JPS59154067A - Semiconductor memory device and manufacture thereof - Google Patents

Semiconductor memory device and manufacture thereof

Info

Publication number
JPS59154067A
JPS59154067A JP2810183A JP2810183A JPS59154067A JP S59154067 A JPS59154067 A JP S59154067A JP 2810183 A JP2810183 A JP 2810183A JP 2810183 A JP2810183 A JP 2810183A JP S59154067 A JPS59154067 A JP S59154067A
Authority
JP
Japan
Prior art keywords
electrode
dirt
gate electrode
region
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2810183A
Other languages
Japanese (ja)
Inventor
Yoshihide Nagakubo
長久保 吉秀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2810183A priority Critical patent/JPS59154067A/en
Publication of JPS59154067A publication Critical patent/JPS59154067A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/788Field effect transistors with field effect produced by an insulated gate with floating gate
    • H01L29/7881Programmable transistors with only two possible levels of programmation

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Non-Volatile Memory (AREA)

Abstract

PURPOSE:To increase the capacitance between the first and second gate electrodes and thus contrive to reduce write voltage by a method wherein the second gate electrode is provided on a region including the first gate electrode via the second insulation film so as to bite under the first gate electrode on an element isolation region at least at a part of the second electrode. CONSTITUTION:A PROM memory has a structure having the first gate electrode 20 which crosses a part on the element region 13 via the first gate oxide film 19, both whose end parts extend on a field oxide film, and wherein overhangs 17a and 17b are formed at said parts, and the second gate electrode 22 of the form that a part bites into the overhangs 17a and 17b of said electrode 20 on the region including this gate electrode 20 via the gate oxide film 21. Thereby, since the surface area of the first gate electrode 20 to the second gate electrode 22 can be increased, the capacitance between the first and second gate electrodes can be increased. Therefore, the write voltage into the second gate electrode 22 can be reduced.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は半導体記憶装置及びその製造方法に関し、特に
不揮発性半導体記憶装置及びその製造方法に係る。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a semiconductor memory device and a method for manufacturing the same, and more particularly to a nonvolatile semiconductor memory device and a method for manufacturing the same.

〔発明の技術的背景〕[Technical background of the invention]

不揮発性半導体記憶装置、例えばFROM(Progr
amable Read 0nly Memory )
としては従来、第1図及び、第2図に示すメモリセル構
造を有するものが知られている。即ち、図中の1はP型
半導体基板であり、この基板1には素子領域2を分離す
るだめのフィールド酸化膜(素子分離領域)3が設けら
れている。この素子領域2には互に電気的に分離された
計型のソースドレイン領域4,5が設けられている。こ
れらソース、ドレイン領域4,5間のチャンネル領域を
含む素子領域2部分上には第1ダート絶縁膜6を介して
例えば不純物ドーゾ多結晶シリコンからなる第1ダート
電極(フローティングゲ−ト電極)7が設けられている
。更に、この第1ゲート電極7上には第2ダート絶縁膜
8を介して例えば不純物ドーゾ多結晶シリコンからなる
第2ダート電極(コントロールゲート電極)9が積層さ
れている。なお、前記第1ゲート電極7は両端がチャン
ネル幅方向に延出してそれら両端の一部がフィールド酸
化膜3上にオーバーラツプしている。また、前記第1ダ
ート電極7の露出した側面及び第2ダート電極9周囲に
は絶縁膜10が形成されている。こうしたFROMにお
いて、第2ダート電極9及び討型ドレイン領域5に高電
圧を印加してチャンネル領域中で生成されたホットキャ
リアを第1ダート絶縁膜6を通して第1ダート電極7に
注入、蓄積させ、しきい値電圧(v;&h)を変化させ
ることにより、所定のメモリセルに記憶機能を保持させ
るものである。
Nonvolatile semiconductor memory devices, such as FROM (Progr.
amable Read Only Memory)
Conventionally, memory cells having the structure shown in FIGS. 1 and 2 are known. That is, numeral 1 in the figure is a P-type semiconductor substrate, and this substrate 1 is provided with a field oxide film (element isolation region) 3 for isolating element regions 2 . This device region 2 is provided with meter-shaped source and drain regions 4 and 5 that are electrically isolated from each other. A first dirt electrode (floating gate electrode) 7 made of, for example, impurity-doped polycrystalline silicon is formed on a portion of the device region 2 including the channel region between these source and drain regions 4 and 5 via a first dirt insulating film 6. is provided. Further, a second dirt electrode (control gate electrode) 9 made of, for example, impurity doped polycrystalline silicon is laminated on the first gate electrode 7 with a second dirt insulating film 8 interposed therebetween. Note that both ends of the first gate electrode 7 extend in the channel width direction, and parts of these ends overlap on the field oxide film 3. Further, an insulating film 10 is formed on the exposed side surface of the first dirt electrode 7 and around the second dirt electrode 9. In such a FROM, a high voltage is applied to the second dirt electrode 9 and the drain region 5 to inject and accumulate hot carriers generated in the channel region into the first dirt electrode 7 through the first dirt insulating film 6. By changing the threshold voltage (v; &h), a predetermined memory cell is allowed to retain its memory function.

