JPS592192B2 - handoutaiatsuriyokuhenkansouchi - Google Patents

handoutaiatsuriyokuhenkansouchi

Info

Publication number
JPS592192B2
JPS592192B2 JP13728175A JP13728175A JPS592192B2 JP S592192 B2 JPS592192 B2 JP S592192B2 JP 13728175 A JP13728175 A JP 13728175A JP 13728175 A JP13728175 A JP 13728175A JP S592192 B2 JPS592192 B2 JP S592192B2
Authority
JP
Japan
Prior art keywords
pressure
film
silicon
semiconductor
etching
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP13728175A
Other languages
Japanese (ja)
Other versions
JPS5261483A (en
Inventor
正三 佐藤
俊次 白水
忠広 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP13728175A priority Critical patent/JPS592192B2/en
Publication of JPS5261483A publication Critical patent/JPS5261483A/en
Publication of JPS592192B2 publication Critical patent/JPS592192B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Pressure Sensors (AREA)

Description

【発明の詳細な説明】 本発明は半導体基板にひずみ抵抗素子が設けられてなる
半導体圧力変換装置の改良に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an improvement in a semiconductor pressure transducer in which a strain resistance element is provided on a semiconductor substrate.

半導体プレーナ技術の応用により、シリコンあろいはゲ
ルマニウムの半導体基板の一部を起歪板として利用し、
これに複数個のひずみ抵抗素子を拡散させた半導体圧力
変換装置の開発が行われるようになつた。この種のひず
み抵抗素子は半導体のバイポーラ集積回路の技術をその
まま応用することができるので、従来の金属にひずみゲ
ージを貼りつけたものや、ストレインゲージ式のものに
比べて、小形化高性能化が達成でき、しかも電源安定化
回路、増幅回路、調整回路を内蔵させて、トランスジュ
ーサの集積化が可能である。そこでこの種の半導体圧力
変換装置として、例えば第1図に断面図として示した如
き構成のものが一般的に用いられている。
By applying semiconductor planar technology, a part of the silicon alloy and germanium semiconductor substrate is used as a strain plate.
This has led to the development of semiconductor pressure transducers in which a plurality of strain resistance elements are diffused. This type of strain resistance element can directly apply semiconductor bipolar integrated circuit technology, so it is smaller and has higher performance than conventional strain gauges attached to metal or strain gauge types. Moreover, the transducer can be integrated by incorporating a power supply stabilization circuit, an amplifier circuit, and an adjustment circuit. Therefore, as this type of semiconductor pressure transducer, one having a configuration as shown in the cross-sectional view in FIG. 1, for example, is generally used.

