the capacitance between the drain region 5 and the 70-channel electrode 7. The capacitance of the overlapped portion with the pole 7 is shown, and VD is the drain voltage.

FROMの書き込みはフローティングゲート電極7の電
圧vFoで決まシ、vFGを実際に制御するのはコント
ロールff−)電極9の電圧■。。である。即ち、vF
oとVco間の比例係数はC2/cで、低電圧で書き込
めるようにするには簡単には70−テインググート電極
7とコントロールゲート電極9間の容量C2を大きくで
きればよい。
Writing into the FROM is determined by the voltage vFo of the floating gate electrode 7, and what actually controls vFG is the voltage of the control ff-) electrode 9. . It is. That is, vF
The proportionality coefficient between o and Vco is C2/c, and in order to be able to write at a low voltage, it is simply necessary to increase the capacitance C2 between the electrode 7 and the control gate electrode 9.

〔背景技術の問題点〕[Problems with background technology]

しかしながら、従来技術では64にのEFROMデバイ
ス等でもコントロールダート電極に加える、いわゆる書
き込み電圧は21Vと高電圧を要する。特に、将来の素
子の微細化と共に書き込み電圧は低電圧化が要求される
。そこで、前記ダート電極間の容量C2を大きくする一
手法として、第1図に示す第2ダート絶縁膜8を薄膜化
することが考えられるが、保持特性等の信頼性で現状以
上に薄膜化することは困難である。
However, in the prior art, the so-called write voltage applied to the control dart electrode even in the case of 64 EFROM devices requires a high voltage of 21V. In particular, as devices become smaller in the future, lower write voltages will be required. Therefore, one possible method for increasing the capacitance C2 between the dirt electrodes is to make the second dirt insulating film 8 shown in FIG. That is difficult.

〔発明の目的〕[Purpose of the invention]

本発明は素子特性の劣化を招くことなく、第1、第2ダ
ート電極間の容量を大きくでき、ひいては書き込み電圧
の低減化を達成した半導体記憶装置及びその製造方法を
提供しようとするものである。
The present invention aims to provide a semiconductor memory device and a method for manufacturing the same, which can increase the capacitance between the first and second dart electrodes without causing deterioration of device characteristics, and further reduce the write voltage. .

〔発明の概要〕[Summary of the invention]

本発明は第1ダート電極を半導体基板の島状領域の一部
を第1ダート絶縁膜を介して少なくとも横切るように設
け、かつ該ダート電極を含む領域上に第2ダート電極を
その一部が少なくとも第1ダート電極側面に喰い込むよ
うに第2ダート絶縁膜を介して設けることによって、第
1、第2ダート電極間の容量を増大させ、ひいては第2
ダート電極への書き込み電圧を低減せしめることを骨子
とするものでちる。
In the present invention, a first dirt electrode is provided so as to at least traverse a part of an island-like region of a semiconductor substrate via a first dirt insulating film, and a second dirt electrode is provided on a region including the dirt electrode so that a part of the island-like region of the semiconductor substrate is traversed. By providing the second dirt insulating film so as to bite into at least the side surface of the first dirt electrode, the capacitance between the first and second dirt electrodes is increased, and the second dirt electrode
The main idea is to reduce the write voltage to the dirt electrode.

すなわち、本願第1の発明は、素子分離領域で分離され
た半導体基板の島状領域に2層以上のケ゛−ト電極を備
えた半導体記憶装置において、第1ダート電極を前記島
状領域の一部を第1ダート酸化膜を介して少なくとも横
切るように設け、かつ該ダート電極を含む領域上に第2
ダート電極をその一部が少なくとも第1ダート電極側面
に喰い込むように第2ダート絶縁膜を介して積層したこ
とを特徴とするものである。
That is, the first invention of the present application provides a semiconductor memory device including two or more layers of gate electrodes in island-like regions of a semiconductor substrate separated by an element isolation region, in which a first dirt electrode is connected to one of the island-like regions. A second dirt electrode is provided at least across the first dirt oxide film, and a second dirt electrode is provided on the region including the dirt electrode.
The present invention is characterized in that the dirt electrodes are laminated with a second dirt insulating film interposed therebetween so that a part of the dirt electrodes bites into at least the side surface of the first dirt electrode.

上記ゲート電極の材料としては、例えば不純物ドーゾ多
結晶シリコン、不純物ドープ非晶質シリコン、或いはモ
リブデンシリサイド、タングステンシリサイド、タンタ
ルシリサイド、白金シリリイドなどの高融点金属硅化物
等を用いることができる。
As the material for the gate electrode, for example, impurity-doped polycrystalline silicon, impurity-doped amorphous silicon, or high melting point metal silicide such as molybdenum silicide, tungsten silicide, tantalum silicide, platinum silylide, etc. can be used.