ところで、前述した第1図及び第2図のFROMは、書
き込み時の電気的な回路を模式的に示すと、第3図の如
くなシ、フローティングゲート電極7の電圧VFGとコ
ンロトールダート電極9の電圧VCGO間には下記式に
示すような関係がある。
By the way, in the above-mentioned FROM shown in FIGS. 1 and 2, the electrical circuit at the time of writing is shown schematically as shown in FIG. There is a relationship between the voltages VCGO and VCGO as shown in the following equation.

2C3 Vrc =  Vcc +  VD     −(1)
TcT CT= CI+C2+03       ・・・(2)
ここでC1は基板1と70−チインググ゛−ト電極7の
間の容量、C2はフローティングゲ−ト電極7とコント
ロールゲート電極9の間の容量、C3ハトレイン領域5
と70−テインググート電極7とのオーパーラツノした
部分の容量、VDはドレイン電圧、を示す。
2C3 Vrc = Vcc + VD - (1)
TcT CT=CI+C2+03...(2)
Here, C1 is the capacitance between the substrate 1 and the 70-chip gate electrode 7, C2 is the capacitance between the floating gate electrode 7 and the control gate electrode 9, and C3 is the capacitance between the floating gate electrode 7 and the control gate electrode 9.
and 70-Teinggut electrode 7, and VD indicates the drain voltage.

FROMの書き込みはフローティングゲート電極7の電
圧VFGで決ま’) 、f VFGを実際に制御するの
はコントロールダート電極9の電圧VCGである。即ち
、VFGとVCC間の比例係数はC2/CTで、低電圧
で書き込めるようにするには簡単にはフローティングゲ
ート電極7とコントロールゲート電極9間の容量C2を
犬きくできればよい。
Writing into the FROM is determined by the voltage VFG of the floating gate electrode 7'), and it is the voltage VCG of the control dart electrode 9 that actually controls fVFG. That is, the proportionality coefficient between VFG and VCC is C2/CT, and in order to be able to write at a low voltage, it is sufficient to simply increase the capacitance C2 between the floating gate electrode 7 and the control gate electrode 9.

〔背景技術の問題点〕[Problems with background technology]

しかしながら、従来技術では64にのEFROMデバイ
ス等でもコントロールゲート電極に加える、いわゆる書
き込み電圧は21Vと高電圧を要する。特に、将来の素
子の微細化と共に書き込み電圧は低電圧化が要求される
。そこで、前記ダート電極間の容量C2を大きくする一
手法として、第1図に示す第2ダート絶縁膜8を薄膜化
することが考えられるが、保持特性等の信頼性で現状以
上に薄膜化することは困難である。
However, in the prior art, a so-called write voltage, which is applied to the control gate electrode even in a 64 EFROM device, requires a high voltage of 21V. In particular, as devices become smaller in the future, lower write voltages will be required. Therefore, one possible method for increasing the capacitance C2 between the dirt electrodes is to make the second dirt insulating film 8 shown in FIG. That is difficult.