第1図で示す半導体圧力変換装置は流体で圧力加えるも
ので、圧力変換素子1と筐体2とから成り立つている。
圧力変換素子1は流体圧力Pを受けて感応する圧力変換
素子本体3と、これを固定するための支持体4とで構成
されている。また半導体圧力変換素子本体3は、n形シ
リコン単結晶板の片面の中央部に肉薄部5を有し、これ
が流体圧力を受ける受圧膜となる。受圧膜5の他側の面
には、結晶方位に合わせてP形の拡散抵抗層6が複数個
設けられており、このピエゾ抵抗変化によって圧力を検
出する。圧力Pによる受圧膜5の歪みに応じ、拡散抵抗
値の変化の異方性を利用して、これらの拡散層6をハー
フブリッジ、あるいはフルブリッジ回路を組むことによ
つて検出回路を構成させることができる。なお第1図に
おいて、絶縁膜T上に設けられた金属層8は拡散抵抗層
6間の内部結線9又は外部への電極取出し端子9aの役
目をしている。このように構成されたシリコン圧力変換
装置は受圧膜5の厚されを変えることによつて、種々の
圧力範囲の圧力計として動作させ得るが、圧力計として
の特性、つまり圧力感度、直線性、破損強度は受圧膜5
の薄形化技術によつて左右される。通常シリコン単結晶
板の受圧膜5の薄形化加工には、化学エッチング又は電
解エツチスグ法が用いられている。ぃづれの手法を採用
するにしても、流体圧力Pによつて肉薄部の受圧膜5だ
けに有効に起歪力を受けさせ、周辺部の肉厚部が変形し
ないような構造でないと、計測器としての高精度は望め
ない。
The semiconductor pressure transducer shown in FIG. 1 applies pressure using fluid, and is composed of a pressure transducer element 1 and a casing 2.
The pressure transducer element 1 is composed of a pressure transducer main body 3 that receives and responds to fluid pressure P, and a support body 4 for fixing the main body 3. Further, the semiconductor pressure transducer main body 3 has a thin wall portion 5 at the center of one side of the n-type silicon single crystal plate, and this serves as a pressure receiving membrane that receives fluid pressure. A plurality of P-type diffusion resistance layers 6 are provided on the other surface of the pressure-receiving film 5 in accordance with the crystal orientation, and pressure is detected by changes in the piezoresistance. According to the distortion of the pressure-receiving film 5 due to the pressure P, the detection circuit is constructed by forming a half-bridge or full-bridge circuit of these diffusion layers 6 by utilizing the anisotropy of the change in the diffusion resistance value. I can do it. In FIG. 1, the metal layer 8 provided on the insulating film T serves as an internal connection 9 between the diffused resistance layers 6 or an electrode lead terminal 9a to the outside. The silicon pressure transducer configured in this way can be operated as a pressure gauge in various pressure ranges by changing the thickness of the pressure-receiving membrane 5, but the characteristics as a pressure gauge, namely pressure sensitivity, linearity, Breakage strength is pressure receiving membrane 5
depends on thinning technology. Usually, chemical etching or electrolytic etching is used to thin the pressure receiving film 5 of a silicon single crystal plate. Even if one of these methods is adopted, unless the structure is such that only the pressure-receiving membrane 5 in the thin wall part is effectively subjected to the strain force by the fluid pressure P, and the thick part in the peripheral part is not deformed, the measuring instrument will not work properly. High accuracy cannot be expected.

例えば受圧膜の径をa、受圧膜5の厚さをh流体圧力を
Pとすると、圧力Pに対する拡散抵抗Rの変化値△Rは
の関係にある。
For example, if the diameter of the pressure-receiving membrane is a, the thickness of the pressure-receiving membrane 5 is h, and the fluid pressure is P, then the change value ΔR of the diffusion resistance R with respect to the pressure P has the following relationship.

いま受圧膜5の径aの周囲にある肉厚部の厚さをHとし
、流体圧力を受けて肉厚部もa+△aの径で起歪して△
R′だけ抵抗が変化したとすると、(1)式はとなり、
この分だけ影響を受け、圧力特性に不正確さが入つてし
まう。
Let us now assume that the thickness of the thick part around the diameter a of the pressure-receiving membrane 5 is H, and upon receiving the fluid pressure, the thick part will also be strained with a diameter of a + △a, and △
Assuming that the resistance changes by R', equation (1) becomes,
This will be affected by this amount, and inaccuracies will be introduced into the pressure characteristics.

大雑把に類推するとH=2hなら、肉厚部の変形による
△Rの影響を一だけ受けH=3,3hなら1/10に減
少すると考えられる。特性の非直線性を充分に回路で補
償できるためにはH≧3.3h以上必要であることが実
験的に分つた。一方単結晶シリコンは剛性が極めて大き
く、機械的研磨法等の加工技術ではIC技術に準するよ
うな高精度は望めない。
Roughly analogizing, if H = 2h, it is considered that the influence of ΔR due to the deformation of the thick portion will be affected by only one, and if H = 3.3h, it will be reduced to 1/10. It has been experimentally found that H≧3.3h or more is required in order to sufficiently compensate for the nonlinearity of the characteristics with the circuit. On the other hand, single-crystal silicon has extremely high rigidity, and processing techniques such as mechanical polishing cannot achieve high precision comparable to IC technology.

