JPH09196786A - Semiconductor capacitance-type pressure sensor and its manufacture - Google Patents

Semiconductor capacitance-type pressure sensor and its manufacture

Info

Publication number
JPH09196786A
JPH09196786A JP991096A JP991096A JPH09196786A JP H09196786 A JPH09196786 A JP H09196786A JP 991096 A JP991096 A JP 991096A JP 991096 A JP991096 A JP 991096A JP H09196786 A JPH09196786 A JP H09196786A
Authority
JP
Japan
Prior art keywords
insulating film
pressure sensor
film
diaphragm portion
semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP991096A
Other languages
Japanese (ja)
Inventor
Michio Nemoto
道夫 根本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokin Corp
Original Assignee
Tokin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokin Corp filed Critical Tokin Corp
Priority to JP991096A priority Critical patent/JPH09196786A/en
Publication of JPH09196786A publication Critical patent/JPH09196786A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measuring Fluid Pressure (AREA)
  • Pressure Sensors (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a sensor whose temperature characteristic is good by a method wherein an insulating film is formed on a face side opposite to an electrode part at a diaphragm part on a silicon substrate and another insulating film which is equivalent to the insulating film is formed on a face on its opposite side. SOLUTION: A lower-side composite insulating film 1 is formed on a lower-side face opposite to an electrode part 17 at a diaphragm part 14 on a silicon substrate 15, and an upper-side composite insulating film 5 is formed on an opposite side face. The insulating films 1, 5 are composed respectively of oxide films 2, 6 and of nitride films 3, 7, their film thickness is selected respectively in a range of about 1000 to 3000Å, and the films are formed by a CVD method. When the diaphragm part 14 on the substrate 15 is bent by a pressure difference, a capacitance value between the diaphragm part and the electrode part 17 is changed, and a change in the capacitance value is output to a processing circuit at a later stage. By this method, a stress is applied to the diaphragm part 14 from the upper side and the lower side by the insulating films 1, 5, and it is possible to prevent the diaphragm part 14 from being deformed due to the stress and due to a temperature change.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は,各種産業機器,家
電製品,自動車等の各種圧力検出に,用いられる半導体
容量式圧力センサに関するものであり,特に,温度特性
を改善した対策を施した,圧力センサに関する。詳しく
は,自動車内の圧力検出,家電機器等の圧力検出に使用
される,半導体容量式圧力センサの検出素子部分の保持
構造に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor capacitive pressure sensor used for detecting various pressures in various industrial equipments, home electric appliances, automobiles, etc., and in particular, measures for improving temperature characteristics are taken, Regarding a pressure sensor. More specifically, the present invention relates to a holding structure of a detection element portion of a semiconductor capacitive pressure sensor used for pressure detection in automobiles, pressure detection in home appliances and the like.

【0002】[0002]

【従来の技術】図2は従来の半導体圧力センサの一例を
示す断面図である。図2を参照して,半導体圧力センサ
50は,第1の外ケースとしての上側ケース11ととも
にセンサの外郭を形成する第2の外ケースの下側外ケー
ス12の上に,検出素子部51が,接着剤13によって
接合されており,前記検出素子部51は,被測定圧力に
より変形するダイヤフラム部14を有するシリコン基板
15と絶縁基板16とが静電接合等の手段によって接合
されている。
2. Description of the Related Art FIG. 2 is a sectional view showing an example of a conventional semiconductor pressure sensor. Referring to FIG. 2, in the semiconductor pressure sensor 50, the detection element portion 51 is provided on the lower outer case 12 of the second outer case that forms the outer shell of the sensor together with the upper case 11 as the first outer case. The detector element 51 is joined by an adhesive 13, and a silicon substrate 15 having a diaphragm portion 14 that is deformed by the pressure to be measured and an insulating substrate 16 are joined by means such as electrostatic joining.

