JPS6155263B2 - - Google Patents
Info
- Publication number
- JPS6155263B2 JPS6155263B2 JP8699280A JP8699280A JPS6155263B2 JP S6155263 B2 JPS6155263 B2 JP S6155263B2 JP 8699280 A JP8699280 A JP 8699280A JP 8699280 A JP8699280 A JP 8699280A JP S6155263 B2 JPS6155263 B2 JP S6155263B2
- Authority
- JP
- Japan
- Prior art keywords
- type
- sio
- substrate
- film
- pressure
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 239000000758 substrate Substances 0.000 claims description 44
- 238000001514 detection method Methods 0.000 claims description 20
- 239000004065 semiconductor Substances 0.000 claims description 14
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 6
- 229910052814 silicon oxide Inorganic materials 0.000 claims description 6
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims description 5
- 229910052710 silicon Inorganic materials 0.000 claims description 5
- 239000010703 silicon Substances 0.000 claims description 5
- 230000002093 peripheral effect Effects 0.000 claims description 3
- 238000005259 measurement Methods 0.000 claims 1
- 230000003014 reinforcing effect Effects 0.000 claims 1
- 229910004298 SiO 2 Inorganic materials 0.000 description 41
- 230000000694 effects Effects 0.000 description 10
- 239000000853 adhesive Substances 0.000 description 4
- 230000001070 adhesive effect Effects 0.000 description 4
- 239000002184 metal Substances 0.000 description 4
- 229910052751 metal Inorganic materials 0.000 description 4
- 238000005452 bending Methods 0.000 description 3
- 239000000463 material Substances 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 239000003822 epoxy resin Substances 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 229920000647 polyepoxide Polymers 0.000 description 1
- 229910000679 solder Inorganic materials 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/84—Types of semiconductor device ; Multistep manufacturing processes therefor controllable by variation of applied mechanical force, e.g. of pressure
Landscapes
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Physics & Mathematics (AREA)
- Ceramic Engineering (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Measuring Fluid Pressure (AREA)
- Pressure Sensors (AREA)
Description
【発明の詳細な説明】
この発明は主面部に複数個の歪み抵抗層が形成
されたシリコン(Si)基板を圧力検出用可撓板と
する感圧素子を備えた半導体圧力検出装置の改良
に関するものである。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an improvement in a semiconductor pressure detection device equipped with a pressure sensitive element using a silicon (Si) substrate on which a plurality of strain resistance layers are formed on the main surface thereof as a flexible plate for pressure detection. It is something.
第1図は従来の半導体圧力検出装置の一例を示
す断面図である。 FIG. 1 is a sectional view showing an example of a conventional semiconductor pressure detection device.
図において、1は圧力検出用可撓板を構成する
厚さの薄いn形Si基板、2はn形Si基板1の第1
の主面部に、この第1の主面の中心の囲りに互い
に所定間隔をおくとともに上記中心から所定距離
を隔ててp形不純物を拡散して形成され、n形Si
基板1の第1の主面部に生じた歪みに応じて抵抗
値が変化する複数個のp形歪み抵抗層、3はn形
Si基板1の第2の主面の周縁部上にこれと一体に
全周にわたつて設けられn形Si基板1の機械的強
度を補強する筒状部、4は複数個のp形歪み抵抗
層2の表面上に含んでn形Si基板1の第1の主面
上に形成された酸化ケイ素(SiO2)膜、5はp形
歪み抵抗層2の両端部にそれぞれSiO2膜4を貫
通して接続された金属電極である。6はn形Si基
板1、p形歪み抵抗層2、筒状部3、SiO2膜4
および金属電極5からなる感圧素子である。7は
Si平板からなり感圧素子6の筒状部3に接着され
て感圧素子6を支持する支持体、8は金を主成分
とする合金ろう、エポキシ樹脂などからなり感圧
素子6の筒状部3と支持体7とを接着する接着
材、9はn形Si基板1の第2の主面の接する空間
と外気とを連通するように、支持体7に設けられ
た貫通孔である。 In the figure, 1 is a thin n-type Si substrate constituting a flexible plate for pressure detection, and 2 is the first part of the n-type Si substrate 1.
is formed by diffusing p-type impurities around the center of the first main surface at a predetermined distance from each other and at a predetermined distance from the center.