〔発明の目的〕[Purpose of the invention]

本発明は素子特性の劣化を招くことなく、第1、第2ゲ
ート電極間の容量を犬きくでき、ひいては書き込み電圧
の低減化を達成した半導体記憶装置及びその製造方法を
提供しようとするものである。
The present invention aims to provide a semiconductor memory device and a method for manufacturing the same, which can increase the capacitance between the first and second gate electrodes without causing deterioration of device characteristics, and further reduce the write voltage. be.

〔発明の概要〕[Summary of the invention]

本発明は第1ケ゛−ト電極を含む領域上に第2ケ゛−ト
電極をその少なくとも一部が素子分離領域上の該第1ダ
ート電極下に喰い込むように第2ダート酸化膜を介して
設けることによって、第1.第2ゲート電極間の容量を
増大させ、書き込み電圧の低減化を図ることを骨子とす
るものである。
The present invention provides a method for forming a second gate electrode on a region including the first gate electrode via a second dirt oxide film so that at least a part of the second gate electrode digs under the first dirt electrode on the element isolation region. By providing 1. The main idea is to increase the capacitance between the second gate electrodes and reduce the write voltage.

即ち、本願第1の発明は素子分離領域で分離された半導
体基板の島状低域に2層以上のダート電極を備えた半導
体記憶装置において、第1ゲート電極を前記島状領域の
一部を第1ケ゛−ト絶縁膜を介して横切ると共に端部が
前記素子分離領域上に延在するように設け、かつ該第1
ダート電極を含む領域上に第2ダート電極をその少なく
とも一部が前記素子領域上の第1ダート電極下に喰い込
むように第2ダート絶縁膜を介して設けたことを特徴と
するものである。
That is, the first invention of the present application is a semiconductor memory device including two or more layers of dirt electrodes in an island-like low region of a semiconductor substrate separated by an element isolation region. The first gate insulating film is provided so as to traverse the first gate insulating film and have an end extending over the element isolation region.
A second dirt electrode is provided on the region including the dirt electrode via a second dirt insulating film so that at least a part of the second dirt electrode bites under the first dirt electrode on the element region. .

上記ダート電極材料としては、例えば不純物を含有する
多結晶シリコン、不純物を含有する非晶質シリコン或い
d高融点金属シリサイド等を用いることができる。
As the dirt electrode material, for example, polycrystalline silicon containing impurities, amorphous silicon containing impurities, high melting point metal silicide, etc. can be used.

また、本願第2の発明は素子分離領域で分離された半導
体基板の島状領域に2層以上のダート電極を備えた半導
体記憶装置の製造方法において、半導体基板の少なくと
も島状領域付近に位置する素子分離領域部分に昇華性材
料からなる被膜・母ターンを形成する工程と、前記島状
領域に第1絶縁膜を介して被覆されると共に少なくとも
端部が前記被膜パターン上にオーバーラツプする第1ゲ
ート電極となる電極材料パターンを形成する工程と、前
記被膜パターンを昇華させて除去することにより、電極
材料パターンの端部をオーバーハング形状とする工程と
、前記電極材料パターン周囲に第2絶縁膜を形成する工
程と、第2ダート電極材料膜を堆積してそノ一部ヲ前記
電極材料パターンのオーバーハング部に十分に回り込ま
せる工程と、少なくとも第2ダート電極材料膜から前記
電極材料パターンまでを順次選択的にエツチング除去し
、第1ケ゛−ト電極、第2ダート絶縁膜及び一部が前記
素子分離領域上の第1/f′″−ト電極下に喰い込んだ
形状の第2ゲート電極を形成する工程とを具備したこと
を特徴とするものである。
Further, a second invention of the present application provides a method for manufacturing a semiconductor memory device including two or more layers of dirt electrodes in island-like regions of a semiconductor substrate separated by an element isolation region. a step of forming a film/main turn made of a sublimable material in the element isolation region; and a first gate that is covered with the island-shaped region via a first insulating film and whose end portion overlaps the film pattern. A step of forming an electrode material pattern to become an electrode, a step of sublimating and removing the film pattern to form an overhang shape at the end of the electrode material pattern, and a step of forming a second insulating film around the electrode material pattern. a step of depositing a second dirt electrode material film and fully wrapping a portion of the second dirt electrode material film around the overhang portion of the electrode material pattern; A second gate electrode is formed by selectively etching and removing the first gate electrode, a second dirt insulating film, and a portion of the second gate electrode that is partially dug under the first/f''' gate electrode on the element isolation region. The method is characterized by comprising a step of forming.