【0003】ここで,絶縁基板16には,空気コンデン
サ部の一方の電極である電極部17が形成され,かつゲ
ージ圧検出対応のための貫通穴18が開けられている。
Here, an electrode portion 17 which is one of the electrodes of the air condenser portion is formed on the insulating substrate 16 and a through hole 18 for opening the gauge pressure is formed.

【0004】更に,前記ダイヤフラム部14の下側面
(電極部17と対向する側)には,ダイヤフラム部14
と電極17との間の絶縁対策として,絶縁膜52等が形
成される。
Further, the diaphragm portion 14 is provided on the lower side surface of the diaphragm portion 14 (the side facing the electrode portion 17).
An insulating film 52 or the like is formed as a measure for insulation between the electrode 17 and the electrode 17.

【0005】図1の従来例では,圧力検出として静電容
量方式の例であり,シリコン基板15のダイヤフラム部
14が圧力差(P=P1 −P2 )を受けて曲がる事によ
り,ダイヤフラム部14と電極部17との間にて形成さ
れ空気コンデンサの静電容量値が変化し,この容量の変
化を後段の図示しない処理回路(容量−周波数変換回
路)の出力としている。
The conventional example shown in FIG. 1 is an example of an electrostatic capacity method for pressure detection, and the diaphragm portion 14 of the silicon substrate 15 bends in response to a pressure difference (P = P 1 -P 2 ), so that the diaphragm portion is bent. The capacitance value of the air capacitor formed between the electrode 14 and the electrode portion 17 changes, and this change in capacitance is used as the output of a processing circuit (capacitance-frequency conversion circuit) (not shown) in the subsequent stage.

【0006】[0006]

【発明が解決しようとする課題】前述した従来の方式に
は,以下の問題点がある。
The above-mentioned conventional method has the following problems.

【0007】まず,第1に,絶縁基板16,接着剤1
3,下側ケース12間の個々の線膨脹係数の僅かな相違
により周囲温度が変化した時,平面方向の機械的歪が発
生し,静電容量の温度係数は,完全には零にできない。
First, first, the insulating substrate 16 and the adhesive 1
3. When the ambient temperature changes due to a slight difference in the coefficient of linear expansion between the lower cases 12, mechanical strain in the plane direction occurs and the temperature coefficient of capacitance cannot be completely zero.

【0008】第2の問題点として,シリコン基板15の
ダイヤフラム部14の下側の絶縁膜である酸化膜52
は,シリコン酸化膜等が一般的であるが,基板であるシ
リコンと,前記酸化膜52との線膨脹係数の差によっ
て,温度変化により,シリコン基板15のダイヤフラム
部14にストレス(熱応力)がかかる。
A second problem is that the oxide film 52, which is an insulating film below the diaphragm portion 14 of the silicon substrate 15, is formed.
In general, a silicon oxide film or the like is used, but stress (thermal stress) is applied to the diaphragm portion 14 of the silicon substrate 15 due to a temperature change due to a difference in linear expansion coefficient between the substrate silicon and the oxide film 52. It takes.

【0009】第3の問題点として,前記第1の問題点の
原因と同様に,温度変化によって,ダイヤフラム部14
が変形し,従って,温度特性が劣化してしまう。
A third problem is that the diaphragm portion 14 is affected by the temperature change in the same manner as the cause of the first problem.
Is deformed, and the temperature characteristics are deteriorated.

【0010】そこで,本発明の技術的課題は,ダイヤフ
ラム部の応力による変形と補正した温度特性の良好な精
度の高い半導体容量式圧力センサとその製造方法とを提
供することにある。
Therefore, a technical object of the present invention is to provide a highly accurate semiconductor capacitive pressure sensor having a good temperature characteristic in which the deformation of the diaphragm portion due to the stress and the corrected temperature characteristic are excellent, and a manufacturing method thereof.