A plurality of p-type strained resistance layers whose resistance value changes according to the strain generated on the first main surface of the substrate 1; 3 is an n-type strained resistance layer;
A cylindrical part is provided on the peripheral edge of the second main surface of the Si substrate 1 and integrally with the second main surface over the entire circumference to reinforce the mechanical strength of the n-type Si substrate 1, and 4 is a plurality of p-type strain resistors. A silicon oxide (SiO 2 ) film 5 is formed on the first main surface of the n-type Si substrate 1 including on the surface of the layer 2 , and a SiO 2 film 4 is formed on both ends of the p-type strain resistance layer 2 . It is a metal electrode connected through it. 6 is an n-type Si substrate 1, a p-type strain resistance layer 2, a cylindrical part 3, and a SiO 2 film 4
and a metal electrode 5. 7 is
A support made of a Si flat plate and bonded to the cylindrical part 3 of the pressure-sensitive element 6 to support the pressure-sensitive element 6; 8 is made of a gold-based alloy solder, epoxy resin, etc., and the cylindrical part of the pressure-sensitive element 6 is An adhesive 9 for bonding the part 3 and the support 7 is a through hole provided in the support 7 so as to communicate the space where the second main surface of the n-type Si substrate 1 is in contact with the outside air.
このような半導体圧力検出装置を用いて圧力を
測定する場合には、感圧素子6のn形Si基板1の
第1の主面に図示圧力P1を加えるとともに、その
第2の主面に支持体7の貫通孔9を通して図示圧
力P2を加える。このとき、圧力P1と圧力P2との大
きさが異なれば、n形Si基板1に、圧力P1と圧力
P2との差に比例した上下方向の撓みが生ずる。こ
のn形Si基板1の上下方向の撓みによつて、n形
Si基板1の第1の主面部に歪みが生じて、p形歪
み抵抗層2の抵抗値が変化する。従つて、p形歪
み抵抗層2を用いたハーフブリツジ回路もしくは
フルブリツジ回路を構成し、これらのブリツジ回
路の出力が、圧力P1と圧力P2とが等しいときに、
零になるように設定すれば、これらのブリツジ回
路の出力から圧力P1と圧力P2との差を測定するこ
とができる。 When measuring pressure using such a semiconductor pressure detection device, an indicated pressure P1 is applied to the first main surface of the n-type Si substrate 1 of the pressure sensitive element 6, and an indicated pressure P1 is applied to the second main surface of the n-type Si substrate 1 of the pressure sensitive element 6. An indicated pressure P 2 is applied through the through hole 9 of the support 7 . At this time, if the magnitudes of pressure P 1 and pressure P 2 are different, pressure P 1 and pressure
A vertical deflection occurs that is proportional to the difference from P 2 . Due to this vertical bending of the n-type Si substrate 1, the n-type
Strain occurs in the first main surface portion of the Si substrate 1, and the resistance value of the p-type strained resistance layer 2 changes. Therefore, a half-bridge circuit or a full-bridge circuit using the p-type strained resistance layer 2 is constructed, and when the output of these bridge circuits is equal to pressure P 1 and pressure P 2 ,
If set to zero, the difference between the pressures P1 and P2 can be measured from the outputs of these bridge circuits.
ところで、この従来例の半導体圧力検出装置で
は、感圧素子6とn形Si基板1および筒状部3と
支持体7とがSi材料で構成されているので、これ
らの熱膨張係数には差がないが、n形Si基板1の
熱膨張係数とSiO2膜4のそれとに差があり、筒
状部3および支持体7の熱膨張係数と接着材8の
それとに差がある。従つて、これらのn形Si基板
1、筒状部3、SiO2膜4および接着材8の温度
が変化した場合には、n形Si基板1に上述の圧力
P1および圧力P2が加えられていないときにおいて
も、n形Si基板1の熱膨張係数とSiO2膜4のそれ
との差、並びに筒状部3および支持体7の熱膨張
係数と接着剤8のそれとの差によるバイメタル作
用によつて、n形Si基板1に撓みが生じ、上述の
ブリツジ回路のいわゆるオフセツト出力が発生す
る。特に、高感度の半導体圧力検出装置を製作し
ようとする場合には、n形Si基板1の厚さを極め
て薄くする必要があるので、上記バイメタル作用
によるn形Si基板1の撓みが大きくなり、上記オ
フセツト出力が大きくなるという欠点があつた。 By the way, in this conventional semiconductor pressure detection device, since the pressure sensitive element 6, the n-type Si substrate 1, the cylindrical part 3, and the support body 7 are made of Si material, there is a difference in their thermal expansion coefficients. However, there is a difference between the coefficient of thermal expansion of the n-type Si substrate 1 and that of the SiO 2 film 4, and a difference between the coefficient of thermal expansion of the cylindrical portion 3 and the support body 7 and that of the adhesive material 8. Therefore, when the temperature of these n-type Si substrate 1, cylindrical part 3, SiO 2 film 4, and adhesive 8 changes, the above-mentioned pressure is applied to n-type Si substrate 1.
