JPS59139679A - Semiconductor pressure sensing device - Google Patents

Semiconductor pressure sensing device

Info

Publication number
JPS59139679A
JPS59139679A JP1271983A JP1271983A JPS59139679A JP S59139679 A JPS59139679 A JP S59139679A JP 1271983 A JP1271983 A JP 1271983A JP 1271983 A JP1271983 A JP 1271983A JP S59139679 A JPS59139679 A JP S59139679A
Authority
JP
Japan
Prior art keywords
silicon
film
semiconductor
face
sensing device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1271983A
Other languages
Japanese (ja)
Inventor
Isao Shimizu
勲 志水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP1271983A priority Critical patent/JPS59139679A/en
Publication of JPS59139679A publication Critical patent/JPS59139679A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/84Types of semiconductor device ; Multistep manufacturing processes therefor controllable by variation of applied mechanical force, e.g. of pressure

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Pressure Sensors (AREA)

Abstract

PURPOSE:To contrive to inactivate an exposed silicon face and to upgrade the reliability to a sensor by a method wherein semiconductor nitride, for example, silicon nitride, is formed on the face of a semiconductor on the side, whereon sensing elements such as diffused resistors and the like are not formed, as protective film. CONSTITUTION:A silicon nitriding is performed on the main face of silicon, whereon diffused resistors of diaphragm type silicon pellet are not provided, namely, the face of silicon on the side of a concavely depressed part 2, for inactivating. For example, an Si3N4 film 9 having a thickness of 1mum or less is formed and the film 9 is used as a protective film. In the formation of this film, the concavely depressed part 2 is formed on one main face of a water-shaped Si substrate according to an anisotropic etching technique, etc. After diffused resistors 4 were formed on the main face of a thin film 3 on the opposite side, N2 is made to react to Si on the face of Si on the concavely depressed part side utilizing a plasma discharge technique, etc.

Description

【発明の詳細な説明】 本発明は半導体圧力感知装置、特にシリコンダイヤフラ
人形圧カセンサに関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to semiconductor pressure sensing devices, and more particularly to silicon diaphragm pressure sensors.

半導体圧力センサは在来のブルドン管やベローズを用い
た機械式圧力センサと異なりて小形化。
Semiconductor pressure sensors are smaller than conventional mechanical pressure sensors that use Bourdon tubes or bellows.

低価格イ1.高性能化が期待でき、その代表的なものに
シリコンダイヤフラム膨圧カセンサがある。
Low price 1. A typical example of this is the silicon diaphragm turgor pressure sensor, which is expected to offer improved performance.

シリコンダイヤフラム膨圧カセンサの構造は第1図に示
すように、例えば厚さ240μm程度のシリコンベレッ
ト1の一生面((100)面又は(110)而)に深い
凹陥部2を形成して一部が上下の圧力差により敏感に凹
凸変形するような約20μmの薄膜とし、この薄膜部3
0表面(凹陥部形成面の反対側の面)にB(ホウ素)を
部分的に拡散して4個の拡散抵抗4を感知素子として存
在させたもので、薄膜の凹凸変形による拡散抵抗の伸縮
からブリッジ結合させた抵抗の変化として圧力を検出す
るものである。
As shown in FIG. 1, the structure of the silicon diaphragm turgor pressure sensor is as shown in FIG. This thin film part 3 is made of a thin film of approximately 20 μm that is sensitively deformed into unevenness due to the pressure difference between the upper and lower sides.
B (boron) is partially diffused on the 0 surface (the surface opposite to the surface on which the recesses are formed), so that four diffused resistors 4 are present as sensing elements, and the expansion and contraction of the diffused resistors due to the uneven deformation of the thin film The pressure is detected as a change in the resistance bridge-coupled from the