上記昇華性材料としては、例えばMO又はWを用いるこ
とができる。
As the sublimable material, for example, MO or W can be used.

また、上記方法において被膜・母ターンを昇華する工程
と電極材料パターン周囲に第2絶縁膜を形成する工程と
を、酸化雰囲気中での熱処理により同時に行なってもよ
い。
Further, in the above method, the step of sublimating the film/mother turn and the step of forming the second insulating film around the electrode material pattern may be performed simultaneously by heat treatment in an oxidizing atmosphere.

〔発明の実施例〕[Embodiments of the invention]

次に、本発明の一実施例であるFROMのメモリセルを
図示する製造方法を併記して詳細に説明する。
Next, a detailed description will be given of a method of manufacturing a FROM memory cell which is an embodiment of the present invention.

(1)まず、例えばP型シリコン基板11を選択酸化等
によシフイールド酸化膜(素子分離領域)12を形成し
た後、フィールド酸化膜12で分離された基板11の島
状領域(素子領域)13表向に熱酸化により第1ダート
酸化膜となる厚さ500Xの第1熱酸化膜14を形成し
た。つづいて、全面に厚さ3000Xの昇華性材料膜、
例えばMo膜を蒸着した後、これをノやターニングして
Moパターン15をフィールド酸化膜12上に形成した
(第4図(a)図示)。
(1) First, after forming a field oxide film (element isolation region) 12 on a P-type silicon substrate 11 by selective oxidation, for example, an island-shaped region (element region) 13 of the substrate 11 separated by the field oxide film 12 is formed. A first thermal oxide film 14 having a thickness of 500× and serving as a first dirt oxide film was formed on the surface by thermal oxidation. Next, a sublimable material film with a thickness of 3000X was applied to the entire surface.
For example, after depositing a Mo film, it was turned and a Mo pattern 15 was formed on the field oxide film 12 (as shown in FIG. 4(a)).

(11)次いで、全面に例えば厚さ4000Xのリンド
ーグ多結晶シリコン膜を形成した後、これをフォトエツ
チング技術によpノやターニングして前記第1熱酸化膜
14上及びフィールド酸化膜12上のMoパターン15
にオー/<−ラッグすると共にチャンネル幅方向の長さ
が規定きれた多結晶シリコンパターン16を形成した(
第4図(b)図示)。
(11) Next, after forming a phosphorescent polycrystalline silicon film with a thickness of, for example, 4000× on the entire surface, this is p-shaped or turned using a photoetching technique to form a layer on the first thermal oxide film 14 and the field oxide film 12. Mo pattern 15
A polycrystalline silicon pattern 16 having a predetermined length in the channel width direction was formed (
(Illustrated in FIG. 4(b)).

G11)次いで、900℃の酸素雰囲気中で熱酸化処理
を施した。この時、第4図(C)に示す如(M。
G11) Next, thermal oxidation treatment was performed in an oxygen atmosphere at 900°C. At this time, as shown in FIG. 4(C) (M.

パターン15が酸化されてモリブデン酸化物として昇華
され、該Mo )Rターン15にオー・マーラップした
多結晶シリコンノβターン16の両端部にオーバーハン
グ部17a、17bが形成された。つづいて、熱酸化処
理を施してオー・り一ハ/グ部17h、17bが形成さ
れた多結晶シリコンパターン16周囲に厚さ700Xの
第2熱酸化膜18が形成された(第4図(d)図示)。
The pattern 15 was oxidized and sublimated as molybdenum oxide, and overhang portions 17a and 17b were formed at both ends of the polycrystalline silicon β turn 16 overlapping with the Mo)R turn 15. Subsequently, a second thermal oxidation film 18 with a thickness of 700X was formed around the polycrystalline silicon pattern 16 on which the O-riha/groove parts 17h and 17b were formed by thermal oxidation treatment (see FIG. 4). d) As shown).

