JPS6062164A - Manufacture of semiconductor pressure sensor - Google Patents

Manufacture of semiconductor pressure sensor

Info

Publication number
JPS6062164A
JPS6062164A JP17145783A JP17145783A JPS6062164A JP S6062164 A JPS6062164 A JP S6062164A JP 17145783 A JP17145783 A JP 17145783A JP 17145783 A JP17145783 A JP 17145783A JP S6062164 A JPS6062164 A JP S6062164A
Authority
JP
Japan
Prior art keywords
substrate
diaphragm
thickness
pressure sensor
silicon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17145783A
Other languages
Japanese (ja)
Inventor
Kiyoshi Ishibashi
清志 石橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP17145783A priority Critical patent/JPS6062164A/en
Publication of JPS6062164A publication Critical patent/JPS6062164A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L9/00Measuring steady of quasi-steady pressure of fluid or fluent solid material by electric or magnetic pressure-sensitive elements; Transmitting or indicating the displacement of mechanical pressure-sensitive elements, used to measure the steady or quasi-steady pressure of a fluid or fluent solid material, by electric or magnetic means
    • G01L9/0041Transmitting or indicating the displacement of flexible diaphragms
    • G01L9/0042Constructional details associated with semiconductive diaphragm sensors, e.g. etching, or constructional details of non-semiconductive diaphragms
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/84Types of semiconductor device ; Multistep manufacturing processes therefor controllable by variation of applied mechanical force, e.g. of pressure

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Pressure Sensors (AREA)
  • Measuring Fluid Pressure (AREA)

Abstract

PURPOSE:To improve the yield of production as well as to enable to perform a processing in a large quantity by a method wherein, when a semiconductor pressure sensor is going to be formed, an N type Si substrate is used as a substrate, a thinly formed part which will become a striction generating diaphragm is formed by providing a groove on both sides of the substrate, and a P type diffusion layer is formed on one face of the thinly formed part. CONSTITUTION:A thermal oxidation is performed on an Si substrate 1 of the thickness of 300-350mum and of the crystal orientation of <100>, and an SiO2 film 31 of approximately 2mum is thickness is grown on the front and back sides of said substrate 1. Then, a square-shaped aperture is provided at the same position on both front and back sides of the substrate 1 by performing a photolithographic method, the substrate 1 is soaked in a KOH aqueous solution, and a groove 32 is formed. At this time, an etching is stopped when the desired thickness is obtained on a diaphragm 2, and aftter the above has been fully rinsed, the film 31 is replaced by a new SiO2 film 34, a window is provided, a P type gauge resistance layer 35 is formed, and an Al electrode pad 36 is attached on the layer 35. Through these procedures, the irregularity in thickness of the diaphragm can be reduced remarkably, thereby enabling to enhance the linearity of the resistance value fluctuations.

Description

【発明の詳細な説明】 〔発明の技術分野〕 この発明は、半導体感圧抵抗素子を用いて圧力を検出す
る半導体圧力センサの製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a method for manufacturing a semiconductor pressure sensor that detects pressure using a semiconductor pressure-sensitive resistance element.

〔従来技術〕[Prior art]

一般にシリコンのピエゾ抵抗効果を利用した圧力センサ
は、第1図に示すような構造を有してL・る。すなわち
、第1図において、N形シリコン単結晶基板(以下単に
シリコン基板という)1の中央部に起歪ダイヤフラムと
なる肉薄部(以下シリコンダイヤフラムという)2を形
成する。起歪ダイヤフラムの受圧面3と反対の面4にP
形拡散ゲージ抵抗層5を形成する。このP形拡散ゲージ
拡散層5は大きな温度依存性があるので、この温度特性
を補償するためフルブリッジ結線され、酸化膜10を開
口して形成した電極11に外部とAu細線あるいはAI
細線6によって結線される。
Generally, a pressure sensor that utilizes the piezoresistance effect of silicon has a structure as shown in FIG. That is, in FIG. 1, a thin part (hereinafter referred to as a silicon diaphragm) 2 that becomes a strain diaphragm is formed in the center of an N-type silicon single crystal substrate (hereinafter simply referred to as a silicon substrate) 1. P on the surface 4 opposite to the pressure receiving surface 3 of the strain diaphragm.
A diffused gauge resistance layer 5 is formed. Since this P-type diffusion gauge diffusion layer 5 has a large temperature dependence, in order to compensate for this temperature characteristic, a full bridge connection is made, and an electrode 11 formed by opening the oxide film 10 is connected to the outside using a thin Au wire or an AI wire.
The wires are connected by a thin wire 6.