このようなシリコンダイヤフラム膨圧カセンサは、通常
、第1図に示すように、ベレット1の凹陥部の形成され
ている側の面の周辺部をダイ又はパッケージ5にガラス
等の接着剤6を介して固着し、パッケージ等の通孔部7
を通して同図矢印で示すように薄膜面に圧力(P)がか
かるようにしている。従来より拡散抵抗の形成された薄
膜の上而には電極とともに絶縁膜、例えば5iOz(酸
化シリコン)等が保護用被膜8として形成されている(
保護用被膜が形成されない場合もある)が、凹陥部2の
形成されたペレット面はシリコンがそのままに露出され
ていたつ しかしセンサの用途が多様化するに従Iうて異なる種々
の気体や液体が圧力センサのペレット面に接触する状態
で利用されるようになると、シリコンのみではある種の
気体や液体により化合物を発生し、センサの信頼性に問
題が生じることが考えられる。
As shown in FIG. 1, such a silicon diaphragm turgor pressure sensor is usually constructed by attaching the peripheral part of the surface of the pellet 1 on which the concave portion is formed to a die or package 5 through an adhesive 6 such as glass. The hole 7 of the package, etc.
Through this, pressure (P) is applied to the thin film surface as shown by the arrow in the figure. Conventionally, an insulating film, such as 5iOz (silicon oxide), etc., is formed as a protective film 8 together with electrodes on the thin film on which the diffused resistance is formed.
However, as the applications of sensors become more diverse, various gases and liquids may be exposed to the pellet surface where the recessed portion 2 is formed. When used in contact with the pellet surface of a pressure sensor, silicon alone may generate compounds with certain gases or liquids, causing problems with the reliability of the sensor.

本発明は上記した問題点を解決するためになされたもの
であり、その目的は、半導体圧力センサの信頼性の向上
にあり、他の目的は多様な用途に適応できる圧力センサ
の提供にある。
The present invention has been made to solve the above-mentioned problems, and its purpose is to improve the reliability of a semiconductor pressure sensor, and another purpose is to provide a pressure sensor that can be applied to a variety of uses.

上記目的を達成するための手段として本発明ではダイヤ
フラム形圧力七ンサにおいて、拡散抵抗等の感知素子の
形成されない側の半導体面に半導体窒化物、例えばシリ
コンナイトライド(sisN4)を保護膜として形成す
ることにより、露出したシリコン面と不活性化したもの
である。
As a means for achieving the above object, in the present invention, in a diaphragm type pressure sensor, a semiconductor nitride such as silicon nitride (sisN4) is formed as a protective film on the semiconductor surface on the side where sensing elements such as diffused resistors are not formed. This makes the exposed silicon surface passivated.

第2図に本発明によるシリコンダイヤフラム膨圧カセン
サの一実施例を断面図により示す。
FIG. 2 shows a cross-sectional view of an embodiment of the silicon diaphragm turgor pressure sensor according to the present invention.

同図において、第1図で掲げた在来形のシリコンダイヤ
フラム膨圧カセンサと共通する構成部分には共通の指示
番号が付されている。同図で示すように、本発明ではダ
イヤフラム形シリコンペレットの拡散抵抗の設けられて
ないシリコン主面、すなわち凹陥部筒2のシリコン面に
対し不活性化スルためにシリコンナイトライド化を行な
い、例えば厚さ1μm又はそれ以下の厚さのシリコンナ
イトライド(S+5N4)膜9を形成して保護膜とする
In the figure, common reference numbers are given to components common to the conventional silicon diaphragm turgor pressure sensor shown in FIG. As shown in the figure, in the present invention, silicon nitride is applied to the main silicon surface of the diaphragm-shaped silicon pellet on which no diffusion resistance is provided, that is, the silicon surface of the recessed cylinder 2, in order to pass passivation. A silicon nitride (S+5N4) film 9 having a thickness of 1 μm or less is formed as a protective film.