(I切次いで、全面に例えば厚さ4000Xのリンドー
プ多結晶シリコン膜を堆積し、前記多結晶シリコンパタ
ーン16両端部のオーバーノ−ング部17a、17bに
までその多結晶シリコンを十分回り込ませた。ひきつづ
き、この多結晶シリコン膜の第2ダート電極形成部に写
真蝕刻法によりレソストパターン(図示せず)を形成し
た後、該レソストノやターンをマスクとしてリンドープ
多結晶シリコン膜、第2熱酸化膜、多結晶シリコンAタ
ーン及び第1熱酸化膜を例えばリアクティブイオンエツ
チング(RIE )により選択的に除去した。これによ
シ、基板11側から第1ダート酸化膜19、両端にオー
パーツ・ング部17g、17bを有する第1ダート電極
(フローティングゲート電極)201及び該ダート電極
20上に第2ダート酸化膜21を介して積層されると共
に、両地をフィールド酸化膜12上のチャンネル幅方向
に延在させた第2ダート電極(コントロールゲート電極
)22が形成された。なお、第2ダート電極22の一部
は前記第1ダート電極20のオーバーハング部17 a
 r 17 bに第2ダート酸化膜21を介して喰い込
まれる。ひきつづき、レソス) pJ?ターンを除去し
た後、第2ダート電極22をマスクとしてn型不純物、
例えば砒素を基板11にイオン注入し、活性化、拡散を
行なって?型のソース、ドレイン領域23..24を形
成しFROMのメモリセルを製造した(第4図(e)及
び第5図図示)。なお、第5図は第4図(e)の平面図
である。
(Sequentially, a phosphorus-doped polycrystalline silicon film having a thickness of, for example, 4,000× was deposited on the entire surface, and the polycrystalline silicon was sufficiently wrapped around the overhanging portions 17a and 17b at both ends of the polycrystalline silicon pattern 16. Subsequently, a resist pattern (not shown) is formed by photolithography on the second dirt electrode formation portion of this polycrystalline silicon film, and then a phosphorus-doped polycrystalline silicon film and a second thermal oxide film are formed using the resist pattern or turn as a mask. , the polycrystalline silicon A-turn and the first thermal oxide film were selectively removed by, for example, reactive ion etching (RIE).Thereby, from the substrate 11 side, the first dirt oxide film 19 and the opaque rings were formed at both ends. A first dirt electrode (floating gate electrode) 201 having portions 17g and 17b is laminated on the dirt electrode 20 with a second dirt oxide film 21 interposed therebetween, and both bases are stacked in the channel width direction on the field oxide film 12. An extended second dirt electrode (control gate electrode) 22 was formed. Note that a part of the second dirt electrode 22 overlaps the overhang portion 17 a of the first dirt electrode 20.
r 17 b through the second dirt oxide film 21 . Continuing, Resos) pJ? After removing the turns, using the second dirt electrode 22 as a mask, an n-type impurity,
For example, do you implant arsenic into the substrate 11, activate it, and diffuse it? Type source and drain regions 23. .. 24 was formed to manufacture a FROM memory cell (as shown in FIGS. 4(e) and 5). Note that FIG. 5 is a plan view of FIG. 4(e).