【0011】[0011]

【課題を解決するための手段】前記課題を解決するため
に,本発明の半導体容量式圧力センサでは,被測定圧力
より変形するダイヤフラム部を有するシリコン基板と,
電極部が形成された絶縁基板とが接合されて形成された
検出素子部と,第1の外ケース,第2の外ケースとを有
する半導体容量式圧力センサにおいて,前記シリコン基
板上の前記ダイヤフラム部の,前記電極部と対向する面
側に,少くとも一層の,第1の絶縁膜が形成されてお
り,前記ダイヤフラム部の,反対側面にも,前記絶縁膜
と同等の少くとも一層の第2の絶縁膜が形成されている
ことを特徴としている。
In order to solve the above-mentioned problems, in the semiconductor capacitive pressure sensor of the present invention, a silicon substrate having a diaphragm portion which is deformed from the pressure to be measured,
In a semiconductor capacitive pressure sensor having a detection element portion formed by joining an insulating substrate having an electrode portion formed thereon, a first outer case and a second outer case, the diaphragm portion on the silicon substrate. At least one first insulating film is formed on the surface side facing the electrode portion, and at least one second insulating film equivalent to the insulating film is formed on the opposite side surface of the diaphragm portion. Is characterized in that the insulating film is formed.

【0012】また,本発明の半導体容量式圧力センサで
は,前記半導体容量式圧力センサにおいて,前記ダイヤ
フラム部上の,前記第1又は第2の絶縁膜は,酸化シリ
コン膜(SiO2 )と,窒化シリコン膜(Si3 4
との複合膜で構成されており,前記複合膜は,CVD
法,スパッター法,及び,熱酸化法のうちの少くとも一
種の方法によって形成されていることを特徴としてい
る。
Further, in the semiconductor capacitive pressure sensor of the present invention, in the semiconductor capacitive pressure sensor, the first or second insulating film on the diaphragm portion is a silicon oxide film (SiO 2 ) and a nitride film. Silicon film (Si 3 N 4 )
And a composite film formed by CVD.
It is characterized in that it is formed by at least one of the method, the sputtering method, and the thermal oxidation method.

【0013】また,本発明の半導体容量式圧力センサの
製造方法では,被測定圧力により変形するダイヤフラム
部と有するシリコン基板と,電極部を備えた絶縁基板と
を接合して,検出素子部を形成する半導体容量式圧力セ
ンサの製造方法において,前記シリコン基板上の前記ダ
イヤフラム部の前記電極部と対向する面側にCVD法,
スパッター法及び熱酸化法のうちの少くとも一種の方法
により第1の絶縁膜を形成し,前記ダイヤフラム部の反
対側面にも,前記絶縁膜と同等第2の絶縁膜を前記CV
D法,スパッター法及び熱酸化法のうちの少くとも一種
の方法により第2の絶縁膜を形成することを特徴として
いる。
Further, in the method of manufacturing a semiconductor capacitive pressure sensor of the present invention, a silicon substrate having a diaphragm portion which is deformed by a pressure to be measured and an insulating substrate having an electrode portion are bonded to each other to form a detection element portion. In the method of manufacturing a semiconductor capacitance type pressure sensor according to the above, a CVD method is provided on a surface side of the diaphragm section on the silicon substrate facing the electrode section,
The first insulating film is formed by at least one of a sputter method and a thermal oxidation method, and a second insulating film equivalent to the insulating film is formed on the opposite side of the diaphragm portion to the CV.
The method is characterized in that the second insulating film is formed by at least one of the D method, the sputtering method, and the thermal oxidation method.

【0014】さらに,本発明の半導体容量式圧力センサ
の製造方法では,前記半導体容量式圧力センサの製造方
法において,前記第1又は第2の絶縁膜は,酸化シリコ
ン膜と窒化シリコン膜とを含む複合膜であることを特徴
としている。
Furthermore, in the method of manufacturing a semiconductor capacitive pressure sensor according to the present invention, in the method of manufacturing a semiconductor capacitive pressure sensor, the first or second insulating film includes a silicon oxide film and a silicon nitride film. It is characterized by being a composite membrane.

【0015】[0015]

【発明の実施の形態】以下,本発明の実施の形態につい
て説明する。
Embodiments of the present invention will be described below.