Even when P 1 and pressure P 2 are not applied, the difference between the thermal expansion coefficient of the n-type Si substrate 1 and that of the SiO 2 film 4, the thermal expansion coefficient of the cylindrical part 3 and the support body 7, and the adhesive Due to the bimetallic action caused by the difference between the two and the two, the n-type Si substrate 1 is deflected, and the so-called offset output of the bridge circuit described above is generated. In particular, when manufacturing a highly sensitive semiconductor pressure detection device, it is necessary to make the n-type Si substrate 1 extremely thin, so the bending of the n-type Si substrate 1 due to the bimetal action increases. The disadvantage is that the offset output increases.
この発明は、上述の欠点に鑑みてなされたもの
で、圧力検出用可撓板であるSi基板の熱膨張係数
とこのSi基板の主面上に形成されたSiO2膜の熱膨
張係数との差によるバイメタル作用を抑制するこ
とができるようにすることによつて、オフセツト
出力の小さい半導体圧力検出装置を提供すること
を目的とする。 This invention was made in view of the above-mentioned drawbacks, and is based on the difference between the thermal expansion coefficient of the Si substrate, which is a flexible plate for pressure detection, and the thermal expansion coefficient of the SiO 2 film formed on the main surface of this Si substrate. It is an object of the present invention to provide a semiconductor pressure detection device with a small offset output by suppressing the bimetallic effect caused by the difference.
第2図はこの発明の一実施例の半導体圧力検出
装置を示す断面図である。 FIG. 2 is a sectional view showing a semiconductor pressure detection device according to an embodiment of the present invention.
図において、11,12および13はそれぞれ
第1図に示した従来例のn形Si基板1、p形歪み
抵抗層2および筒状部3と同様のn形Si基板、p
形歪み抵抗層および筒状部である。14aは複数
個のp形歪み抵抗層12の表面上を含んでn形Si
基板11の第1の主面上に形成された第1の
SiO2膜、14bは筒状部13の端面上に形成さ
れた第2のSiO2膜、15はp形歪み抵抗層12
の両端部にそれぞれSiO2膜14aを貫通して接
続された金属電極である。16はn形Si基板1
1、p形歪み抵抗層12、筒状部13、第1の
SiO2膜14a、第2のSiO2膜14bおよび金属
電極15からなるこの実施例の感圧素子である。
17はSi平板からなり感圧素子16を支持する支
持体、18aは支持体17の一方の主面上に形成
され、温度1250℃程度の不活性ガスの雰囲中にお
いて数十気圧の圧力で、感圧素子16の第2の
SiO2膜14bと一体化された第3のSiO2膜、1
8bは支持体17の他方の主面上に形成された第
4のSiO2膜、19はn形Si基板1の第2の主面の
接する空間と外気とを連通するように、支持体1
7、第3のSiO2膜18aおよび第4のSiO2膜1
8bに設けられた貫通孔である。 In the figure, 11, 12 and 13 are the same n-type Si substrate 1, p-type strain resistance layer 2 and cylindrical part 3 of the conventional example shown in FIG.
A shape strain resistance layer and a cylindrical part. 14a is an n-type Si layer including the surfaces of the plurality of p-type strained resistance layers 12.
A first plate formed on the first main surface of the substrate 11
A SiO 2 film 14b is a second SiO 2 film formed on the end surface of the cylindrical portion 13, and 15 is a p-type strain resistance layer 12.
Metal electrodes are connected to both ends of the SiO 2 film 14a through the SiO 2 film 14a. 16 is n-type Si substrate 1
1, p-type strain resistance layer 12, cylindrical part 13, first
The pressure-sensitive element of this embodiment is composed of a SiO 2 film 14a, a second SiO 2 film 14b, and a metal electrode 15.
17 is a support made of a Si flat plate and supports the pressure-sensitive element 16, and 18a is formed on one main surface of the support 17, and is heated at a pressure of several tens of atmospheres in an inert gas atmosphere at a temperature of about 1250°C. , the second of the pressure sensitive element 16
Third SiO 2 film 1 integrated with SiO 2 film 14b
8b is a fourth SiO 2 film formed on the other main surface of the support 17, and 19 is a fourth SiO 2 film formed on the other main surface of the support 17 so as to communicate the space where the second main surface of the n-type Si substrate 1 is in contact with the outside air.