上記第1ダート電極の形状は例えば少なくとも一端部の
側面に内側に向う細長状のくびれ部が形成された形状と
なっている。また、このくびれ部は一つに限らず、第1
ダート電極の側面にその厚さ方向に亘って複数設けても
よい。こうした第1ダート電極に第2ダート電極を第2
ダート絶縁膜を介して積層することにより、該第2ダー
ト電極の一部が該第1ダート電極のくびれ部に侵入し、
実効的な第1.第2ダート電極間の容量が飛躍的に向上
されることになる。
The shape of the first dart electrode is, for example, such that an elongated inwardly constricted portion is formed on the side surface of at least one end. In addition, this constriction is not limited to one, but the first
A plurality of electrodes may be provided on the side surface of the dart electrode in the thickness direction thereof. A second dirt electrode is attached to the first dirt electrode.
By stacking the dirt insulating film therebetween, a part of the second dirt electrode enters the constriction of the first dirt electrode,
Effective first. The capacitance between the second dart electrodes is dramatically improved.

また、本願第2の発明は素子分離領域によシ分離された
半導体基板の島状領域に2層以上のr−)電極を備えた
半導体記憶装置の製造において、前記島状領域上の第1
絶縁膜を含む全面に第1ダート電極となる第1層電極材
料膜を被着する工程と、この第1層電極材料膜上に昇華
性材料からなる被膜パターンを形成する工程と、全面に
第1ダート電極となる第2層電極材料膜を被着した後、
該電極材料膜上4′、Iマスク材を選択的に形成する工
程と、このマスク材を用いて第2層電極材料膜を選択的
にエツチングし、て前記被膜パターンの一部を露出させ
ると共に、端部が該被膜パターン上にオーバーラツプし
た第2層電極材料パターンを形成する工程と、前記被膜
パターンを昇華して除去した後、前記マスク材を用いて
前記第1層電極材料膜を選択的にエツチングすることに
よ如第1層電極材料パターン及び第2層電極材料パター
ンからなシ、端部側面に内側に向う細長状のくびれ部を
有する電極材料ノ々ターンを形成する工程と、この電極
材料・ぐターン周囲に第2絶縁膜を形成する工程と 第
2ダート電極材料膜を全面に堆積して、その一部を前記
電極材料・ぐターフのくびれ部に十分回り込ませる工程
と、少なくとも前記第2ダート電極材料膜から電極材料
ツクターンまでを順次選択的にエツチングして、端部側
面にくびれ部を有する第1ダート電極、及びこの第1ダ
ート電極上に第2ダート絶縁膜を介して積層され、一部
が該ダート電極のくびれ部に同第2ケ゛−ト絶縁膜を介
して喰い込んだ形状の第2ケ゛−ト電極を形成する工程
とを具備したことを特徴とするものである。
Further, the second invention of the present application provides a method for manufacturing a semiconductor memory device having two or more layers of r-) electrodes on an island region of a semiconductor substrate separated by an element isolation region.
A step of depositing a first layer electrode material film to become a first dirt electrode on the entire surface including the insulating film, a step of forming a film pattern made of a sublimable material on the first layer electrode material film, and a step of depositing a first layer electrode material film on the entire surface including the insulating film. 1 After depositing the second layer electrode material film that will become the dart electrode,
selectively forming an I mask material on the electrode material film 4', selectively etching the second layer electrode material film using this mask material, and exposing a part of the film pattern; , forming a second layer electrode material pattern whose end portions overlap the coating pattern; and after sublimating and removing the coating pattern, selectively removing the first layer electrode material film using the mask material; forming an electrode material no-turn having an inwardly elongated constriction on the side surface of the end from the first layer electrode material pattern and the second layer electrode material pattern by etching; a step of forming a second insulating film around the electrode material/gut; a step of depositing a second dirt electrode material film over the entire surface and sufficiently wrapping a portion of the second dirt electrode material film around the constriction of the electrode material/gut; A first dirt electrode having a constricted portion on the end side surface is formed by sequentially selectively etching the second dirt electrode material film to the electrode material cutter, and a second dirt insulating film is formed on the first dirt electrode. The method is characterized by comprising a step of forming a second gate electrode having a shape in which the dirt electrodes are laminated and a part of the dirt electrodes is dug into the constriction part of the dart electrode through the second gate insulating film. be.

上記昇華性材料からなる被膜・9ターンはその/eター
ンの昇華除去により第1ゲート牢極となる電極材料パタ
ーンの側面にくびれ部を形成するために用いられる。か
かる昇華性材料と1しては、例えばMO又はW等を挙げ
ることができる。
The nine turns of the coating made of the sublimable material are used to form a constricted portion on the side surface of the electrode material pattern that will become the first gate electrode by subliming and removing the /e turns. Examples of such sublimable materials include MO and W.