【0016】図1は本発明の実施の一形態による半導体
容量式圧力センサを示す断面図である。図1に示すよう
に,第1の外ケースとしての上側ケース11とともにセ
ンサの外郭を形成する第2の外ケースの下側外ケース1
2の上に,検出素子部10が,接着剤13によって接合
されており,前記検出素子部51は,被測定圧力により
変形するダイヤフラム部14を有するシリコン基板15
と絶縁基板16とが静電接合等の手段によって接合され
ている。また,ケース内から下側外ケース12を貫通し
て,この下側ケース12一側部から電極端子20が引き
出されている。この電極端子は一対あり,電極17及び
シリコン基板の一端に夫々図示しないボンディングワイ
ヤによって接続されている。
FIG. 1 is a sectional view showing a semiconductor capacitive pressure sensor according to an embodiment of the present invention. As shown in FIG. 1, a lower outer case 1 of a second outer case that forms an outer shell of a sensor together with an upper case 11 as a first outer case.
2, the detection element portion 10 is bonded by an adhesive 13, and the detection element portion 51 has a silicon substrate 15 having a diaphragm portion 14 that is deformed by the measured pressure.
The insulating substrate 16 and the insulating substrate 16 are joined together by means such as electrostatic joining. Further, the electrode terminal 20 is drawn out from the inside of the case through the lower outer case 12 and one side of the lower case 12. There are a pair of these electrode terminals, and they are respectively connected to one end of the electrode 17 and the silicon substrate by a bonding wire (not shown).

【0017】ダイヤフラム部14の電極部17と対向す
る,下側面に,第1の絶縁膜として下側複合絶縁膜1が
形成されている。その下側複合絶縁膜1は,酸化膜(S
iO2 )1及び窒化膜(Si3 4 )2とで構成されて
おり,それぞれの膜厚は1000オングストロームか
ら,3000オングストロームの範囲が適宜選択され
る。
A lower composite insulating film 1 is formed as a first insulating film on the lower side surface of the diaphragm portion 14 facing the electrode portion 17. The lower composite insulating film 1 is an oxide film (S
It is composed of iO 2 ) 1 and a nitride film (Si 3 N 4 ) 2, and the film thickness of each is appropriately selected from the range of 1000 angstroms to 3000 angstroms.

【0018】一方,本発明の実施の一形態では,図2に
示した従来例とは異なり,ダイヤフラム部14の反対側
面にも,第1の絶縁膜と同様の第2の絶縁膜として酸化
膜(SiO2 )6,窒化膜(Si3 4 )7からなる上
側複合絶縁膜5(の複合)が形成されている。
On the other hand, in the embodiment of the present invention, unlike the conventional example shown in FIG. 2, an oxide film as a second insulating film similar to the first insulating film is formed on the opposite side surface of the diaphragm portion 14. An upper composite insulating film 5 (composite thereof) composed of (SiO 2 ) 6 and nitride film (Si 3 N 4 ) 7 is formed.

【0019】これらの上側及び下側複合絶縁膜1,5
は,化学気相成長法(CVD法)によって,次のように
成膜されている。
These upper and lower composite insulating films 1, 5
Is formed by the chemical vapor deposition method (CVD method) as follows.

【0020】まず,シリコン基板15を反応管中に配置
し,原料ガスとして,モノシラン(SiH4 )と酸素
(O2 )との混合ガスを,反応管中に流して,反応管温
度300〜400℃にして,混合ガスを熱分解し,酸化
膜1及び酸化膜6を成膜した。
First, the silicon substrate 15 is placed in a reaction tube, and a mixed gas of monosilane (SiH 4 ) and oxygen (O 2 ) is flown into the reaction tube as a source gas, and the reaction tube temperature is 300 to 400. The temperature was raised to ℃ and the mixed gas was thermally decomposed to form the oxide film 1 and the oxide film 6.