また集積回路(IC)技術によく用いられている化学エ
ツチング法の写真腐蝕法では、高精度は得られるが、深
いエツチングが困難で高々200μm位である。これは
シリコン単結晶板が酸や薬品に対して極めて安定な物質
なためである。したがつて従来のIC技術に用いられて
いる化学エツチング用のマスクの耐蝕性を例示すると、
表の如くになる。シリコン単結晶のエツチング液は通常
のIC技法に用いられるHF:HNO3=1:5で行う
ものとした。表1かられかるように、シリコン窒化膜を
マスクとして用いた場合エツチングを深く例えば200
μm位までエツチングできもつとも優れている。したが
つてシリコン基板に200jtm程度のものを用い、2
000A程度のシリコン窒化(Si3N4)膜をマスク
として用いれば、受圧面周辺部の肉厚部Hに対して、受
圧面の厚さhをいくらでも薄くすることが可能である。
しかし、ここで実用上の大きな難点が2つ存在する。一
つは高圧力用の圧力変換素子を製作する場合には、受圧
膜の厚さhを厚くする必要があり、周辺肉厚部Hもこれ
に比して3.3倍以上肉厚でなければならないことであ
る。つまりシリコン基板自体に非常に厚いものを用いて
、より深いエツチングを行う必要がある。この場合シリ
コン窒化膜をより厚〈すれば理論的になる訳であるが、
実験の結果、2000λ以上のシリコン窒化膜をシリコ
ン基板上に被覆せしめると、熱膨張係数の違いによつて
亀裂を各所に生ずることが分つた。またもう一つの難点
はシリコン基板取扱い上の難点である。周知の如く、I
C技術の工業上のメリツトは、大きなシリコン基板上に
できるだけ多くの素子を形成し、歩留りの確率を高める
ことにある。この点でシリコン基板をできるだけ大きく
し、素子の出来高を高める方が望ましい。最近のIC技
術ではシリコン基板として50mmφの素材を用いるこ
とが一般化しており、さらに75mmφ以上の大形化の
傾向にある。この場合、ウエハ径が大形化するにつれて
、素材の肉厚も若干厚くしなければ、工程途中で破損す
る率が増し、50mmφのシリコン基板では、肉厚に3
00μm以上を必要とする。
Further, in the photoetching method, which is a chemical etching method often used in integrated circuit (IC) technology, high precision can be obtained, but deep etching is difficult, and the depth of etching is at most about 200 μm. This is because the silicon single crystal plate is an extremely stable substance against acids and chemicals. Therefore, to illustrate the corrosion resistance of chemical etching masks used in conventional IC technology,
It will look like the table. The etching solution for the silicon single crystal was HF:HNO3=1:5, which is used in ordinary IC technology. As can be seen from Table 1, when a silicon nitride film is used as a mask, the etching is performed to a depth of, for example, 200 mm.
It is also excellent in that it can be etched down to the μm level. Therefore, we used a silicon substrate with a thickness of about 200 jtm, and
If a silicon nitride (Si3N4) film of about 000A is used as a mask, it is possible to make the thickness h of the pressure receiving surface as thin as possible with respect to the thick portion H around the pressure receiving surface.
However, there are two major practical difficulties here. First, when manufacturing a pressure transducer element for high pressure, it is necessary to increase the thickness h of the pressure receiving membrane, and the peripheral thick part H must also be at least 3.3 times thicker than this. It is a must. In other words, it is necessary to use a very thick silicon substrate and perform deeper etching. In this case, it would be theoretically possible to make the silicon nitride film thicker, but
As a result of experiments, it was found that when a silicon nitride film of 2000λ or more is coated on a silicon substrate, cracks occur in various places due to differences in thermal expansion coefficients. Another difficulty is the difficulty in handling silicon substrates. As is well known, I
The industrial advantage of C technology is that it allows as many devices as possible to be formed on a large silicon substrate, increasing the probability of yield. In this respect, it is desirable to make the silicon substrate as large as possible to increase the yield of the device. In recent IC technology, it has become common to use a material with a diameter of 50 mm as a silicon substrate, and there is a trend toward larger sizes of silicon substrates of 75 mm or more. In this case, as the wafer diameter increases, unless the material thickness is made slightly thicker, the probability of breakage during the process increases.
00 μm or more is required.

従つて前述のシリコン窒化膜をエツチングマスクとしH
/H3.3以上にとれる圧力変換素子の範囲は、50φ
ウエハではH=300μMlh=90μmの場合だけし
かなく、それ以外の要求には基板の径を40φ、30φ
等の小形のものを使わない限り製作できなくなつてしま
う。本発明は上記した点に対処なされたもので、例えば
50φ以上の大形シリコン基板を用いた場合にも極めて
良好に受圧膜を構成すると共に安定で高性能を発揮させ
得ることが可能な半導体圧力変換装置を提供することに
ある。
Therefore, using the silicon nitride film mentioned above as an etching mask, H
The range of the pressure transducing element that can take /H3.3 or more is 50φ
For wafers, there is only one case where H=300μMlh=90μm, and for other requirements, the diameter of the substrate is 40φ, 30φ
Unless you use something small like this, you won't be able to make it. The present invention has been made to address the above-mentioned points. For example, even when a large silicon substrate of 50φ or more is used, it is possible to form a pressure-receiving film extremely well and to achieve stable and high performance semiconductor pressure. The purpose of the present invention is to provide a conversion device.