上記マスク材は被膜Aターイの昇華除去時においても残
置させる必要から耐熱性材料から形成することが望まし
い。かかる耐熱性材料としては、例えばSiO,5t6
N4.At206等を挙げることができる。
The mask material is desirably made of a heat-resistant material because it needs to remain even when the coating A is removed by sublimation. Such heat-resistant materials include, for example, SiO, 5t6
N4. At206 etc. can be mentioned.

また、第1ダート電極となる電極材料パターンを3層以
上の電極材料膜で形成すると共に、これら電極材料膜間
に夫々被膜パターンを介在させることによシ端部側面に
くびれ部をその厚さ方向に亘って2つ以上作られた第1
ダート電極を形成できる。
In addition, by forming the electrode material pattern that will become the first dart electrode with three or more layers of electrode material films, and interposing a film pattern between each of these electrode material films, a constricted portion is formed on the side surface of the end portion. The first one made in two or more directions
A dart electrode can be formed.

〔発明の実施例〕[Embodiments of the invention]

次に、本発明の一実施例であるFROMのメモリセルを
図示する製造工程を併記して詳細に説明する。
Next, a manufacturing process for illustrating a FROM memory cell, which is an embodiment of the present invention, will be described in detail.

(1)まず、例えばp型シリコン基板11を選択酸化等
によシフイールド酸化膜(素子分離領域)12を形成し
た後、フィールド酸化膜12で分離された基板11の島
状領域(素子領域)13表面に熱醸化により第1ダート
酸化膜となる厚さ500Xの第1熱酸化膜14を形成し
た。
(1) First, after forming a field oxide film (device isolation region) 12 on a p-type silicon substrate 11 by selective oxidation or the like, for example, an island region (device region) 13 of the substrate 11 separated by the field oxide film 12 is formed. A first thermal oxide film 14 having a thickness of 500×, which becomes a first dirt oxide film, was formed on the surface by thermal fermentation.

つづいて全面に例えば厚さ2000Xの第2層リンドー
プ多結晶シリコン膜15をCVD法によシ堆積し、更に
厚さ3000XのMo膜を蒸着した後、これをパターニ
ングして素子領域13を含む周辺がチャンネル長方向に
帯状に開口されたMO/′eターン16を形成した(第
4図(、)図示)。
Next, a second layer phosphorus-doped polycrystalline silicon film 15 with a thickness of 2000X, for example, is deposited on the entire surface by CVD, and a Mo film with a thickness of 3000X is further deposited, and this is patterned to form a periphery including the element region 13. MO/'e turns 16 were formed which were opened in a strip shape in the channel length direction (as shown in FIG. 4(a)).

(11)次いで、全面に例えば厚さ2000Xの第2層
リンドープ多結晶シリコン膜(図示せず)を堆積し、更
に全面に厚さ2000XのSiO□膜を堆積した後、S
iO2膜をフォトエツチング技術にヨ)ノ々ターニンク
シてS10□パターン(マスク材)17を形成した。つ
づいて、5i02パターン17をマスクとして第2層リ
ンドープ多結晶シリコン膜を例えばRIEによシ選択的
に除去し、Moパターン16の一部を露出させると共に
、両端部が該Moパターン16にオーバーラツプし、か
つチャンネル幅方向の長さが規定された第1層多結晶シ
リコンパターン20を形成した(第4図(b)図示)。
(11) Next, after depositing a second layer phosphorus-doped polycrystalline silicon film (not shown) with a thickness of 2000X on the entire surface, and further depositing a SiO□ film with a thickness of 2000X on the entire surface,
An S10□ pattern (mask material) 17 was formed by etching the iO2 film using photoetching technology. Subsequently, using the 5i02 pattern 17 as a mask, the second layer phosphorus-doped polycrystalline silicon film is selectively removed by, for example, RIE to expose a part of the Mo pattern 16 and to ensure that both ends overlap the Mo pattern 16. A first layer polycrystalline silicon pattern 20 having a defined length in the channel width direction was formed (as shown in FIG. 4(b)).

011)次いで、900℃の酸素雰囲気中で熱酸化処理
を施した。この時、第4図(c)に示す如くMoパター
ン16が酸化されてモリブデン酸化物として昇華され、
該Moノeターン16にオーバーラツプした第2層多結
晶シリコンパターン18部分下にくびれ部19g、19
bが形成された。
011) Next, thermal oxidation treatment was performed in an oxygen atmosphere at 900°C. At this time, as shown in FIG. 4(c), the Mo pattern 16 is oxidized and sublimated as molybdenum oxide,
Constricted portions 19g and 19 are formed below the portion of the second layer polycrystalline silicon pattern 18 that overlaps with the MO turn 16.
b was formed.

