JPS5913301A - Semiconductor porcelain composition - Google Patents

Semiconductor porcelain composition

Info

Publication number
JPS5913301A
JPS5913301A JP57122574A JP12257482A JPS5913301A JP S5913301 A JPS5913301 A JP S5913301A JP 57122574 A JP57122574 A JP 57122574A JP 12257482 A JP12257482 A JP 12257482A JP S5913301 A JPS5913301 A JP S5913301A
Authority
JP
Japan
Prior art keywords
ceramic composition
semiconductor ceramic
mol
temperature
semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57122574A
Other languages
Japanese (ja)
Other versions
JPS6258642B2 (en
Inventor
康二 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP57122574A priority Critical patent/JPS5913301A/en
Publication of JPS5913301A publication Critical patent/JPS5913301A/en
Publication of JPS6258642B2 publication Critical patent/JPS6258642B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Thermistors And Varistors (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 一産業上の利用分野 本発明は半導体磁器組成物に係り1%に正特性の温度抵
抗係数を有する半導体磁器組成物において突入電流を抑
制てきるようにキュリ一点流度以下の負特性を有する温
度範囲で負の勾配を小さくするようにしたものに関する
DETAILED DESCRIPTION OF THE INVENTION An industrial field of application The present invention relates to a semiconductor ceramic composition, and relates to a semiconductor ceramic composition having a positive temperature resistance coefficient of 1%. This invention relates to a device in which the negative slope is reduced in a temperature range having the following negative characteristics.

従来技術及び発明が解決しようとする問題点チタン酸バ
リウムに微量の半導体化用元素を加えてこれを半導体化
した半導体磁器組成物は正の湿度抵抗係数を持ちある点
まで発熱すると電流が小さく抑制できるので発熱体や過
電流防止用素子等に使用されている。
Problems to be solved by the prior art and the invention A semiconductor ceramic composition made by adding a small amount of semiconductor elements to barium titanate to make it a semiconductor has a positive humidity resistance coefficient, and when it heats up to a certain point, the current is suppressed to a small value. Because of this, it is used in heating elements, overcurrent prevention elements, etc.

これを発熱体として使用する場合には発熱流度を高くす
ることが求められるが1例えばチタン酸バリウムに鉛を
添加すふことKよりチタン酸バリウムのバリウムをチタ
ン酸鉛VcR換し、キュリ一点(Tc)を高淵側忙移動
できることは公知である。
When using this as a heating element, it is required to increase the heat generation flow rate.1 For example, by adding lead to barium titanate, or by converting barium titanate to lead titanate VcR, It is known that (Tc) can be moved to the Takabuchi side.

しかしこの場合、その高温側への移動量が大きくなれば
そのN 1’ C領域の負の勾配も大きくなってゆく傾
向がある。そしてキュリ一点が高くなれば同じ常流抵抗
でも突入電流が大きくなり、また断続試験等の経時変化
が大きくなる。またチタン酸鉛の置換により正特性も急
峻であり正I持性が持続できる温度範囲が狭い。そのた
めに使用しKくい欠点を有していた。
However, in this case, as the amount of movement toward the high temperature side increases, the negative slope of the N 1' C region also tends to increase. If the Curie point becomes higher, the inrush current will increase even with the same current resistance, and changes over time during intermittent tests will increase. Further, due to the substitution of lead titanate, the positive characteristics also become steep, and the temperature range in which positive I retention can be sustained is narrow. Therefore, it had many disadvantages when used.

発明の目的 本発明の目的は、このような問題点を改善したもので、
突入電流の大きくなく、かつ断続試験等の経時変化の小
さい正の抵抗温度特性を有する半導体磁器組成物を提供
することである。本発明の他の目的は発熱体として良好
な正の抵抗調度特性を有する半導体磁器組成物を提供す
ることである。
Purpose of the Invention The purpose of the present invention is to improve the above-mentioned problems.
It is an object of the present invention to provide a semiconductor ceramic composition having positive resistance-temperature characteristics that does not cause a large inrush current and exhibits small changes over time in intermittent tests and the like. Another object of the present invention is to provide a semiconductor ceramic composition having good positive resistance conditioning characteristics as a heating element.