即ち本発明は中央部が肉薄で周縁部が中央部よりも肉厚
である半導体基板と、該基板の肉薄の部分の一方の面に
設けられた抵抗層と、該抵抗層に接続された電極手段と
を備えた半導体圧力装置において、前記抵抗層形成面に
前記肉薄の部分の面積より広く、テフロン膜を設け、他
方面の前記肉厚の部分にテフロン膜を設けた半導体圧力
変換装置である。このように半導体基板の両面にテフロ
ン膜を形成することによつて、半導体基板の保護又は金
属配線の保護することができることは勿論、半導体基板
とテフロン膜との熱膨張係数の違いによつて生ずる歪を
軽減することができ、さらに抵抗層を設けない側の肉厚
部にテフロン膜を形成することで、厚い半導体基板を用
い、この基板を深くエツチング可能となり、50mmφ
以上の大型半導体基板を用いた場合にも良好な受圧膜を
形成可能となる。
That is, the present invention provides a semiconductor substrate having a thinner central portion and a peripheral portion thicker than the central portion, a resistive layer provided on one surface of the thin portion of the substrate, and an electrode connected to the resistive layer. In the semiconductor pressure transducer device, a Teflon film is provided on the resistance layer forming surface in an area larger than the thin part, and a Teflon film is provided in the thick part on the other surface. . By forming a Teflon film on both sides of a semiconductor substrate in this way, it is possible to protect the semiconductor substrate or metal wiring, as well as to protect the semiconductor substrate and the Teflon film due to the difference in coefficient of thermal expansion. It is possible to reduce distortion, and by forming a Teflon film on the thick part on the side where the resistive layer is not provided, it is possible to use a thick semiconductor substrate and to deeply etch this substrate.
Even when using the above large-sized semiconductor substrate, it is possible to form a good pressure-receiving film.

以下本発明の=実施例を図面を参照して説明する。Embodiments of the present invention will be described below with reference to the drawings.