つづいて、5102パターン17をマスクとしてRIE
によシ第1層すンドーゾ多結晶シリコン膜15を選択的
に除去して第1層多結晶シリコンパターン20を形成し
た後、S+02パターン17を除去した(第4図(d)
及び第5図)。なお、第5図は第4図(d)の平面図で
ある。こうしたパターニングによシチャンネル長方向に
沿う側面に内側に向うくびれ部19h、19bを有する
第1、第1層多結晶シリコンパターン200、.1 B
からなる多結晶シリコンツクターフ21が形成された。
Next, RIE using 5102 pattern 17 as a mask.
After selectively removing the first layer polycrystalline silicon film 15 to form a first layer polycrystalline silicon pattern 20, the S+02 pattern 17 was removed (FIG. 4(d)).
and Figure 5). Note that FIG. 5 is a plan view of FIG. 4(d). As a result of this patterning, the first layer polycrystalline silicon patterns 200, . 1 B
A polycrystalline silicon turf 21 was formed.

ひきつづ−き、熱酸化処理を施して多結晶シリコンパタ
ーン21周囲に第2熱酸化膜22を形成した(第4図(
、)図示)。
Subsequently, a second thermal oxide film 22 was formed around the polycrystalline silicon pattern 21 by thermal oxidation treatment (see FIG. 4).
,) as shown).

Ov)  次いで、全面に例えば厚さ4000Xのリン
ドーゾ多結晶シリコン膜を堆積し、前記多結晶シリコソ
ノ4ターン21のくびれ部19a。
Ov) Next, a lindozopolycrystalline silicon film having a thickness of, for example, 4000× is deposited on the entire surface, and the constriction portion 19a of the polycrystalline silicone 4-turn 21 is formed.

195にまでその多結晶シリコンを十分口シ込ませた。The polycrystalline silicon was fully inserted up to 195 mm.

つづいて、この多結晶シリコン膜の第2ダ一ト電極形成
部に写真蝕刻法によりレジストパターン(図示せず)を
形成した後、このレジスト/4’ターンをマスクとして
第2ダート電極となるリンドープ多結晶シリコン膜、第
2熱酸化膜、第1ダート電極となる多結晶シリコンAタ
ーン及び第1熱酸化膜を例え□ばRIEにより選択的に
除去した。これによシ、基板11側から第1 r −)
酸化膜23、両端部にくびれ部19a。
Subsequently, a resist pattern (not shown) is formed by photolithography on the second dust electrode formation portion of this polycrystalline silicon film, and then, using this resist/4' turn as a mask, phosphorus dope is applied to form the second dust electrode. The polycrystalline silicon film, the second thermal oxide film, the polycrystalline silicon A turn serving as the first dirt electrode, and the first thermal oxide film were selectively removed by, for example, RIE. With this, the first r-) from the board 11 side
Oxide film 23 has constricted portions 19a at both ends.

19bを有する第1ダート電極(フローティングダート
電極)24、及び同第1ケ゛−ト電極24上に第2ケ゛
−ト酸化膜25を介して積1層され、一部が同電極24
のくびれ部19a、19bに同第2ダート酸化膜25を
介して喰い込んだ形状の第2ダート電極(コントロール
ゲート電極)26が夫々形成された。ひきつづき、レジ
ストパターンを除去した後、第2デート電極26及びフ
ィールド酸化膜12左マスクとしてn型不純物、例えば
砒素を基板11の素子領域13にイオン注入し、熱処理
を施して活性化、拡散を行なってn十型のソース、ドレ
インlN域2.7 、28を形成し、FROMのメモリ
セルを製造した(゛第4図(f)及び第6図図示)。な
お、第6図は第4図(f)の平面図である。
A first dirt electrode (floating dirt electrode) 24 having a diameter of 19b is laminated on the first dirt electrode 24 with a second dirt oxide film 25 interposed therebetween, and a part of the dirt electrode 24 is
Second dart electrodes (control gate electrodes) 26 were formed in the constricted portions 19a and 19b of the substrate through the second dirt oxide film 25, respectively. Subsequently, after removing the resist pattern, ions of an n-type impurity, such as arsenic, are implanted into the element region 13 of the substrate 11 using the second date electrode 26 and the left mask of the field oxide film 12, and heat treatment is performed to activate and diffuse the impurity. Then, n-type source and drain 1N regions 2.7 and 28 were formed, and a FROM memory cell was manufactured (as shown in FIGS. 4(f) and 6). Note that FIG. 6 is a plan view of FIG. 4(f).