前記のシリコンダイヤフラム2は、通常200μm前後
のシリコン基板1の中央部に形成される。シリコンダイ
ヤフラム2は、第2図に示すようにシリコン基板1を化
学エツチングによりP形拡散ゲージ抵抗層5が形成され
る面とは反対の面より堀り込むことKより形成し、その
厚みは検出圧力の範囲に応じて決定する。例えばIKy
/cm”までの流体圧力を検出する場合には、直径2m
111φで板厚を40μmlcするとIKy/cm”の
流体圧力では拡散抵抗値変化は約1%となり、IOVの
直流電圧を印加すると約200mVの直流出力が得られ
る。
The silicon diaphragm 2 is usually formed at the center of the silicon substrate 1 with a thickness of about 200 μm. As shown in FIG. 2, the silicon diaphragm 2 is formed by chemically etching the silicon substrate 1 from the surface opposite to the surface on which the P-type diffusion gauge resistance layer 5 is formed, and its thickness is measured. Determine depending on the pressure range. For example, IKy
2 m diameter when detecting fluid pressure up to
When the plate thickness is 40 μm 111φ and the fluid pressure is IKy/cm”, the diffusion resistance value change is about 1%, and when a DC voltage of IOV is applied, a DC output of about 200 mV is obtained.

このようにして作られた感圧チップは、中央部に圧力導
入孔を有するシリコンあるいはは5けい酸系の耐熱ガラ
ス(例えは、商標名パイレックス:コーニング社)等の
材料で作られた台1に低融点ガラスあるいは金属ろう材
等の接着剤8で接着固定し半導体圧力センサが構成され
る。シリコンタイヤフラム2の受圧面31C気体または
液体等の流体圧力9(第1図)が印加されると、シリコ
ンダイヤフラム2に歪みが生じ、この歪みに応じて前記
P形拡散ゲージ抵抗層5の抵抗値が変化する。
The pressure-sensitive chip made in this way is mounted on a stand made of a material such as silicone or penta-silicic acid heat-resistant glass (for example, Pyrex (trade name: Corning Corporation)), which has a pressure introduction hole in the center. A semiconductor pressure sensor is constructed by bonding and fixing the semiconductor pressure sensor to the substrate with an adhesive 8 such as low melting point glass or metal brazing material. When fluid pressure 9 (FIG. 1) such as gas or liquid is applied to the pressure receiving surface 31C of the silicone tire phragm 2, distortion occurs in the silicone diaphragm 2, and the resistance of the P-type diffusion gauge resistance layer 5 increases in accordance with this distortion. The value changes.

この変化をフルブリッジ結線の出方端子から電圧の変化
として読み取り、流体圧力を測定することができる。
This change can be read as a change in voltage from the output terminal of the full bridge connection and the fluid pressure can be measured.

さて、以上の説明から分るように、圧力センサの感度を
決定するのはシリコン基板1に形成されたシリコンダイ
ヤフラム2の厚さである。従って、シリコンダイヤフラ
ム2を極めて精度よく加工することが肝要であるが、従
来、このシリコンダイヤフラム2は強酸系のシリコンエ
ツチング液や強アルカリ系のシリコンエツチング液でP
形拡散ゲージ抵抗層5とは反対の面から化学的に加工さ
れていた。この際のエツチングマスクとしては、シリコ
ン酸化膜である5i02膜が用いられる。このシリコン
酸化膜はシリコン基板1に拡散法によりP形拡散ゲージ
抵抗層5を形成する際に必然的にできるもので、後工程
でシリコンダイヤフラム2をP形拡散ゲージ抵抗層5と
は反対の面から堀り込む時には工程上非常に好都合であ
る。
Now, as can be seen from the above explanation, it is the thickness of the silicon diaphragm 2 formed on the silicon substrate 1 that determines the sensitivity of the pressure sensor. Therefore, it is important to process the silicon diaphragm 2 with extremely high precision. Conventionally, this silicon diaphragm 2 has been etched using a strong acid-based silicon etching solution or a strong alkaline-based silicon etching solution.
It was chemically processed from the side opposite to the shaped diffusion gauge resistance layer 5. A 5i02 film, which is a silicon oxide film, is used as an etching mask at this time. This silicon oxide film is inevitably formed when forming the P-type diffused gauge resistance layer 5 on the silicon substrate 1 by the diffusion method, and in a later process, the silicon diaphragm 2 is attached to the side opposite to the P-type diffused gauge resistance layer 5. It is very convenient for the process when digging from scratch.