7. Third SiO 2 film 18a and fourth SiO 2 film 1
This is a through hole provided in 8b.
この実施例の半導体圧力検出装置を用いて圧力
を測定する方法は、第1図に示した従来例の半導
体圧力検出装置を用いて圧力を測定する方法と同
様であるので、その説明を省略する。 The method of measuring pressure using the semiconductor pressure detection device of this embodiment is the same as the method of measuring pressure using the conventional semiconductor pressure detection device shown in FIG. 1, so the explanation thereof will be omitted. .
この実施例の半導体圧力検出装置では、n形Si
基板11および第1のSiO2膜14aのそれぞれ
の熱膨張係数の差による第1のバイメタル作用
と、筒状部13および第2のSiO2膜14bのそ
れぞれの熱膨張係数の差による第2のバイメタル
作用とが互いに打ち消し合うようになるので、上
記第1のバイメタル作用によつてn形Si基板11
に撓みが生ずるのを上記第2のバイメタル作用に
よつて抑制することが可能となり、オフセツト出
力を小さくすることができる。また、支持体17
および第3のSiO2膜18aのそれぞれの熱膨張
係数の差による第3のバイメタル作用と、支持体
17および第4のSiO2膜18bのそれぞれの熱
膨張係数の差による第4のバイメタル作用とが互
いに打ち消し合うので、これらのバイメタル作用
によつて、支持体17が変形するのを小さくする
ことができる。従つて、第2のSiO2膜14bと
第3のSiO2膜18aとが一体化されても、n形Si
基板11に撓みが生ずるのを小さくすることがで
きる。しかも、第1のSiO2膜14a、第2の
SiO2膜14b、第3のSiO2膜18aおよび第4
のSiO2膜18bの膜厚をそれぞれ適当な厚さに
制御することによつて、n形Si基板11に撓みが
ほとんど生じないようにすることも可能となり、
オフセツト出力をほとんど零にすることができ
る。 In the semiconductor pressure detection device of this embodiment, n-type Si
The first bimetallic effect is caused by the difference in the coefficient of thermal expansion between the substrate 11 and the first SiO 2 film 14a, and the second effect is caused by the difference in the coefficient of thermal expansion between the cylindrical part 13 and the second SiO 2 film 14b. Since the bimetallic effects cancel each other out, the n-type Si substrate 11 is
It is possible to suppress the occurrence of deflection by the second bimetal action, and it is possible to reduce the offset output. In addition, the support body 17
and a third bimetal action due to the difference in the coefficient of thermal expansion of the third SiO 2 film 18a, and a fourth bimetal action due to the difference in the coefficient of thermal expansion of the support 17 and the fourth SiO 2 film 18b. Since these cancel each other out, deformation of the support body 17 can be reduced by these bimetallic effects. Therefore, even if the second SiO 2 film 14b and the third SiO 2 film 18a are integrated, the n-type Si
Deflection of the substrate 11 can be reduced. Moreover, the first SiO 2 film 14a, the second
SiO 2 film 14b, third SiO 2 film 18a and fourth
By controlling the film thicknesses of the SiO 2 films 18b to appropriate thicknesses, it is possible to prevent almost any bending from occurring in the n-type Si substrate 11.
Offset output can be reduced to almost zero.
なお、この実施例では、支持体17に貫通孔1
9を設け、n形Si基板11の第1および第2の主
面にそれぞれ加えられる圧力の差を測定するよう
にしたが、n形Si基板1の第1の主面に加えられ
る圧力を測定するようにする場合には、貫通孔1
9をふさいで、n形Si基板1の第2の主面の接す
る空間の圧力が一定になるようにすればよい。ま
た、この実施例では、n形Si基板11を用いた
が、必ずしもこれはn形Si基板に限定する必要が
なく、p形Si基板を用いてもよい。この場合に
は、p形歪み抵孔層12をn形歪み抵抗層にすれ
ばよい。 In addition, in this embodiment, the through hole 1 is provided in the support body 17.