しかして、本発明のFROMのメモリセルは第4図(f
)及び第6図に示す如く、素子領域13上の一部に第1
ダート酸化膜23を介して横切り、両端の側面に内側に
向うくびれ部19 a + 19bを有する第1 f−
ト電極24と、この第1ダート電極24上に第2ダート
酸化膜25を介して積層され、かつ一部が前記r−)電
極24のくびれ部19m、19bに同酸化膜25を介し
て喰い込んだ形状の第2ダート電極26とを備えた構造
になっている。このため、第2ゲート電極26に対する
第1ダート電極240表面積を増大できるので、第1.
第2ダート電極24゜26間の容量を飛躍的に増大でき
る。したがって、第2ダート電極(コントロールダート
電極)26への書き込み電圧を低減でき、ひいてはメモ
リセルの微細化に氏名して低電圧化できる。
Therefore, the memory cell of the FROM of the present invention is shown in FIG.
) and as shown in FIG.
The first f- crosses through the dirt oxide film 23 and has inwardly constricted portions 19a + 19b on the side surfaces at both ends.
A dirt electrode 24 is laminated on the first dirt electrode 24 with a second dirt oxide film 25 interposed therebetween, and a portion is formed on the constricted portions 19m and 19b of the r-) electrode 24 via the same oxide film 25. It has a structure including a second dirt electrode 26 having a deep shape. Therefore, since the surface area of the first dirt electrode 240 relative to the second gate electrode 26 can be increased, the surface area of the first dirt electrode 240 relative to the second gate electrode 26 can be increased.
The capacitance between the second dart electrodes 24 and 26 can be dramatically increased. Therefore, the write voltage to the second dart electrode (control dart electrode) 26 can be reduced, and the voltage can be lowered as a result of miniaturization of memory cells.

しかも、従来構造と同等の容量とした場合、第1ダート
電極(フローティングダート電極)24の面積の縮小化
が可能となシ、ひいては素子(メモリセル)の微細化を
達成できる。
Moreover, when the capacitance is the same as that of the conventional structure, the area of the first dart electrode (floating dart electrode) 24 can be reduced, and the element (memory cell) can be miniaturized.

また、本発明によれば第1.第2ダート電極24.26
間の第2ダート酸化膜25を薄膜化する必要がないので
、耐圧低下を回避できる@更に、本発明方法によればM
O/リーン16を昇華1除去することにょシ第1グヘト
電極24の表面積増大に関与するくびれ部19 a 、
 19bを形成するものであるため、第1.第2ダート
電極24.26間の容量を増大させたFROMのメモリ
セルを簡単に製造できる。しかも、前記No/’?p−
ン16の昇華工程は、7oo℃以上の酸化雰囲気中で行
なうことができるので、将来の低温化プロセスでも十分
に適用できる。
Further, according to the present invention, the first. 2nd dart electrode 24.26
Since there is no need to reduce the thickness of the second dirt oxide film 25 in between, a decrease in breakdown voltage can be avoided.
The constricted portion 19a, which is involved in increasing the surface area of the first gas electrode 24 by removing the O/lean 16 by sublimation,
19b, the first. A FROM memory cell with increased capacitance between the second dirt electrodes 24 and 26 can be easily manufactured. Moreover, said No/'? p-
Since the sublimation step of the tube 16 can be carried out in an oxidizing atmosphere at a temperature of 70° C. or higher, it can be sufficiently applied to future low-temperature processes.

更に、本発明方法によれば、Noパターン16の厚さを
調整することにょl) 、Moパターン16の昇華、除
去によって形成されるくびれ部19a。
Furthermore, according to the method of the present invention, the thickness of the No pattern 16 can be adjusted, and the constriction 19a is formed by sublimation and removal of the Mo pattern 16.

19bの厚さを任意に変更でき、ひいては第1第2ダー
ト電極24.25間の容量を容易に制御できる。
The thickness of the electrode 19b can be changed arbitrarily, and thus the capacitance between the first and second dart electrodes 24, 25 can be easily controlled.

なお、上記実施例ではMOパターンの昇華、除去と多結
晶シリコンパターンの熱酸化とを別々の工程で行なった
が、これらを同一工程で行なってもよい。
In the above embodiment, the sublimation and removal of the MO pattern and the thermal oxidation of the polycrystalline silicon pattern were performed in separate steps, but they may be performed in the same step.