しかして、本発明のFROMのメモリセルは第4図(、
)及び第5図に示す如く素子領域13上の一部に第1ダ
ート酸化膜19を介して横切り、両端部がフィールド酸
化膜12上に延在すると共に同両端部にオーバーハング
17h、17bが形成された第1ダート電極21と、こ
のダート電極20を含む領域上に第2ダート酸化膜21
を介して一部が前記第1ダート電極21の万一バーハン
グ部17m、17bに喰い込む形状の第2ダート電極2
2を備えた構造になっている。このため、第2ダート電
極22に対する第1ダート電極20の表面積を増大でき
るので、第1.第2ダート電極20.22間の容量を増
大できる。事実、本実施例での容量を02′とし、従来
構造の第1、第2ゲート電極間の容量を02とした場合
、C2′#2C2となり、従来に比べて容量を外路的に
増大できる。したがって、第2ダート電極22への書き
込み電圧を低減でき、ひいてはメモリセルの微細化に即
応して低電圧化できる。しかも、従来構造と同等の容量
とした場合、フローティングゲート電極20の面積の縮
小化が可能となシ、ひいては素子(メモリセル)の微細
化を達成できる。
Therefore, the memory cell of the FROM of the present invention is shown in FIG.
) and, as shown in FIG. 5, cross a part of the element region 13 via the first dirt oxide film 19, and have both ends extending over the field oxide film 12, and have overhangs 17h and 17b at both ends. A second dirt oxide film 21 is formed on the formed first dirt electrode 21 and a region including this dirt electrode 20.
A second dart electrode 2 is shaped so that a part of it bites into the bar hang portions 17m and 17b of the first dart electrode 21 through the
It has a structure with 2. Therefore, the surface area of the first dirt electrode 20 relative to the second dirt electrode 22 can be increased, so that the surface area of the first dirt electrode 20 relative to the second dirt electrode 22 can be increased. The capacitance between the second dart electrodes 20 and 22 can be increased. In fact, if the capacitance in this embodiment is 02' and the capacitance between the first and second gate electrodes in the conventional structure is 02, it becomes C2'#2C2, and the capacitance can be externally increased compared to the conventional structure. . Therefore, the write voltage to the second dirt electrode 22 can be reduced, and the voltage can be lowered in response to miniaturization of memory cells. Moreover, when the capacitance is the same as that of the conventional structure, the area of the floating gate electrode 20 can be reduced, and the element (memory cell) can be miniaturized.

また、本発明によれば第1.第2ダート電極20.22
間の容量を増大させるために、それら電極20.22間
の第2ダート酸化膜21を薄膜化する必要がないので、
耐圧低下を回避できる。
Further, according to the present invention, the first. Second dart electrode 20.22
There is no need to thin the second dirt oxide film 21 between the electrodes 20 and 22 in order to increase the capacitance between them.
A drop in breakdown voltage can be avoided.

更に、本発明によればMo /4’ターン15の昇華工
程において700℃以上の酸化雰囲気で完全に除去でき
るので、将来の低温化プロセスでも十分に適用できる。
Further, according to the present invention, it can be completely removed in an oxidizing atmosphere of 700° C. or higher in the sublimation process of the Mo 2 /4' turn 15, so it can be fully applied to future low-temperature processes.

なお、上記実施例では第2ダート絶縁膜の材料としてリ
ンドープ多結晶シリコ゛ンからなる第2ダート電極の熱
酸化により形成された熱酸化膜を用いたが、CVD−8
i02膜を用いてもよい。
In the above embodiment, a thermal oxide film formed by thermal oxidation of the second dirt electrode made of phosphorus-doped polycrystalline silicon was used as the material for the second dirt insulating film, but CVD-8
An i02 film may also be used.