9 was installed to measure the difference in pressure applied to the first and second main surfaces of the n-type Si substrate 11, but the pressure applied to the first main surface of the n-type Si substrate 1 was measured. If so, through hole 1
9 to keep the pressure in the space in contact with the second main surface of the n-type Si substrate 1 constant. Further, in this embodiment, the n-type Si substrate 11 is used, but it is not necessarily limited to the n-type Si substrate, and a p-type Si substrate may also be used. In this case, the p-type strained resistance layer 12 may be replaced with an n-type strained resistance layer.
以上、説明したように、この発明の半導体圧力
検出装置では、第1の主面上に第1のSiO2膜が
形成され圧力検出用可撓板を構成するSi基板とこ
のSi基板の第2の主面の周縁部上にこれと一体に
設けられ端面に第2のSiO2膜が形成された筒状
部とを有する感圧素子、および一方の主面上に上
記第2のSiO2膜と一体化された第3のSiO2膜が
形成され他方の主面上に第4のSiO2膜が形成さ
れた支持体を備えているので、上記Si基板の熱膨
張係数と上記第1のSiO2膜の熱膨張係数との差
による第1のバイメタル作用を上記筒状部の熱膨
張係数と第2のSiO2膜の熱膨張係数との差によ
る第2のバイメタル作用によつて抑制するととも
に上記支持体の熱膨張係数と上記第3のSiO2膜
の熱膨張係数との差による第3のバイメタル作用
を上記支持体の熱膨張係数と上記第4のSiO2膜
の熱膨張係数との差による第4のバイメタル作用
によつて抑制することができる。従つて、これら
の第1、第2、第3および第4のバイメタル作用
によつて上記Si基板に撓みが生ずるのを抑制する
ことが可能となり、オフセツト出力を小さくする
ことができる。 As described above, in the semiconductor pressure detection device of the present invention, the first SiO 2 film is formed on the first main surface and the Si substrate constituting the flexible plate for pressure detection and the second a pressure-sensitive element having a cylindrical part integrally provided on the peripheral edge of the main surface thereof and having a second SiO 2 film formed on the end face, and the second SiO 2 film on one main surface. The third SiO 2 film is formed integrally with the SiO 2 film, and the fourth SiO 2 film is formed on the other main surface of the support. The first bimetallic effect due to the difference in the thermal expansion coefficient of the SiO 2 film is suppressed by the second bimetallic effect due to the difference in the thermal expansion coefficient of the cylindrical part and the thermal expansion coefficient of the second SiO 2 film. At the same time, the third bimetallic effect due to the difference between the thermal expansion coefficient of the support and the thermal expansion coefficient of the third SiO 2 film is expressed as the thermal expansion coefficient of the support and the thermal expansion coefficient of the fourth SiO 2 film. This can be suppressed by the fourth bimetallic effect due to the difference in . Therefore, it is possible to suppress the occurrence of deflection in the Si substrate due to the effects of these first, second, third, and fourth bimetals, and it is possible to reduce the offset output.
第1図は従来の半導体圧力検出装置の一例を示
す断面図、第2図はこの発明の一実施例の半導体
圧力検出装置を示す断面図である。
図において、11は圧力検出用可撓板を構成す
るn形Si基板(第2伝導形のシリコン基板)、1
2はp形歪み抵抗層(第1伝導形の歪み抵抗
層)、13は筒状部、14aおよび14bはそれ
ぞれ第1および第2のSiO2膜、16は感圧素
子、17は支持体、18aおよび18bはそれぞ
れ第3および第4のSiO2膜である。なお、図中
同一符号はそれぞれ同一もしくは相当部分を示
す。
FIG. 1 is a sectional view showing an example of a conventional semiconductor pressure detection device, and FIG. 2 is a sectional view showing a semiconductor pressure detection device according to an embodiment of the present invention. In the figure, 11 is an n-type Si substrate (second conductivity type silicon substrate) constituting a flexible plate for pressure detection;
2 is a p-type strain resistance layer (first conduction type strain resistance layer), 13 is a cylindrical part, 14a and 14b are first and second SiO 2 films, respectively, 16 is a pressure sensitive element, 17 is a support body, 18a and 18b are third and fourth SiO 2 films, respectively. Note that the same reference numerals in the figures indicate the same or corresponding parts.