このシリコンナイトライド膜形成にあたってはウェハ状
のSi基板の一主面に異方性エツチング技術等によって
凹陥部2を形成する一方、反対側の薄膜3主面に公知の
選択拡散技術により拡散抵抗4を形成した後、凹陥部側
のSi面(図示されナイカ薄いSin、膜を介在させる
)にプラズマ放電技術等を利用しN、をSiに反応させ
ることによりSl、N、膜1を生成する。この81 s
 N4膜は同時に拡散抵抗を形成した面に付着させて最
終保護膜として利用してもよい。
In forming this silicon nitride film, a concave portion 2 is formed on one main surface of the wafer-shaped Si substrate by an anisotropic etching technique, while a diffused resistor 4 is formed on the main surface of the thin film 3 on the opposite side by a well-known selective diffusion technique. After forming , N is reacted with Si using a plasma discharge technique or the like on the Si surface on the side of the recess (a thin Si film is interposed as shown in the figure), thereby producing Sl, N, and film 1. This 81s
The N4 film may be simultaneously attached to the surface on which the diffused resistor is formed and used as a final protective film.

このようにしてSi面に形成されたS t s N4膜
は極めて高い不活性を有し、活性な気体や液体と接触し
ても化合物を作り錐く、かつ構造的にち密であるため物
理的強度も大きく保護膜として有ゆである。
The S ts N4 film formed on the Si surface in this way has extremely high inertness, and even when it comes into contact with active gases or liquids, it forms compounds and is structurally dense, so it is physically It has great strength and is useful as a protective film.

したがって本発明によれば、圧力センサとしての信頼性
が向上するとともに、多様な用途に適応できるため使用
範囲を大幅に拡大できる。
Therefore, according to the present invention, the reliability as a pressure sensor is improved, and the range of use can be greatly expanded because it can be applied to various uses.

本発明は前記実施例に限定されず、これ以外に下記のよ
うに種々の変形例が考えられる。
The present invention is not limited to the above-mentioned embodiments, and various modifications can be made as described below.

(11ペレットの両生面に凹陥部が形成されない場合は
拡散抵抗の設けられない側の面をシリコンナイトライド
化する。
(If a concave portion is not formed on the amphiboid surface of the pellet No. 11, the surface on the side where the diffusion resistance is not provided is made into silicon nitride.

(2)  凹陥部側に拡散抵抗が設けられた場合は拡散
抵抗の設けられない他の主面側をシリコンナイトライド
化するー (3)ダイヤスラム形圧カセンサの基体はシリコン以外
の半導体、例えば化合物半導体を使用する場合も含まれ
る。
(2) If a diffused resistor is provided on the recess side, the other main surface side where the diffused resistor is not provided is made of silicon nitride. (3) The base of the diaphragm pressure sensor is made of a semiconductor other than silicon, such as a compound. This also includes cases where semiconductors are used.

(4)ベレットにおいて凹陥部の形成されない他の部分
の反体側主面には各種の回路素子を組み込むことができ
る。
(4) Various circuit elements can be incorporated into the opposite main surface of the pellet in the other portion where the recessed portion is not formed.

本発明はダイヤフラム膨圧力センサ一般に適用できる。The present invention can be applied to diaphragm swelling pressure sensors in general.

この圧力センサは自動車部品、家庭電器品、楽器、工業
用製品等各方面に応用できる。
This pressure sensor can be applied to various fields such as automobile parts, home appliances, musical instruments, and industrial products.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は在来のシリコンダイヤフラム膨圧カセンサの例
を示す縦断面図である。 第2図は本発明によるシリコンタ゛イヤフラム形圧カセ
ンサの一例を示す縦断面図である。 1・・・シリコン基板、2・・・凹陥部、3・・・薄膜
部、4・・・拡散抵抗、5・・・ダイ又はパッケージ、
6・・・接着剤、7・・・通孔、8・・・絶縁膜、9・
・・シリコンナイトライド膜。
FIG. 1 is a longitudinal sectional view showing an example of a conventional silicon diaphragm turgor pressure sensor. FIG. 2 is a longitudinal sectional view showing an example of a silicon diaphragm type pressure sensor according to the present invention. DESCRIPTION OF SYMBOLS 1... Silicon substrate, 2... Recessed part, 3... Thin film part, 4... Diffused resistance, 5... Die or package,
6...Adhesive, 7...Through hole, 8...Insulating film, 9...
...Silicon nitride film.