上記実施例ではMO/’?ターンを第1.第2層リンド
ープ多結晶シリコンノやターン間に介在させることによ
υ両端側面に夫々1つのくびれ部を有する第1 )f−
)電極を形成したが、これに限定されない。例えば、リ
ンドープ多結晶シリコン膜を3層以上(具体的には3層
)とし、これらリンドーグ多結晶シリコン膜間に夫々N
oIやターン(2層)を介在させることによシ、第7メ
に示す如く両端部の側面に夫々厚さ方向に2つのくびれ
部19m、19s:+ 19b、19Wを有する第1ダ
ート電極24を形成し、この電極24上に第2ダート電
極26を第2ダート酸化膜25を介して積層した構造に
してもよい。このような構成によれば、第2ダート電極
26に対する第1ダート電極240表面積が一層増加す
るため、第2ダート電極26への書き込み電圧を更に低
減化できる。
In the above example, MO/'? Turn first. The first layer has one constriction on each end side surface by interposing the second layer of phosphorous-doped polycrystalline silicon and the turns.
) electrodes were formed; however, the present invention is not limited thereto. For example, three or more layers (specifically, three layers) of phosphorus-doped polycrystalline silicon films are used, and each N
By interposing an oI or a turn (two layers), the first dirt electrode 24 has two constrictions 19m, 19s: + 19b, and 19W in the thickness direction on the side surfaces of both ends, respectively, as shown in the seventh image. may be formed, and a second dirt electrode 26 may be laminated on this electrode 24 with a second dirt oxide film 25 interposed therebetween. According to such a configuration, the surface area of the first dirt electrode 240 relative to the second dirt electrode 26 is further increased, so that the write voltage to the second dirt electrode 26 can be further reduced.

また、本発明は上記実施例の如きFROMのメモリセル
のみに限定されず、ダイナミックRAMのメモリセルに
も同様に適用できる。かかるダイナミックRAMによれ
ば記憶容量の増大による素子特性の向上と、素子の高集
積化、微細化等を飛、躍的に向上できる。
Further, the present invention is not limited to the FROM memory cell as in the above embodiment, but can be similarly applied to a dynamic RAM memory cell. With such a dynamic RAM, it is possible to improve device characteristics by increasing storage capacity, and to dramatically improve device integration and miniaturization.

〔発明の効果〕〔Effect of the invention〕

以上詳述した如く、本発明によれば素子特性の劣化を招
くことなく、第1.第2ダート電極間の容量を大きくで
き、ひいては書き込み電圧の低減化を達成した半導体記
憶装置、並びにかかる半導体記憶装置を簡単に製造し得
る方法を提供できる。
As described in detail above, according to the present invention, the first. It is possible to provide a semiconductor memory device in which the capacitance between the second dart electrodes can be increased and a write voltage can be reduced, as well as a method for easily manufacturing such a semiconductor memory device.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来のFROMのメモリセルを示す断面図、第
2図は第1図のメモリセルの二層ダート電極部をチャン
ネル長方向に切断した断面図、第3図はFROMのメモ
リセルの書き込み時の電気的な回路を模式的に示す概略
図、第4図(、)〜(f)は本発明の実施例におけるF
ROMのメモリセルの製造工程を示す断面図、第5図は
第4図(d)の平面図、第6図は第4図(f)の平面図
、第7図は本発明の他の実施例を示すFROMのメモリ
セルの断面図である。 11・・・2mシリコン基板、12・・・フィールド酸
化膜(素子分離領域)、13・・・素子領域、15・・
・第1層リンドーゾ多結晶シリコン膜、16・・・MO
ノやターン、17・・・S 102パターン、18・・
・第2層多結晶シリコンパターン、19m+19br1
9a′、19b′・・・くびれ部、20・・・第2層多
結晶シリコンパターン、21・・・多結晶シリコンパタ
ーン、23・・・第1ダート酸化膜、24・・・第1ダ
ート電極(フローティ〉′ググート電極)、25・・・
第2ゲート酸化膜、26・・・第2ダート電極(コント
ロールゲート電極)、27・・・n−nソース領域、2
8・・・n十型ドレイン領域。 出願人代理人 弁理士 鈴 江 武 彦嬉5図 第6図
Fig. 1 is a cross-sectional view of a conventional FROM memory cell, Fig. 2 is a cross-sectional view of the two-layer dirt electrode section of the memory cell of Fig. 1 cut in the channel length direction, and Fig. 3 is a cross-sectional view of a FROM memory cell. Schematic diagrams schematically showing electrical circuits during writing, FIGS. 4(a) to 4(f) are
5 is a plan view of FIG. 4(d), FIG. 6 is a plan view of FIG. 4(f), and FIG. 7 is a plan view of another embodiment of the present invention. FIG. 2 is a cross-sectional view of an exemplary FROM memory cell. 11...2m silicon substrate, 12...field oxide film (element isolation region), 13...element region, 15...
・First layer lindozo polycrystalline silicon film, 16...MO
Noya turn, 17...S 102 patterns, 18...
・Second layer polycrystalline silicon pattern, 19m+19br1
9a', 19b'... Narrow portion, 20... Second layer polycrystalline silicon pattern, 21... Polycrystalline silicon pattern, 23... First dirt oxide film, 24... First dirt electrode (Floaty〉'Gugut electrode), 25...
Second gate oxide film, 26... Second dirt electrode (control gate electrode), 27... nn source region, 2
8...n-type drain region. Applicant's agent Patent attorney Takehiko Suzue Figure 5 Figure 6