【0021】次に,反応管中に原料ガスとして,ジクロ
ルシラン(SiH2 Cl2 )とアンモニア(NH3 )と
の混合ガスを反応管中に流して,700〜750℃に加
熱して,酸化膜1及び酸化膜6上に窒化膜2,及び窒化
膜6をそれぞれ成膜した。
Next, a mixed gas of dichlorosilane (SiH 2 Cl 2 ) and ammonia (NH 3 ) was flown into the reaction tube as a raw material gas and heated to 700 to 750 ° C. to form an oxide film. The nitride film 2 and the nitride film 6 were formed on the oxide film 1 and the oxide film 6, respectively.

【0022】図1の半導体容量式圧力センサは,図2の
同様な検出動作を行う。即ち,シリコン基板15のダイ
ヤフラム部14が圧力差(P=P1 −P2 )を受けて曲
がる事により,ダイヤフラム部14と電極部17との間
にて形成され空気コンデンサの静電容量値が変化し,こ
の容量の変化を後段の図示しない処理回路(容量−周波
数変換回路)の出力としている。
The semiconductor capacitive pressure sensor shown in FIG. 1 performs the same detection operation as shown in FIG. That is, when the diaphragm portion 14 of the silicon substrate 15 is bent due to the pressure difference (P = P 1 -P 2 ), the capacitance value of the air capacitor formed between the diaphragm portion 14 and the electrode portion 17 is changed. This change in capacitance is used as the output of a processing circuit (capacitance-frequency conversion circuit) (not shown) in the subsequent stage.

【0023】しかしながら,本発明の実施の一形態によ
る半導体容量式圧力センサは,前述したように,上側及
び下側複合絶縁膜1,5によって,ダイヤフラム部14
には,上側,及び下側から,上側及び下側複合絶縁膜
1,5からの応力が加わり,見かけ上ダイヤフラム部1
4の変形,温度変化による変形が,防止される。従っ
て,従来例のような,ダイヤフラム部14の変形が防止
されて,高精度の半導体容量式圧力センサを提供するこ
とができる。
However, in the semiconductor capacitive pressure sensor according to the embodiment of the present invention, as described above, the diaphragm portion 14 is formed by the upper and lower composite insulating films 1 and 5.
Is applied with stress from the upper and lower composite insulating films 1 and 5 from the upper side and the lower side, and apparently the diaphragm portion 1
4 and the deformation due to temperature change are prevented. Therefore, the deformation of the diaphragm portion 14 as in the conventional example is prevented, and a highly accurate semiconductor capacitive pressure sensor can be provided.

【0024】[0024]

【発明の効果】以上,本発明の圧力センサのシリコン基
板のダイヤフラム部は,両面に,同様膜質の第1及び第
2の絶縁膜からのストレスを,同様に受け,その結果,
温度変化にたいして,ダイヤフラム部の変形は,殆ど生
じないので,ダイヤフラム部の応力による変形を,補正
した,温度特性の良好な,精度の高い半導体容量式圧力
センサとその製造方法とを提供することができる。
As described above, the diaphragm portion of the silicon substrate of the pressure sensor of the present invention is also subjected to the stress from the first and second insulating films having the same film quality on both surfaces, and as a result,
The deformation of the diaphragm hardly occurs with respect to the temperature change. Therefore, it is possible to provide a highly accurate semiconductor capacitive pressure sensor having a good temperature characteristic, in which the deformation of the diaphragm due to the stress is corrected, and a manufacturing method thereof. it can.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施の一形態による半導体容量式圧力
センサを示す断面図である。
FIG. 1 is a sectional view showing a semiconductor capacitive pressure sensor according to an embodiment of the present invention.

【図2】従来の半導体圧力センサの1例を示す断面図で
ある。
FIG. 2 is a sectional view showing an example of a conventional semiconductor pressure sensor.