Claims (1)

【特許請求の範囲】 1、半導体結晶基板に凹陥部を形成して一部を薄膜とし
、この薄膜の一方の主面に感知素子を設けたダイヤフラ
ム形圧力感知装置において、上記感知装置の設けられな
い側の半導体主面に半導体窒化物を保護膜として形成し
た半導体圧力感知装置。 2、上記半導体基板はシリコンからなり、半導体窒化物
はS s s N4 (三四シリコン化ナイトライド)
である特許請求の範囲第1項に記載の半導体圧力感知装
置。 3、上記感知素子を設けられない側の半導体主面は凹陥
部な3打ものである萌許梢求の範囲第1項又は第2項に
記載の半導体圧力感知装置。
[Scope of Claims] 1. A diaphragm pressure sensing device in which a recess is formed in a semiconductor crystal substrate to partially form a thin film, and a sensing element is provided on one main surface of the thin film, in which the sensing device is provided. A semiconductor pressure sensing device in which a semiconductor nitride is formed as a protective film on the main surface of the non-semiconductor side. 2. The semiconductor substrate is made of silicon, and the semiconductor nitride is SssN4 (S34 silicon nitride).
A semiconductor pressure sensing device according to claim 1. 3. The semiconductor pressure sensing device according to item 1 or 2, wherein the main surface of the semiconductor on the side where the sensing element is not provided is a recessed portion.
JP1271983A 1983-01-31 1983-01-31 Semiconductor pressure sensing device Pending JPS59139679A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1271983A JPS59139679A (en) 1983-01-31 1983-01-31 Semiconductor pressure sensing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1271983A JPS59139679A (en) 1983-01-31 1983-01-31 Semiconductor pressure sensing device

Publications (1)

Publication Number Publication Date
JPS59139679A true JPS59139679A (en) 1984-08-10

Family

ID=11813232

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1271983A Pending JPS59139679A (en) 1983-01-31 1983-01-31 Semiconductor pressure sensing device

Country Status (1)

Country Link
JP (1) JPS59139679A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010038905A (en) * 2008-07-10 2010-02-18 Denso Corp Sensor device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010038905A (en) * 2008-07-10 2010-02-18 Denso Corp Sensor device
US8006553B2 (en) 2008-07-10 2011-08-30 Denso Corporation Semiconductor sensor having heater on insulation film and manufacturing method of the same

Similar Documents

Publication Publication Date Title
US5062302A (en) Laminated semiconductor sensor with overpressure protection
US3697917A (en) Semiconductor strain gage pressure transducer
JPH0750789B2 (en) Method for manufacturing semiconductor pressure converter
JPH0719981A (en) High-temperature pressure sensor
JPH06129933A (en) Overpressure-protecting polysilicon capacitive- differential-pressure sensor and manufacture thereof
JPH08193897A (en) Semiconductor pressure sensor
US6229427B1 (en) Covered sealed pressure transducers and method for making same
US4881056A (en) Facedown-type semiconductor pressure sensor with spacer
US4550612A (en) Integrated pressure sensor
JPS59139679A (en) Semiconductor pressure sensing device
KR100855603B1 (en) Tactile sensor and manafacturing method of tactile sensor
JPH10170367A (en) Semiconductor pressure sensor
JPH10148593A (en) Pressure sensor and capacitance-type pressure sensor chip
JP3617346B2 (en) Semiconductor pressure sensor
JPH0526983Y2 (en)
JP2519393B2 (en) Method for manufacturing semiconductor dynamic quantity sensor
JPS6062164A (en) Manufacture of semiconductor pressure sensor
JPS6155263B2 (en)
JPH06109570A (en) Semiconductor pressure sensor
JPH01274478A (en) Manufacture of semiconductor pressure transducer
JP2002340714A (en) Semiconductor pressure sensor and its manufacturing method
JP4178585B2 (en) Manufacturing method of semiconductor substrate
JPS6079242A (en) Pressure converter
JPH09196786A (en) Semiconductor capacitance-type pressure sensor and its manufacture
JPS592192B2 (en) handoutaiatsuriyokuhenkansouchi