しかし、この方法は次の点で難点がある。まず、第2図
に示すように第1にシリコン基板1上に生成し得る熱酸
化膜である5i02膜21の厚みは2μm程度が最大で
あり、しかもこのSin、膜21はシリコンダイヤフラ
ム2のエツチング加工中に同時にエツチングされ薄くな
り【行くため、堀り込むことができる深さには限界が生
じ、加工可能な深さ22は150μmが最大である。も
ちろん、8 i 0 を膜21を再度生成せしめてかか
る作業を継続することも可能であるが、この場合には拡
散により、形成したP形拡散ゲージ抵抗層5の不純物プ
ロファイルが変化し抵抗値が初めの設定値と異なるなど
の不都合が生じるので、できる限り1回の作業で形成し
てしまうことが好ましい。従って、例えはシリコンダイ
ヤフラム2の厚みを40μmに設定すれは、シリコン恭
板1の拡散投入時点の厚み23は190μmとしなけれ
ばならない。シリコン基板10口径は厚さと密接な関係
があり、190μmの厚みでは作業上扱い得るシリコン
基板10口径は50φまでである。シリコン半導体の拡
散作業はバッチ作業であるから基板口径が大きけれは大
きい程コスト上有利であるが、以上の理由により半導体
圧力センサの製造に投入できる基板口径に制限があるた
め感圧チップの製作コストが高くなり、これが半導体圧
力センサの普及を妨げる一因となっていた〇 第2に、片面からエツチングにより堀り′込むと加工精
度が悪くなるという事実が挙げられる。これは強酸系の
エツチング液を使った場合にのみ現われ、シリコンの結
晶方向によるエツチング速度の差を利用した強アルカリ
系エツチング液を使った場合には現われない。強酸系の
エツチング液を使うとシリコンタイヤフラムの厚みに第
2図に示すように不均一性が生じる。これはエツチング
によって堀り込む深さが深くなれはなる程顕著に現われ
る現象で、従って、堀り込む深さが深くなるにつれ′C
s度にバラツキが大きくなり、感圧チップの歩留り低下
の一因となる。また、シリコンダイヤフラム2の端部の
エツジ24が丸みを帯び、これは堀り込む深さが深くな
る程顕著になる。このことはシリコンダイヤフラム2の
端部の応力が加わった場合、応力が均等に加わらないと
いう望ましくない結果をもたらし、抵抗値変化の直線性
が低下する原因となる。
However, this method has the following drawbacks. First, as shown in FIG. 2, the maximum thickness of the 5i02 film 21, which is a thermally oxidized film that can be formed on the silicon substrate 1, is about 2 μm. During machining, the material is etched and thinned at the same time, so there is a limit to the depth to which it can be dug, and the maximum machinable depth 22 is 150 μm. Of course, it is possible to continue this process by regenerating the film 21 using 8 i 0 , but in this case, due to diffusion, the impurity profile of the formed P-type diffused gauge resistance layer 5 changes and the resistance value changes. Since inconveniences such as differences from the initial set values may occur, it is preferable to form the values in one operation as much as possible. Therefore, for example, if the thickness of the silicon diaphragm 2 is set to 40 .mu.m, the thickness 23 of the silicon diaphragm 1 at the time of diffusion injection must be 190 .mu.m. The diameter of the silicon substrate 10 is closely related to the thickness, and when the thickness of the silicon substrate is 190 μm, the diameter of the silicon substrate 10 that can be handled is up to 50φ. Diffusion work for silicon semiconductors is a batch process, so the larger the substrate diameter, the more cost-effective it is.However, for the above reasons, there is a limit to the substrate diameter that can be used in the manufacture of semiconductor pressure sensors, which reduces the production cost of pressure-sensitive chips. This was one of the reasons for preventing the spread of semiconductor pressure sensors.Secondly, there is the fact that etching from one side deteriorates the processing accuracy. This appears only when a strong acid-based etching solution is used, and does not appear when a strong alkaline-based etching solution is used, which takes advantage of the difference in etching speed depending on the crystal orientation of silicon. When a strong acid-based etching solution is used, non-uniformity occurs in the thickness of the silicone tire flam, as shown in Figure 2. This is a phenomenon that becomes more pronounced as the etching depth increases, and therefore, as the etching depth increases, 'C
The dispersion increases with time, which becomes a factor in reducing the yield of pressure-sensitive chips. Furthermore, the edge 24 at the end of the silicon diaphragm 2 is rounded, and this becomes more noticeable as the depth of digging increases. This brings about the undesirable result that when stress is applied to the ends of the silicon diaphragm 2, the stress is not applied evenly, which causes a decrease in the linearity of the change in resistance value.