例えば圧力変換素子本体11は、第2図a〜eの工程に
より製造される。まず厚さ500〔μm〕のn型シリコ
ン型板11一方の面にシリコン酸化(SiO2)膜12
、他方の面にシリコン窒化(Si2N4)膜13を形成
する(第2図a)。次にSiO2膜12を選択的に除去
し、その除去した部分にボロンBを拡散しP型抵抗層1
4を形成する(第2図b)。そしてこのP型抵抗層14
から電極を取り出すためにアルミニウム15を蒸着し、
このアルミニウム15を選択的に除去する(第2図c)
。この後にアルミニウム15を形成した面及びSi3N
4膜1゜3を形成した面にテフロン膜16を12.5〔
μm〕位形成する(第2図d)このテフロン膜16をつ
ける場合、まず、圧力変換素子本体uを例えばアミノシ
ラン溶液中で表面処理し、空気中で約140℃に加熱し
て表面活性化を行い、その後にテフロン膜16を基板の
両面に密着させ、空気中約3500Cで加熱して被着す
る。次にこのようにしてテフロン膜16を被着した一方
の面(P型抵抗層14を設けていない側;には受圧膜形
成用の化学エツチング用窓17を、他方の面(P型抵抗
14を設ける側)からは前記アルミニウム層15の配線
用窓部18、さらには変換素子本体11固定用の接着面
19を形成する。この工程も通常の半導体フオトレジス
ト工程により行える。ただし、液状のフオトレジストを
塗布するかわりに、厚さ約40〜60μのフオトレジス
ト膜例えばリストンあるいはフオダールを用いた方が作
業性は良い。このフオトレジストはテフロンで被覆され
た変換素子本体に両側から重わ、空気中約90℃の熱平
板上で約40k9/Cm2の圧力によつて押圧着せしめ
られる。これをマスクを用いて紫外光によつて感光させ
、塩化メチレン液中で現像すれば、容易に所望のレジス
ト膜を除去することができる。前記窓部のテフロン膜1
6の除去法としてはガスプラズマ法が最も効果的である
。即ち、約1t0rrの02雰囲気中で500〜600
の高圧放電を行わせることにより、約30Vでテフロン
膜はエツチングされ、第2図eのように窓部18を形成
できる。ここで併記すべき点は、プラズマエツチング加
工によつて、変換素子のエツチング面にあらかじめ形成
されているSi3N4膜13もテフロン膜16と同時に
除去され、シリコン面を露出させ得ることである。なお
Si3N4膜13を前もつてつけずにテフロン膜16だ
けでも充分深い化学エツチングを行えるが、エツチング
窓部17には例えば2000λのSi3N4膜13とテ
フロン膜16とを重ねた方がサイトエツチングが少なく
、シヤープエツヂの受圧膜20を形成でき特性も向上す
る。また上記実施例のように変換素子本体11の拡散抵
抗14側にもテフロン膜16を設けるのは、拡散層14
がシリコン基板11との間に作る接合や、金属配線保護
に役立つという利点もあるが、本発明の主目的はテフロ
ン膜16とシリコン基板11との間における熱膨張係数
の違いからくる歪を両面からテフロン膜16で被覆して
軽減せしめることにある。特にシリコン基板11のエツ
チングに際しては、シリコン基板11に加えられる歪に
よつてエツチノ ングの出来、不出来が左右されるから
である。さらにテフロン膜16で窓部18を形成された
変換素子本体uの拡散層側面け、例えばワツクス等と用
いて保護した後に、例えばHF:HNO3l:5の溶液
中で約120分間エツチング加工5する(第2図e)。
シリコン基板11のエツチングは約480ttm進行し
、受圧膜20の厚さを20μmまで薄形化することがで
きる。かくして形成された変換素子本体は、第3図に示
す如く前述の接着部19により、支持21にエポキシ接
着Oないしは低融点ガラスで接着固定され、所定の配線
22をポンデイング端子23に行えば圧力変換素子30
が完成する。ここで例示した圧力変換素子本体の周辺肉
厚部は500μmであり、受圧膜20の厚さは20μm
であるから、H/hは実に25となり、圧力による周辺
肉厚部の変形から来る特性の劣化は無視できるほど軽減
される。なおボンデイング端子23はボンデイング端子
23を固定するパツケージ板24に固定され、このパツ
ケージ板24を介してリード25接続される。このよう
にして圧力変換素子本体11が支持体21に固定された
圧力変換素子30は、前記従来例で明記した筐体に挿入
されて、受圧面20側より流体で加圧Pされる。このよ
うにして圧力変換装置が得られる。なお上記実施例で示
した圧力変換素子本体11の周辺肉厚部は500〔μm
〕であり、受圧膜20の厚さは20〔μm〕であるから
H/hは実に25となり、圧力Pによる周辺肉厚部の変
形から来る抵抗の劣化は無視できる程軽減できる。
For example, the pressure transducer main body 11 is manufactured by the steps shown in FIGS. 2a to 2e. First, a silicon oxide (SiO2) film 12 is placed on one side of an n-type silicon mold plate 11 with a thickness of 500 [μm].
Then, a silicon nitride (Si2N4) film 13 is formed on the other surface (FIG. 2a). Next, the SiO2 film 12 is selectively removed, and boron B is diffused into the removed portion to form the P-type resistance layer 1.
4 (Figure 2b). And this P type resistance layer 14
evaporate aluminum 15 in order to take out the electrode from the
This aluminum 15 is selectively removed (Fig. 2c)
. After this, the surface on which aluminum 15 was formed and the Si3N
4. A Teflon film 16 was applied to the surface on which the 1°3 film was formed by 12.5°.
When attaching this Teflon film 16 (FIG. 2 d), the pressure transducer body U is first surface treated in, for example, an aminosilane solution, and then heated in air to about 140°C to activate the surface. After that, the Teflon film 16 is brought into close contact with both sides of the substrate and heated in air at about 3500 C to adhere it. Next, a chemical etching window 17 for forming a pressure-receiving film is formed on one side (the side where the P-type resistor layer 14 is not provided) on which the Teflon film 16 is coated in this way, and the other side (the side where the P-type resistor layer 14 is not provided). From the side where the aluminum layer 15 is provided, the wiring window 18 and the adhesive surface 19 for fixing the conversion element body 11 are formed.This step can also be performed by a normal semiconductor photoresist process.However, liquid photoresist Instead of applying a resist, it is better to use a photoresist film with a thickness of about 40 to 60 μm, such as Liston or Fodar. It is pressed and bonded on a hot plate at about 90°C with a pressure of about 40k9/cm2.If this is exposed to ultraviolet light using a mask and developed in a methylene chloride solution, the desired shape can be easily obtained. The resist film can be removed.The Teflon film 1 on the window portion