Claims (1)
み抵抗層が形成され圧力検出用可撓板を構成する
第2伝導形のシリコン基板と、このシリコン基板
の第2の主面の周縁部上にこれと一体に全周にわ
たつて設けられ上記シリコン基板の機械的強度を
補強する筒状部と、上記歪み抵抗層の表面上を含
んで上記シリコン基板の上記第1の主面上に形成
された第1の酸化ケイ素膜と、上記筒状部の端面
上に形成された第2の酸化ケイ素膜とを有する感
圧素子、およびシリコン板からなり一方の主面上
に上記第2の酸化ケイ素膜と一体化された第3の
酸化ケイ素膜が形成されるとともに他方の主面上
に第4の酸化ケイ素膜が形成され上記感圧素子を
支持する支持体を備えた半導体圧力検出装置。1. A silicon substrate of a second conductivity type, which has a strain resistance layer of a first conductivity type for strain measurement formed on a first main surface thereof and constitutes a flexible plate for pressure detection; a cylindrical portion integrally provided on and around the peripheral edge portion and reinforcing the mechanical strength of the silicon substrate; and the first main surface of the silicon substrate including the surface of the strain resistance layer. a pressure-sensitive element having a first silicon oxide film formed thereon and a second silicon oxide film formed on the end surface of the cylindrical part; A third silicon oxide film integrated with the second silicon oxide film is formed, a fourth silicon oxide film is formed on the other main surface, and a semiconductor pressure sensor is provided with a support for supporting the pressure sensitive element. Detection device.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8699280A JPS5710980A (en) | 1980-06-23 | 1980-06-23 | Semiconductor pressure detecting device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8699280A JPS5710980A (en) | 1980-06-23 | 1980-06-23 | Semiconductor pressure detecting device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5710980A JPS5710980A (en) | 1982-01-20 |
JPS6155263B2 true JPS6155263B2 (en) | 1986-11-27 |
Family
ID=13902359
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP8699280A Granted JPS5710980A (en) | 1980-06-23 | 1980-06-23 | Semiconductor pressure detecting device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5710980A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6387671A (en) * | 1986-10-01 | 1988-04-18 | Seiko Epson Corp | Magnetic recorder |
CN102012287A (en) * | 2010-09-29 | 2011-04-13 | 东南大学 | Electrical pressure sensor of circular silicon film microcomputer |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6050970A (en) * | 1983-08-31 | 1985-03-22 | Toshiba Corp | Semiconductor pressure converter |
JPS62127637A (en) * | 1985-11-28 | 1987-06-09 | Yokogawa Electric Corp | Semiconductor pressure transducer |
JP5867057B2 (en) * | 2011-12-16 | 2016-02-24 | 株式会社豊田中央研究所 | MEMS device |
-
1980
- 1980-06-23 JP JP8699280A patent/JPS5710980A/en active Granted
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6387671A (en) * | 1986-10-01 | 1988-04-18 | Seiko Epson Corp | Magnetic recorder |
CN102012287A (en) * | 2010-09-29 | 2011-04-13 | 东南大学 | Electrical pressure sensor of circular silicon film microcomputer |
Also Published As
Publication number | Publication date |
---|---|
JPS5710980A (en) | 1982-01-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8161820B2 (en) | Pressure sensor | |
KR100507942B1 (en) | Pressure sensor for semi-conductor | |
US5537882A (en) | Semiconductor sensor for detecting physical amount without thermal hypsteresis where output wiring is disposed in a stress insensitive direction | |
US7808365B2 (en) | Pressure sensor | |
JPS60128673A (en) | Semiconductor pressure-sensing device | |
WO2000039551A1 (en) | Pressure sensor | |
JPH07113647B2 (en) | Semiconductor acceleration sensor | |
JP3873454B2 (en) | Semiconductor pressure sensor | |
US6838303B2 (en) | Silicon pressure sensor and the manufacturing method thereof | |
WO2010055734A1 (en) | Semiconductor pressure sensor | |
JP2000340805A (en) | Electronic part and manufacture | |
US5444901A (en) | Method of manufacturing silicon pressure sensor having dual elements simultaneously mounted | |
JPS6155263B2 (en) | ||
JPS5887880A (en) | Semiconductor diaphragm type sensor | |
JP5151281B2 (en) | Semiconductor pressure sensor | |
JPH0419495B2 (en) | ||
JP3543530B2 (en) | Semiconductor pressure sensor | |
JP2512220B2 (en) | Multi-function sensor | |
JP2864700B2 (en) | Semiconductor pressure sensor and method of manufacturing the same | |
JPH05343705A (en) | Pressure sensor using soi board | |
JPH098326A (en) | Semiconductor pressure sensor | |
JPH036674B2 (en) | ||
JP2007093242A (en) | Pressure sensor | |
JPH01183165A (en) | Semiconductor pressure sensor | |
JPH0536993A (en) | Semiconductor pressure detector |