Claims (8)

【特許請求の範囲】[Claims] (1)素子分離領域で分離された半導体基板の島状領域
に2層以上のダート電極を備えた半導体記憶装置におい
て、第1ダート電極を前記島状領域の一部を第1ダート
酸化膜を介して少なくとも横切るように設け、かつ該ダ
ート電極を含む領域上に第2ダート電極をその一部が少
なくとも第1ケ゛−ト電極側面に喰い込むように第2ゲ
ート絶縁膜を介して積層したことを特徴とする半導体記
憶装置。
(1) In a semiconductor memory device having two or more layers of dirt electrodes on an island region of a semiconductor substrate separated by an element isolation region, a first dirt electrode is formed by forming a part of the island region with a first dirt oxide film. and a second dirt electrode is laminated on the region including the dirt electrode with a second gate insulating film interposed therebetween so that a part of the second dirt electrode digs into at least the side surface of the first gate electrode. A semiconductor memory device characterized by:
(2)第1ダート電極の少なくとも一端部側面が内側に
細長状にくびれだ形状をなし、該第1ダート電極上に第
2ダート絶縁膜を介して積層する第2デート電極の一部
を前記第1ダート電極のくびれ部に侵入せしめたことを
特徴とする特許請求の範囲第1項記載の半導体記憶装置
(2) At least one end side surface of the first dirt electrode has an inwardly constricted shape, and a part of the second date electrode is laminated on the first dirt electrode with a second dirt insulating film interposed therebetween. 2. The semiconductor memory device according to claim 1, wherein the first dirt electrode is inserted into the constricted portion of the first dart electrode.
(3)  第1ダート電極の少なくとも一端部側面にお
ける細長状のくびれ部が該ダート電極の厚さ方向に複数
設けられていることを特徴とする特許請求の範囲第1項
記載の半導体記憶装置。
(3) The semiconductor memory device according to claim 1, wherein a plurality of elongated constrictions are provided on at least one end side surface of the first dart electrode in the thickness direction of the dart electrode.
(4)  素子分離領域により分離された半導体基板の
島状領域に2層以上のゲート電極を備えた半導体記憶装
置の製造において、前記島状領域上の第1絶縁膜を含む
全面に第1ダート電極となる第1層電極材料膜を被着す
る工程と、この第1層電極材料膜上に昇華性材料からな
る被膜ノ4ターンを形成する工程と、全面に第1ダート
電極となる第2層電極材料膜を被着した後、該電極材料
膜上IQマスク材を選択的に形成する工程とこのマスク
材を用いて第2層電極材料膜を選択的にエツチングして
前記被膜パターンの一部を露出させると共に、端部が該
被膜パターン上にオーバーラツプした第2層電極材料パ
ターンを形成する工程と、前記被膜パターンを昇華して
除去↓た後、前記マスク材を用いて前記第1層電極材料
膜を選択的にエツチングすることによシ第1層電極材料
パターン及びM2層電極材料パターンからなシ、端部側
面に内側に向う細長状のくびれ部を有する電極材料パタ
ーンを形成する工程と、この電極材料・クターン周囲に
第2絶縁膜を形成する工程と、第2ダート電極材料膜を
全面に堆積して、その一部を前記電極材料パターンのく
びれ部に十分回り込ませる工程と、少なくとも前記第2
r−ト電極材料膜から電極材料パターンまでを順次選択
的にエツチングして、端部側面にくびれ部を有する第1
デート電極、及びこの第14”−)電極上に第2ダート
絶縁膜を介して積層され、一部が該ダート電極のくびれ
部に同第2ダート絶縁膜を介して喰い込んだ形状の第2
ダート電極を形成する工程とを具備したことを特徴とす
る半導体記憶装置の製造方法。
(4) In manufacturing a semiconductor memory device having two or more layers of gate electrodes on an island region of a semiconductor substrate separated by an element isolation region, a first dirt layer is formed on the entire surface including the first insulating film on the island region. A step of depositing a first layer electrode material film that will become an electrode, a step of forming four turns of a film made of a sublimable material on this first layer electrode material film, and a step of depositing a second layer electrode material film that will become a first dirt electrode on the entire surface. After depositing the layer electrode material film, a step of selectively forming an IQ mask material on the electrode material film and selectively etching the second layer electrode material film using this mask material to form a part of the film pattern. forming a second layer electrode material pattern whose end portions overlap the coating pattern; and after removing the coating pattern by sublimation, using the mask material to A step of forming an electrode material pattern having an inwardly elongated constriction on the end side surface of the first layer electrode material pattern and the M2 layer electrode material pattern by selectively etching the electrode material film. a step of forming a second insulating film around the electrode material/cutane; a step of depositing a second dirt electrode material film over the entire surface and sufficiently wrapping a portion of the second dirt electrode material film around the constriction of the electrode material pattern; at least the second
The first electrode material film having a constricted portion on the side surface of the end portion is selectively etched sequentially from the r-toe electrode material film to the electrode material pattern.
a date electrode, and a second electrode layer laminated on the 14''-) electrode with a second dirt insulating film interposed therebetween, and a second part having a shape that partially bites into the constriction of the dart electrode through the second dirt insulating film.
1. A method of manufacturing a semiconductor memory device, comprising the step of forming a dirt electrode.
(5)昇華性材料がMO又はWであることを特徴とする
特許請求の範囲第4項記載の半導体記憶装置の製造方法
(5) The method for manufacturing a semiconductor memory device according to claim 4, wherein the sublimable material is MO or W.
(6)  マスク材が耐熱性材料から形成されることを
特徴とする特許請求の範囲第4項記載の半導体記憶装置
の製造方法。
(6) The method of manufacturing a semiconductor memory device according to claim 4, wherein the mask material is made of a heat-resistant material.
(7)  耐熱性材料がSiO2又はSi3N4である
ことを特徴とする特許請求の範囲第6項記載の半導体記
憶装置の製造方法。
(7) The method for manufacturing a semiconductor memory device according to claim 6, wherein the heat-resistant material is SiO2 or Si3N4.
(8)第1ケ゛−ト電極となる電極材料・ぐターンが3
層以上の電極材料膜から形成されると共に、それら電極
材料膜間に昇華性材料からなる被膜A?ターンを夫々介
在せしめることを特徴とする特許請求の範囲第4項乃至
第7項いずれか記載の半導体記憶装置の製造方法。
(8) The electrode material and pattern for the first gate electrode are 3
The coating A is formed from more than one layer of electrode material films, and is made of a sublimable material between the electrode material films. 8. The method of manufacturing a semiconductor memory device according to claim 4, wherein a turn is interposed between each of the semiconductor memory devices.
JP2810383A 1983-02-22 1983-02-22 Semiconductor memory device and manufacture thereof Pending JPS59154069A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2810383A JPS59154069A (en) 1983-02-22 1983-02-22 Semiconductor memory device and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2810383A JPS59154069A (en) 1983-02-22 1983-02-22 Semiconductor memory device and manufacture thereof