Gas plasma method is the most effective method for removing No. 6. That is, 500 to 600 in 02 atmosphere of about 1 t0rr.
The Teflon film is etched by a high voltage discharge of about 30 V, and a window 18 can be formed as shown in FIG. 2e. It should be noted here that the plasma etching process also removes the Si3N4 film 13 previously formed on the etched surface of the conversion element at the same time as the Teflon film 16, thereby exposing the silicon surface. It should be noted that deep chemical etching can be performed by using the Teflon film 16 alone without applying the Si3N4 film 13 in advance, but site etching can be reduced by overlapping the Si3N4 film 13 of 2000λ and the Teflon film 16 in the etching window 17, for example. , it is possible to form a pressure-receiving film 20 with sharp edges, and its characteristics are also improved. Further, as in the above embodiment, the Teflon film 16 is also provided on the diffusion resistor 14 side of the conversion element main body 11 because the diffusion layer 14
Although it has the advantage that it is useful for bonding between the Teflon film 16 and the silicon substrate 11 and for protecting metal wiring, the main purpose of the present invention is to reduce the strain caused by the difference in thermal expansion coefficient between the Teflon film 16 and the silicon substrate 11 on both sides. The purpose is to reduce this by coating with a Teflon film 16. In particular, when etching the silicon substrate 11, the success or failure of etching is influenced by the strain applied to the silicon substrate 11. Furthermore, after protecting the side surface of the diffusion layer of the conversion element body u on which the window portion 18 is formed with the Teflon film 16 using, for example, wax, etching processing 5 is performed for about 120 minutes in a solution of, for example, HF:HNO3l:5 ( Figure 2 e).
Etching of the silicon substrate 11 progresses by about 480 ttm, and the thickness of the pressure receiving film 20 can be reduced to 20 μm. As shown in FIG. 3, the conversion element body thus formed is fixed to the support 21 with epoxy adhesive O or low melting point glass using the adhesive portion 19 described above, and pressure conversion can be performed by connecting a predetermined wiring 22 to the ponding terminal 23. Element 30
is completed. The peripheral wall thickness of the pressure transducer body illustrated here is 500 μm, and the thickness of the pressure receiving membrane 20 is 20 μm.
Therefore, H/h is actually 25, and the deterioration of the characteristics due to the deformation of the peripheral thick portion due to pressure is reduced to the extent that it can be ignored. Note that the bonding terminal 23 is fixed to a package plate 24 that fixes the bonding terminal 23, and is connected to a lead 25 via this package plate 24. The pressure transducer element 30 with the pressure transducer main body 11 fixed to the support body 21 in this manner is inserted into the casing specified in the conventional example, and is pressurized with fluid from the pressure receiving surface 20 side. A pressure transducer is thus obtained. Note that the peripheral wall thickness of the pressure transducer main body 11 shown in the above embodiment is 500 [μm].
], and since the thickness of the pressure-receiving membrane 20 is 20 [μm], H/h is actually 25, and the deterioration in resistance caused by the deformation of the peripheral thick portion due to the pressure P can be reduced to a negligible extent.