〔発明の概要〕[Summary of the invention]

この発明は、上記の点にかんがみてなされたもので、シ
リコンダイヤフラムの製作が容易にでき、製造工程中の
歩留りが良く、大量処理が可能な半導体圧力センサの製
造方法を提供するものである。
The present invention has been made in view of the above points, and provides a method of manufacturing a semiconductor pressure sensor that allows easy manufacture of a silicon diaphragm, high yield during the manufacturing process, and allows mass processing.

〔発明の実施例〕[Embodiments of the invention]

第3図(a)、(b)はこの発明の一実施例を示す概略
図で、シリコン基板1の起歪ダイヤフラムとなる肉薄部
2は第3図(a)のようにして形成する。
FIGS. 3(a) and 3(b) are schematic diagrams showing one embodiment of the present invention, and the thin portion 2 of the silicon substrate 1 which becomes the strain diaphragm is formed as shown in FIG. 3(a).

すなわち、まず、厚さ300〜350μm結晶方向<1
00>のシリコン基板1を熱酸化により酸化し1表面に
約2μmのS’i02膜31を膜種1る。
That is, first, the thickness is 300 to 350 μm and the crystal direction is <1.
00> silicon substrate 1 is oxidized by thermal oxidation, and an S'i02 film 31 of about 2 μm is formed on the surface of the silicon substrate 1.

次に、SiO,膜31に写真食刻法によりシリコン基板
10両面の同一位置に角形の開口部を設ける。
Next, square openings are formed in the SiO film 31 at the same position on both sides of the silicon substrate 10 by photolithography.

続いてこのシリコン基板1をKOH水溶液中に投入し、
シリコン基板10両面よりエツチングし堀り込み孔32
を形成する。シリコンダイヤフラム2の厚み33が目的
の厚みになったらエツチングを停止し、良く水洗して酸
化膜である5i02膜31を除去する。次いで、第3図
(b)のように新しく酸化膜34を前記シリコン基板1
に被覆し直し、通常の拡散作業により拡散ゲージ抵抗層
35を形成する。なお、この場合、通常の写真食刻法で
は堀り込み孔32の中に拡散ゲージ抵抗層35を精度良
くパターニングすることはもちろん不可能であり、投影
露光器などの特殊な装置を用いなければならないことは
いうまでもない。拡散ゲージ抵抗層35はAI電極パッ
ド36を通じて外部と接続される。
Next, this silicon substrate 1 is placed in a KOH aqueous solution,
Holes 32 are etched from both sides of the silicon substrate 10.
form. When the thickness 33 of the silicon diaphragm 2 reaches the desired thickness, the etching is stopped and the 5i02 film 31, which is an oxide film, is removed by thorough washing with water. Next, as shown in FIG. 3(b), a new oxide film 34 is formed on the silicon substrate 1.
Then, a diffusion gauge resistance layer 35 is formed by a conventional diffusion process. In this case, it is of course impossible to precisely pattern the diffusion gauge resistance layer 35 inside the drilled hole 32 using ordinary photolithography, and this cannot be done without using special equipment such as a projection exposure device. Needless to say, it won't happen. The diffusion gauge resistance layer 35 is connected to the outside through an AI electrode pad 36.