【符号の説明】[Explanation of symbols]

1 下側複合絶縁膜 2,6,52 酸化膜 3,7 窒化膜 5 上側複合絶縁膜 10,51 検出素子部 11 上側ケース 12 下側ケース 14 ダイヤフラム部 15 シリコン基板 16 絶縁基板 17 電極部 19 圧力導入口 20 電極端子 50 半導体容量式圧力センサ 1 Lower Composite Insulating Film 2,6,52 Oxide Film 3,7 Nitride Film 5 Upper Composite Insulating Film 10,51 Detection Element Section 11 Upper Case 12 Lower Case 14 Diaphragm Section 15 Silicon Substrate 16 Insulating Substrate 17 Electrode Section 19 Pressure Inlet port 20 Electrode terminal 50 Semiconductor capacitive pressure sensor

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 被測定圧力より変形するダイヤフラム部
を有するシリコン基板と,電極部が形成された絶縁基板
とが接合されて形成された検出素子部と,第1の外ケー
ス,第2の外ケースとを有する半導体容量式圧力センサ
において,前記シリコン基板上の前記ダイヤフラム部
の,前記電極部と対向する面側に,少くとも一層の,第
1の絶縁膜が形成されており,前記ダイヤフラム部の,
反対側面にも,前記第1の絶縁膜と同等の少くとも一層
の第2の絶縁膜が形成されている事を特徴とする半導体
容量式圧力センサ。
1. A detection element portion formed by joining a silicon substrate having a diaphragm portion that is deformed by a pressure to be measured and an insulating substrate having an electrode portion, a first outer case, and a second outer portion. In a semiconductor capacitive pressure sensor having a case, at least one layer of a first insulating film is formed on the surface of the diaphragm portion on the silicon substrate facing the electrode portion, and the diaphragm portion. of,
A semiconductor capacitive pressure sensor characterized in that at least one layer of a second insulating film equivalent to the first insulating film is formed on the opposite side surface.
【請求項2】 請求項1記載の半導体容量式圧力センサ
において,前記ダイヤフラム部上の,前記第1又は第2
の絶縁膜は,酸化シリコン膜(SiO2 )と,窒化シリ
コン膜(Si3 4 )との複合膜で構成されており,前
記複合膜は,CVD法,スパッター法,及び,熱酸化法
のうちの少くとも一種の方法によって形成されている事
を特徴とする半導体容量式圧力センサ。
2. The semiconductor capacitive pressure sensor according to claim 1, wherein the first or second on the diaphragm portion.
Is composed of a composite film of a silicon oxide film (SiO 2 ) and a silicon nitride film (Si 3 N 4 ). The composite film is formed by a CVD method, a sputtering method, or a thermal oxidation method. A semiconductor capacitive pressure sensor characterized by being formed by at least one of these methods.
【請求項3】 被測定圧力により変形するダイヤフラム
部と有するシリコン基板と,電極部を備えた絶縁基板と
を接合して,検出素子部を形成する半導体容量式圧力セ
ンサの製造方法において,前記シリコン基板上の前記ダ
イヤフラム部の前記電極部と対向する面側にCVD法,
スパッター法及び熱酸化法のうちの少くとも一種の方法
により第1の絶縁膜を形成し,前記ダイヤフラム部の反
対側面にも,前記絶縁膜と同等第2の絶縁膜を前記CV
D法,スパッター法及び熱酸化法のうちの少くとも一種
の方法により第2の絶縁膜を形成することを特徴とする
半導体容量式圧力センサの製造方法。
3. A method of manufacturing a semiconductor capacitance type pressure sensor, comprising: forming a detection element unit by joining a silicon substrate having a diaphragm portion that is deformed by a pressure to be measured and an insulating substrate having an electrode portion to each other. A CVD method is provided on a surface side of the diaphragm portion facing the electrode portion on the substrate,
The first insulating film is formed by at least one of a sputter method and a thermal oxidation method, and a second insulating film equivalent to the insulating film is formed on the opposite side of the diaphragm portion to the CV.
A method of manufacturing a semiconductor capacitive pressure sensor, characterized in that the second insulating film is formed by at least one of the D method, the sputtering method and the thermal oxidation method.
【請求項4】 請求項3記載の半導体容量式圧力センサ
の製造方法において,前記第1又は第2の絶縁膜は,酸
化シリコン膜と窒化シリコン膜とを含む複合膜であるこ
とを特徴とする半導体容量式圧力センサの製造方法。
4. The method of manufacturing a semiconductor capacitance type pressure sensor according to claim 3, wherein the first or second insulating film is a composite film including a silicon oxide film and a silicon nitride film. Manufacturing method of semiconductor capacitive pressure sensor.
JP991096A 1996-01-24 1996-01-24 Semiconductor capacitance-type pressure sensor and its manufacture Pending JPH09196786A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP991096A JPH09196786A (en) 1996-01-24 1996-01-24 Semiconductor capacitance-type pressure sensor and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP991096A JPH09196786A (en) 1996-01-24 1996-01-24 Semiconductor capacitance-type pressure sensor and its manufacture