〔発明の効果〕〔Effect of the invention〕

以上詳述した如く、本発明によれば素子特性の劣化を招
くことなく、第1.第2ゲート電極間の容量を大きくで
き、ひいては書き込み電圧の低減化を達成した半導体記
憶装置並びにかかる半導体記憶装置を簡単に製造し得る
方法を提供できる。
As described in detail above, according to the present invention, the first. It is possible to provide a semiconductor memory device in which the capacitance between the second gate electrodes can be increased and the write voltage can be reduced, as well as a method for easily manufacturing such a semiconductor memory device.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来のFROMのメモリセルを示す断面図、第
2図は第1図のメモリセルの二層ダート電極部をチャン
ネル長方向に切断した断面図、第3図はFROMのメモ
リセルの書き込み時の電気的な回路を模式的に示す概略
図、第4図(、)〜(、)は本発明の実施例におけるF
ROMのメモリセルの製造工程を示す断面図、第5図は
第4図(e)の平面図である。 11・・・P型シリコン基板、12・・・フィールド酸
化膜(素子分離領域)、13・・・素子領域、15・・
・Mo 4ターン、16・・・li晶シリコンi9ター
ン、17 a 、 17 b−オーバーハング部、19
・・・第1ゲート酸化膜、2Q・・・第1グ゛−ト電極
(フローティングゲート電極)、21・・・第2ダート
酸化膜、22・・・第2ゲート電極(コントロールゲー
ト電極)、23・・・計型ソース領域、24・・・n+
型ドレイン領域。
Fig. 1 is a cross-sectional view of a conventional FROM memory cell, Fig. 2 is a cross-sectional view of the two-layer dirt electrode section of the memory cell of Fig. 1 cut in the channel length direction, and Fig. 3 is a cross-sectional view of a FROM memory cell. Schematic diagrams schematically showing electrical circuits during writing, FIGS.
FIG. 5 is a cross-sectional view showing the manufacturing process of a ROM memory cell, and FIG. 5 is a plan view of FIG. 4(e). DESCRIPTION OF SYMBOLS 11... P-type silicon substrate, 12... Field oxide film (element isolation region), 13... Element region, 15...
・Mo 4 turns, 16...Li crystal silicon i9 turns, 17 a, 17 b-overhang part, 19
...first gate oxide film, 2Q...first gate electrode (floating gate electrode), 21...second dirt oxide film, 22...second gate electrode (control gate electrode), 23... Meter source area, 24... n+
Type drain region.

Claims (4)

【特許請求の範囲】[Claims] (1)  素子分離領域で分離された半導体基板の島状
領域に2層以上のダート電極を備えた半導体記憶装置に
おいて、第1ゲート電極を前記島状領域の一部を第1ゲ
ート絶縁膜を介して横切ると共に端部が前記素子分離領
域上に延在するように設け、かつ該第1ダート電極を含
む領域上に第2ケ゛−ト電極をその少なくとも一部が前
記素子分離領域上の第1ダート電極下に喰い込むように
第2ダート絶縁膜を介して設けたことを特徴とする半導
体記憶装置。
(1) In a semiconductor memory device having two or more layers of dirt electrodes in an island region of a semiconductor substrate separated by an element isolation region, a first gate electrode is formed by forming a part of the island region with a first gate insulating film. A second gate electrode is provided on a region including the first dirt electrode, and at least a part of the second gate electrode is provided so that the end portion thereof extends over the element isolation region. 1. A semiconductor memory device characterized in that a second dirt insulating film is provided so as to be inserted under one dirt electrode.
(2)  素子分離領域で分離された半導体基板の島状
領域に2層以上のケ゛−7.トー極を備えた半導体記憶
装置の製造において7半尋体基板の少なくとも島状領域
付近に位装置する素子分離領域部分に昇華性材料からな
る・被膜パターンを形成する工程と、前記島状領域に第
1絶縁膜を介して被覆されると共に少々くとも端部が前
記被膜パターン上にオーバーラツプする第1ダート電極
となる電極材料ノ’?ターンを形成する工程と、前記被
膜パターンを昇華させて除去することにより電極材料パ
ターンの端部をオーバー・・ング形状とする工程と、前
記電極材料パターン周囲に第2絶縁膜を形成する工程と
、第2ダート電極材料膜を堆積してその一部を前記電極
材料パターンのオーバーハング部に十分回り込ませる工
程と、少なくとも第2ダート電極材料膜から前記電極材
料パターンまでを順次選択的にエツチング除去し、第1
ゲート電極、第2ゲート絶縁膜及び一部が前記素子分離
領域上の第1ダート電極下に喰い込んだ形状の第2ケ゛
−ト電極を形成する工程とを具備したことを特徴とする
半導体記憶装置の製造方法。
(2) Two or more layers of cells are formed in the island-like region of the semiconductor substrate separated by the element isolation region. In manufacturing a semiconductor memory device with a toe electrode, a step of forming a film pattern made of a sublimable material on an element isolation region located at least near an island-like region of a seven-semi-diamond substrate; What kind of electrode material is used to form the first dirt electrode that is covered with the first insulating film and has at least one end slightly overlapping the coating pattern? a step of forming a turn, a step of sublimating and removing the film pattern to form an end portion of the electrode material pattern into an overhang shape, and a step of forming a second insulating film around the electrode material pattern. , a step of depositing a second dirt electrode material film and sufficiently wrapping a portion of the second dirt electrode material film around the overhang portion of the electrode material pattern; and sequentially selectively etching away at least from the second dirt electrode material film to the electrode material pattern. First
A semiconductor memory comprising a step of forming a gate electrode, a second gate insulating film, and a second gate electrode having a shape that is partially dug under the first dirt electrode on the element isolation region. Method of manufacturing the device.
(3)昇華性材料がMo又はWであることを特徴とする
特許請求の範囲第2項記載の半導体記憶装置の製造方法
(3) The method for manufacturing a semiconductor memory device according to claim 2, wherein the sublimable material is Mo or W.
(4)被膜パターンを昇華する工程と、電極材料・ぐタ
ーン周囲に第2絶縁膜を形成する工程とを、酸化雰囲気
での熱処理により同時に行なうことを特徴とする特許請
求の範囲第2項記載の半導体記憶装置の製造方法。
(4) The step of sublimating the film pattern and the step of forming the second insulating film around the electrode material/gut are performed simultaneously by heat treatment in an oxidizing atmosphere. A method for manufacturing a semiconductor storage device.
JP2810183A 1983-02-22 1983-02-22 Semiconductor memory device and manufacture thereof Pending JPS59154067A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2810183A JPS59154067A (en) 1983-02-22 1983-02-22 Semiconductor memory device and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2810183A JPS59154067A (en) 1983-02-22 1983-02-22 Semiconductor memory device and manufacture thereof