問題点を解決するための手段 この目的を遂行するため本発明の半導体磁器組成物では
、チタン酸バリウムにおけるバリウムの1〜50モル%
ヲ鉛テ、o、1〜1.0モル%をマグネシュウムで同時
に置換した組成物に半導体化用元素を0,1〜3.0モ
ル%添加したことを特徴とするものである。
Means for Solving the Problem In order to achieve this object, the semiconductor ceramic composition of the present invention contains 1 to 50 mol% of barium in barium titanate.
It is characterized in that 0.1 to 3.0 mol % of an element for semiconductor formation is added to a composition in which 1 to 1.0 mol % of lead and o are simultaneously replaced with magnesium.

実施例 本発明では出発利料として炭酸バリウムB a CO3
゜二酸化チタンTJO,,酸化鉛pbo 、炭酸マグネ
シウムMgC0,、二酸化硅素810..硝酸マンガン
溶液Mn (NOx )2 、二酸化アルミナAl、O
s、酸化イツトリウムY、 Osなどいずれも高純度の
ものを最終組成が第1表になるように秤月し、ボールミ
ル中で約16時間湿式混合を行ったのち、該混合物を水
が除去されるまで脱7丸乾燥した後、1000〜120
0℃の温度まで250℃/時間の湯度勾配で加熱しそし
て約2時間仮焼した後、゛徐冷した。この上うKして得
られた仮焼物を再度ボールミルで湿式微粉砕して脱水乾
燥後、PVA水溶液を固形分換算で約2重μ%加えた。
Example In the present invention, barium carbonate B a CO3 is used as the starting charge.
゜Titanium dioxide TJO, lead oxide pbo, magnesium carbonate MgC0, silicon dioxide 810. .. Manganese nitrate solution Mn (NOx)2, alumina dioxide Al, O
S, yttrium oxide Y, Os, etc., all of high purity, were weighed so that the final composition was as shown in Table 1, and after wet mixing in a ball mill for about 16 hours, the water was removed from the mixture. After drying to 7 circles, 1000 to 120
The mixture was heated to a temperature of 0° C. at a temperature gradient of 250° C./hour, calcined for about 2 hours, and then slowly cooled. The calcined product obtained by further heating was wet-pulverized again using a ball mill, dehydrated and dried, and then about 2 μ% of a PVA aqueous solution was added in terms of solid content.

それから50メツシユの飾通しを行ない造粒した後、2
000Kp/cmの圧力で直径16.5MX厚さ3.5
麿の円板上成形体を得、これを250℃/時間の温度上
昇速度で1200〜1350℃“まで加熱して1時間こ
の温度に保持し2次いで150℃/時間の割合で室温ま
で徐冷しだ。このようにして直径14m、厚さ3.0囚
の磁器が得られた。このようにして得られた各試料の磁
器の比抵抗ρ2o、キュリ一点Tc 、  β、断続寿
命試験抵抗変化率を測定したところ第1表に示す如き特
性が得られた。
Then, after 50 meshes were granulated and granulated, 2
Diameter 16.5MX thickness 3.5 at a pressure of 000Kp/cm
A disk-shaped molded body of Maro was obtained, heated to 1200 to 1350°C at a temperature increase rate of 250°C/hour, held at this temperature for 1 hour, and then slowly cooled to room temperature at a rate of 150°C/hour. In this way, porcelain with a diameter of 14 m and a thickness of 3.0 m was obtained.The specific resistance ρ2o, the Curie point Tc, β, and the resistance change in the intermittent life test of each sample of porcelain obtained in this way. When the ratio was measured, the characteristics shown in Table 1 were obtained.

ここでβは温度20°Cのときの抵抗値をR20* キ
ュリ一点における最小抵抗値をRmln  としたとき
次式 で求められるものであり、このβは小さい方が突入電流
が小さく発熱用としては使い易いものである。
Here, β is calculated by the following formula, where the resistance value at a temperature of 20°C is R20* and the minimum resistance value at one Curie point is Rmln. It is easy to use.

また断続寿命試験抵抗変化率は、印加電圧120■を1
分間オンし次の1分)オフにして、これを1000サイ
クルくり返した後の抵抗の最初に対する変化率を示し、
これまた小さい方が経時変化の少いことを示すものであ
る。
In addition, the resistance change rate in the intermittent life test is 1 when the applied voltage is 120
It shows the rate of change in resistance with respect to the initial value after repeating this for 1000 cycles by turning it on for one minute and then turning it off for the next minute,
Again, the smaller the value, the less the change over time.

本発明において数値限定の理由は次の通りであゐ。The reason for the numerical limitation in the present invention is as follows.