なお、上記の実施例は堀り込み孔32の形成に化学エツ
チング法を用いたが、これ(限らず超音波加工法や、化
学エツチング法と超音波加工法の組み合せでもよい。
Although chemical etching was used to form the drill holes 32 in the above embodiments, the present invention is not limited to this, but may also be an ultrasonic processing method or a combination of chemical etching and ultrasonic processing.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、この発明は、N形シリコン単結晶
基板の両面から堀り込み部を形成して起歪ダイヤフラム
となる肉薄部を形成し、次いで、前記肉薄部の一方の面
KP形拡散層を形成して外部電極と接続して半導体圧力
センサを楕成するよ5Kしたので、エツチングの際の堀
り込み部の掘り込み深さは従来に較べ格段と浅くなり、
かつ、肉薄部の厚みのバラツキが極めて小さくなること
から感度にバラツキのない、かつ、抵抗値変化の直線性
が向上する半導体圧力センナがIJJられる利点がある
As explained above, in the present invention, trenched portions are formed on both sides of an N-type silicon single crystal substrate to form a thin wall portion that becomes a strain diaphragm, and then one surface of the thin wall portion is KP type diffused. Since we formed a layer and connected it to an external electrode to form an oval semiconductor pressure sensor in 5K, the depth of the trench during etching is much shallower than in the past.
In addition, since the variation in the thickness of the thin portion is extremely small, there is an advantage that the semiconductor pressure sensor can be used as an IJJ, with no variation in sensitivity and improved linearity of resistance change.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は一般的な半導体圧力センサの構造断面図、第2
図は感圧チップを強酸系エツチング液にてエツチング形
成した場合のシリコンダイヤプラムの断面図、第3図(
a)、(b)はこの発明の一実施例を示す感圧チップの
工程図である。 図中、1はシリコン基板、2はシリコンダイヤフラム、
31は5t02膜、32は堀り込み孔、33はシリコン
ダイヤプラムの厚み、34は酸化膜、35は拡散ゲージ
抵抗層、36はAI電極パッドである。 なお、図中の同一符号は同一または相当部分を示す・ 代理人 大老僧雄 (外2名)
Figure 1 is a structural cross-sectional view of a general semiconductor pressure sensor, Figure 2
The figure shows a cross-sectional view of a silicon diaphragm when a pressure-sensitive chip is etched using a strong acid etching solution.
Figures a) and (b) are process diagrams of a pressure-sensitive chip showing an embodiment of the present invention. In the figure, 1 is a silicon substrate, 2 is a silicon diaphragm,
31 is a 5t02 film, 32 is a drilling hole, 33 is the thickness of a silicon diaphragm, 34 is an oxide film, 35 is a diffusion gauge resistance layer, and 36 is an AI electrode pad. In addition, the same reference numerals in the diagram indicate the same or equivalent parts. Agent: Dairo Soo (2 others)

Claims (1)

【特許請求の範囲】[Claims] N形シリコン単結晶基板の一方の面にP形の拡散層を有
し、起歪シリコンダイヤフラムとなる肉薄部の他方の面
より流体圧力を受圧する感圧シリコンチップと、この感
圧シリコンチップを固定するために中央部に圧力導入孔
を有する台とから構成される半導体圧力センサの製造方
法において、前記N形シリコン単結晶基板の両面から掘
り込み部を形成して起歪ダイヤプラムとなる肉薄部を形
成し1次いで、前記肉薄部の一方の面に前記P形の拡散
層を形成することを特徴とする半導体圧力センサの製造
方法。
A pressure-sensitive silicon chip that has a P-type diffusion layer on one side of an N-type silicon single crystal substrate and receives fluid pressure from the other side of a thin part that becomes a strain-induced silicon diaphragm, and this pressure-sensitive silicon chip. In a method of manufacturing a semiconductor pressure sensor, the semiconductor pressure sensor comprises a base having a pressure introduction hole in the center for fixing the sensor, and a thin-walled semiconductor pressure sensor is formed by forming recesses from both sides of the N-type silicon single crystal substrate to form a strain diaphragm. 1. A method of manufacturing a semiconductor pressure sensor, comprising: forming a thin part, and then forming the P-type diffusion layer on one surface of the thin part.
JP17145783A 1983-09-16 1983-09-16 Manufacture of semiconductor pressure sensor Pending JPS6062164A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17145783A JPS6062164A (en) 1983-09-16 1983-09-16 Manufacture of semiconductor pressure sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17145783A JPS6062164A (en) 1983-09-16 1983-09-16 Manufacture of semiconductor pressure sensor