Publications (1)

Publication Number Publication Date
JPS59154067A true JPS59154067A (en) 1984-09-03

Family

ID=12239404

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2810183A Pending JPS59154067A (en) 1983-02-22 1983-02-22 Semiconductor memory device and manufacture thereof

Country Status (1)

Country Link
JP (1) JPS59154067A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6477175A (en) * 1987-09-18 1989-03-23 Toshiba Corp Nonvolatile semiconductor memory device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6477175A (en) * 1987-09-18 1989-03-23 Toshiba Corp Nonvolatile semiconductor memory device

Similar Documents

Publication Publication Date Title
JP3090673B2 (en) Method of manufacturing flash type high density EEPROM semiconductor memory
US4355455A (en) Method of manufacture for self-aligned floating gate memory cell
JPH0629547A (en) Semiconductor device and its manufacture
JPS59154067A (en) Semiconductor memory device and manufacture thereof
JPS60116167A (en) Semiconductor memory and manufacture thereof
JPS5978576A (en) Semiconductor device and manufacture thereof
US4272774A (en) Self-aligned floating gate memory cell and method of manufacture
JPS59154068A (en) Semiconductor memory device and manufacture thereof
JPS6362382A (en) Floating gate nonvolatile semiconductor storage device and manufacture thereof
JPS62210678A (en) Semiconductor integrated circuit device
JPS59154069A (en) Semiconductor memory device and manufacture thereof
JPS59154066A (en) Semiconductor memory device and manufacture thereof
JPH05251711A (en) Semiconductor integrated circuit and its manufacture
JPS59154070A (en) Manufacture of semiconductor memory device
JP2564673B2 (en) Nonvolatile semiconductor memory device
JPS61148863A (en) Semiconductor integrated circuit device
JPS6329969A (en) Manufacture of floating gate type non-volatile semiconductor storage device
JP2755579B2 (en) Manufacturing method of semiconductor nonvolatile memory device
JPH0227773A (en) Manufacture of nonvolatile semiconductor memory
KR950003241B1 (en) Flash eerom cell and fabricating method thereof
JPS6336575A (en) Manufacture of semiconductor device
JPS647511B2 (en)
JPH03138982A (en) Semiconductor device and manufacture thereof
JPS6135711B2 (en)
JPH0231467A (en) Manufacture of non-volatile semiconductor memory device