Publications (1)

Publication Number Publication Date
JPH09196786A true JPH09196786A (en) 1997-07-31

Family

ID=11733271

Family Applications (1)

Application Number Title Priority Date Filing Date
JP991096A Pending JPH09196786A (en) 1996-01-24 1996-01-24 Semiconductor capacitance-type pressure sensor and its manufacture

Country Status (1)

Country Link
JP (1) JPH09196786A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000214035A (en) * 1998-11-16 2000-08-04 Toyota Central Res & Dev Lab Inc Electrical capacitance pressure sensor and its manufacture
JP2011516908A (en) * 2008-02-22 2011-05-26 クォルコム・メムズ・テクノロジーズ・インコーポレーテッド Micro-electromechanical device with thermal expansion balance layer or reinforcing layer

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000214035A (en) * 1998-11-16 2000-08-04 Toyota Central Res & Dev Lab Inc Electrical capacitance pressure sensor and its manufacture
JP2011516908A (en) * 2008-02-22 2011-05-26 クォルコム・メムズ・テクノロジーズ・インコーポレーテッド Micro-electromechanical device with thermal expansion balance layer or reinforcing layer

Similar Documents

Publication Publication Date Title
EP0744603B1 (en) Linear capacitive sensor by fixing the center of a membrane
EP0569899B1 (en) An overpressure-protected, polysilicon, capacitive differential pressure sensor and method of making the same
US5076147A (en) Pressure sensor including a diaphragm having a protective layer thereon
JPS6325982A (en) Pressure transducer and manufacture thereof
WO2007058010A1 (en) Semiconductor pressure sensor and its fabrication method
JPH09257618A (en) Electro-static capacity type pressure sensor and production thereof
US6550339B1 (en) Pressure sensor for detecting differential pressure between two spaces
US6649988B2 (en) Semiconductor pressure sensor decreasing creep stress in <110> crystalline axis direction
JP2001324398A (en) Corrosion resistant vacuum sensor
JPH09196786A (en) Semiconductor capacitance-type pressure sensor and its manufacture
JP2000230875A (en) Circuit built-in type sensor and pressure-detecting device using it
JP4314977B2 (en) Pressure sensor and method for manufacturing the pressure sensor
JPH1022511A (en) Semiconductor pressure sensor and its manufacture
JPH07326770A (en) Semiconductor pressure sensor and its manufacture
JP2001174352A (en) Pressure/temperature sensor and pressure/temperature composite detecting element
US7367234B2 (en) Pressure sensor
JP3555365B2 (en) Manufacturing method of semiconductor pressure sensor
JPS5854676A (en) Semiconductor pressure converter
KR100427430B1 (en) Metal thin film pressure sensor and method for making the same
JPH098326A (en) Semiconductor pressure sensor
JP2000180282A (en) Semiconductor pressure sensor
JPH05231975A (en) Electrostatic capacitive pressure sensor
JPS61187280A (en) Pressure sensor
JPH01235824A (en) Pressure sensor
JPH10135485A (en) Manufacture of semiconductor pressure sensor

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040519