Publications (1)

Publication Number Publication Date
JPS59154069A true JPS59154069A (en) 1984-09-03

Family

ID=12239464

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2810383A Pending JPS59154069A (en) 1983-02-22 1983-02-22 Semiconductor memory device and manufacture thereof

Country Status (1)

Country Link
JP (1) JPS59154069A (en)

Similar Documents

Publication Publication Date Title
KR19990088193A (en) Semiconductor memory device and method of manufacturing the same
JPS61131488A (en) Manufacture of integrated structural body containing non-volatile memory cell and associated transistor having self-matched silicon layer
JPH03283570A (en) Semiconductor device and its production
JP2005197701A (en) Method for forming quantum dot and manufacturing method for semiconductor memory device using the same
JP2870086B2 (en) Manufacturing method of MOS nonvolatile semiconductor memory device
JPS59154069A (en) Semiconductor memory device and manufacture thereof
JPS60116167A (en) Semiconductor memory and manufacture thereof
JPS59154068A (en) Semiconductor memory device and manufacture thereof
JPS6362382A (en) Floating gate nonvolatile semiconductor storage device and manufacture thereof
JPS59154066A (en) Semiconductor memory device and manufacture thereof
JPS59154067A (en) Semiconductor memory device and manufacture thereof
JPH04186882A (en) Semiconductor device and manufacture thereof
JP2755579B2 (en) Manufacturing method of semiconductor nonvolatile memory device
JPS59154070A (en) Manufacture of semiconductor memory device
JPS6042632B2 (en) semiconductor equipment
JPS59136973A (en) Semiconductor device
JPH03138982A (en) Semiconductor device and manufacture thereof
JPH01260857A (en) Semiconductor device and manufacture thereof
JPS5887876A (en) Semiconductor device
JPS647511B2 (en)
JPS62125676A (en) Semiconductor device and manufacture thereof
JPH01128472A (en) Semiconductor nonvolatile memory
JPS6336575A (en) Manufacture of semiconductor device
JPH0231467A (en) Manufacture of non-volatile semiconductor memory device
JPS59201463A (en) Semiconductor device