Publications (1)

Publication Number Publication Date
JPS6062164A true JPS6062164A (en) 1985-04-10

Family

ID=15923456

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17145783A Pending JPS6062164A (en) 1983-09-16 1983-09-16 Manufacture of semiconductor pressure sensor

Country Status (1)

Country Link
JP (1) JPS6062164A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS638748A (en) * 1986-06-26 1988-01-14 ゼロツクス コ−ポレ−シヨン Multi-layer amorphous silicon image forming member
EP0389071A2 (en) * 1989-01-30 1990-09-26 Dresser Industries Inc. Method for fabricating semiconductor diaphragms
JPH02120851U (en) * 1989-03-15 1990-09-28
CN104819789A (en) * 2015-02-10 2015-08-05 华进半导体封装先导技术研发中心有限公司 Stress sensor and manufacture method thereof
US9186898B2 (en) * 2007-03-28 2015-11-17 Brother Kogyo Kabushiki Kaisha Method for producing piezoelectric actuator

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS638748A (en) * 1986-06-26 1988-01-14 ゼロツクス コ−ポレ−シヨン Multi-layer amorphous silicon image forming member
EP0389071A2 (en) * 1989-01-30 1990-09-26 Dresser Industries Inc. Method for fabricating semiconductor diaphragms
JPH02120851U (en) * 1989-03-15 1990-09-28
US9186898B2 (en) * 2007-03-28 2015-11-17 Brother Kogyo Kabushiki Kaisha Method for producing piezoelectric actuator
CN104819789A (en) * 2015-02-10 2015-08-05 华进半导体封装先导技术研发中心有限公司 Stress sensor and manufacture method thereof
CN104819789B (en) * 2015-02-10 2017-05-24 华进半导体封装先导技术研发中心有限公司 Stress sensor and manufacture method thereof

Similar Documents

Publication Publication Date Title
US5178016A (en) Silicon pressure sensor chip with a shear element on a sculptured diaphragm
JP2560140B2 (en) Semiconductor device
JPS6197572A (en) Manufacture of semiconductor acceleration sensor
JP3489309B2 (en) Method for manufacturing semiconductor dynamic quantity sensor and anisotropic etching mask
JPS6062164A (en) Manufacture of semiconductor pressure sensor
US4881056A (en) Facedown-type semiconductor pressure sensor with spacer
JP3191770B2 (en) Semiconductor acceleration sensor and method of manufacturing the same
US6308575B1 (en) Manufacturing method for the miniaturization of silicon bulk-machined pressure sensors
JP3105680B2 (en) Semiconductor differential pressure sensor and differential pressure transmitter using the same
JP2864700B2 (en) Semiconductor pressure sensor and method of manufacturing the same
JP2905902B2 (en) Semiconductor pressure gauge and method of manufacturing the same
JPS6097676A (en) Semiconductor pressure sensor and manufacture thereof
JP3018594B2 (en) Method for manufacturing electrode of semiconductor element for high temperature
JP2512220B2 (en) Multi-function sensor
JPH02148768A (en) Glass package small-sized pressure sensor
JPH0231470A (en) Manufacture of semiconductor pressure converter
JPS5828754B2 (en) Pressure-electric conversion device
JPH0821774A (en) Semiconductor pressure sensor and its manufacture
JPH0536993A (en) Semiconductor pressure detector
JPH04181136A (en) Pressure detector and its manufacture
JPS635232A (en) Pressure detector
JPH05251715A (en) Semiconductor pressure sensor and its manufacture
JPH06232422A (en) Electronic apparatus having transducer whose major part is composed of polycrystalline semiconductor
JP2680471B2 (en) Semiconductor pressure sensor and method of manufacturing the same
JPH0533018Y2 (en)