また上記実施例において支持体を必要としたが、必ずし
も必要としなく、さらにパツケージ板もこのような形に
限ることない。
Further, although a support is required in the above embodiment, it is not necessarily necessary, and the shape of the package plate is not limited to this.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の半導体圧力変換装置の構造を説明するた
めの概略的示した断面図、第2図は本発明に係る半導体
圧力変換素子本体の製造工程を示した工程概略図、第3
図は本発明の一実施例に係る半導体圧力変換素子の構造
を概略的に示した断面図である。 11・・・・・・圧力変換素子本体、16・・・・・・
テフロン膜、21・・・・・・支持体、30・・・・・
・圧力変換素子。
FIG. 1 is a schematic cross-sectional view for explaining the structure of a conventional semiconductor pressure transducer device, FIG. 2 is a process schematic diagram showing the manufacturing process of a semiconductor pressure transducer main body according to the present invention, and FIG.
The figure is a sectional view schematically showing the structure of a semiconductor pressure transducer according to an embodiment of the present invention. 11... Pressure conversion element body, 16...
Teflon membrane, 21...Support, 30...
・Pressure conversion element.

Claims (1)

【特許請求の範囲】[Claims] 1 中央部が肉薄で周縁部が中央部よりも肉厚である半
導体基板と、該基板の肉薄の部分の一方の面に設けられ
た抵抗層と、該抵抗層に接続された電極手段とを備えた
半導体圧力装置において、前記抵抗層形成面に前記肉薄
の部分の面積より広く、テフロン膜を設け、他方面に前
記肉厚の部分にテフロン膜を設けてなることを特徴とす
る半導体圧力変換装置。
1. A semiconductor substrate having a thinner central portion and a peripheral portion thicker than the central portion, a resistive layer provided on one surface of the thin portion of the substrate, and an electrode means connected to the resistive layer. In the semiconductor pressure device, a Teflon film is provided on the resistance layer forming surface in an area larger than the thin part, and a Teflon film is provided in the thick part on the other surface. Device.
JP13728175A 1975-11-17 1975-11-17 handoutaiatsuriyokuhenkansouchi Expired JPS592192B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13728175A JPS592192B2 (en) 1975-11-17 1975-11-17 handoutaiatsuriyokuhenkansouchi

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13728175A JPS592192B2 (en) 1975-11-17 1975-11-17 handoutaiatsuriyokuhenkansouchi

Publications (2)

Publication Number Publication Date
JPS5261483A JPS5261483A (en) 1977-05-20
JPS592192B2 true JPS592192B2 (en) 1984-01-17

Family

ID=15195001

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13728175A Expired JPS592192B2 (en) 1975-11-17 1975-11-17 handoutaiatsuriyokuhenkansouchi

Country Status (1)

Country Link
JP (1) JPS592192B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4471369A (en) * 1981-08-17 1984-09-11 General Electric Company Robotic pressure imagers
JPS63136675A (en) * 1986-11-28 1988-06-08 Sanken Electric Co Ltd Manufacture of diaphragm system semiconductor pressure sensor

Also Published As

Publication number Publication date
JPS5261483A (en) 1977-05-20

Similar Documents

Publication Publication Date Title
US3951707A (en) Method for fabricating glass-backed transducers and glass-backed structures
JP4995186B2 (en) Polymer pressure sensor with piezoresistive region by injection
US8384170B2 (en) Pressure sensor
JPH05283712A (en) Semiconductor pressure sensor and manufacture thereof
JPS62149132A (en) Manufacture of mask for x-ray photolithography and structureobtained as the result of the manufacture
US3868719A (en) Thin ribbon-like glass backed transducers
US5310610A (en) Silicon micro sensor and manufacturing method therefor
JP2005043159A (en) Pressure sensor
JPS592192B2 (en) handoutaiatsuriyokuhenkansouchi
US4671850A (en) Mask using polyimide to support a patterned x-ray opaque layer
JP2010281570A (en) Semiconductor pressure sensor
US4102732A (en) Method for manufacturing a semiconductor device
JPH0628318B2 (en) Semiconductor pressure transducer and manufacturing method thereof
JPH109982A (en) Production of pressure sensor
JPH06221945A (en) Semiconductor pressure sensor and manufacture thereof
JP2001066208A (en) Semiconductor pressure measuring device and manufacturing method thereof
JPH1073505A (en) Manufacture of semiconductor device
JPH06102120A (en) Production of semiconductor pressure sensor
RU2075137C1 (en) Method for manufacturing of pressure gauges
JPH08203860A (en) Method for manufacturing bridge-shaped thin-film body
CN116812857A (en) Preparation process of differential pressure sensor
JP2000269519A (en) Manufacture of semiconductor sensor
JP2009079903A (en) Semiconductor pressure sensor
JPH04194635A (en) Semiconductor device and its manufacture
JPH0369187B2 (en)