+11  MgJl 上限 1.0モル%を超えると、第1表の試料Nα9、
Nα47.Nα81等により明らかなようKe縁休体す
る。
+11 MgJl upper limit If it exceeds 1.0 mol%, sample Nα9 in Table 1,
Nα47. The Ke edge is closed as evidenced by Nα81 and the like.

下11uO,1モル%に満たないときは、第1表の試料
No、 1 、 Nn 32〜40.Nα82〜85等
により明らかなよう忙、βや断続寿命試験抵抗変化率が
悪るかったり、絶縁物になったり、いわゆる添加効果が
なく特性の改善効果がみられない。
When the lower 11uO is less than 1 mol%, sample No. 1 in Table 1, Nn 32-40. As is clear from Nα82 to 85, etc., the resistance change rate in the resistance change, β, and intermittent life tests are poor, and it becomes an insulator, and there is no so-called additive effect, and no improvement in characteristics is observed.

(2)  半導体化用元素量 上限が3.0モル%を紹えると常温比抵抗が著しく高く
なり実用性に欠ける。
(2) If the upper limit of the amount of elements for semiconductor formation is 3.0 mol %, the specific resistance at room temperature will be extremely high and it will be impractical.

下限が0.1モル%に達しないと添加効果がなく。If the lower limit does not reach 0.1 mol%, the addition has no effect.

半導体化しない。Do not use semiconductors.

+31 810. Jll 上限が3.0w1%を超えると緻密な磁器が得:もれず
常温比抵抗も高くなる。、 下限が0.1wt%に満たない場合には焼成湯度幅が狭
く均一な磁器が得られない。
+31 810. Jll If the upper limit exceeds 3.0w1%, dense porcelain will be obtained: it will not leak and will have a high specific resistance at room temperature. If the lower limit is less than 0.1 wt%, the firing temperature range will be narrow and uniform porcelain will not be obtained.

+41  Mn3% 上限 0.03wt%を超えると常温比抵抗が高くなり
実用性に欠ける。
+41 Mn3% Upper limit If it exceeds 0.03 wt%, the specific resistance at room temperature becomes high and it lacks practicality.

下限 0.002wt%Ic達しないときは経時変化の
特性改善効果がない。
When the lower limit of 0.002wt%Ic is not reached, there is no effect of improving characteristics over time.

+51  Pb刃 上限 50モル%を超えると Mg9が固溶しにくくな
り、特性改善効果がない。(試料No、 59 、40
 、54等) 下限 1モル%に達しないときはPTC特性の始まる温
度Tcが高流側に移らずlrk性の向上もみられず、実
用性に乏しい。
+51 Pb blade upper limit If it exceeds 50 mol%, it becomes difficult for Mg9 to form a solid solution, and there is no property improvement effect. (Sample No. 59, 40
, 54, etc.) If the lower limit is less than 1 mol %, the temperature Tc at which PTC characteristics begin will not shift to the high flow side, and no improvement in lrk property will be observed, resulting in poor practicality.

(6i   ke2os量 上限 1.0w1%を超えると常温比抵抗が高くなり特
性改善効果もみもれない。
(Upper limit of 6i ke2os amount: If it exceeds 1.0w1%, the specific resistance at room temperature will increase and the effect of improving the characteristics will not be seen.

下限 0.1wt%に達しないときは特性改善効果がみ
られない。
When the lower limit of 0.1 wt% is not reached, no characteristic improvement effect is observed.

+71  TlO2洲。+71 TlO2.

上限 2.0W;%を超えるときは常W、比抵抗が高く
なり実用性に欠ける。
Upper limit: 2.0 W; When it exceeds 2.0 W, the specific resistance increases and is impractical.

下限 0.1wt%に満たない場合には特性改善効果が
みられない。
If the lower limit is less than 0.1 wt%, no property improvement effect is observed.

さらに添イリ図面によシ従来例と本発明の特性を示す。Further, the characteristics of the conventional example and the present invention are shown in the accompanying drawings.

At′i従来例を示し、第1表試料Nn83の特性であ
り、Bは本発明の試料Nα79のものであって。
At'i shows the conventional example, and Table 1 shows the characteristics of sample Nn83, and B shows the characteristics of sample Nα79 of the present invention.

(Ba 89.4 Pb 10.OMg 0.6) T
lo、+ Y2030.7 mat!%+’ S lo
z O,7+ Mn O,01+ T lo* 0.3
 +h120s 0.5の組成を有する。ここでI3a
 、 Pb 、 Mgの添字はモル%を示し、他は W
【%を示す。
(Ba 89.4 Pb 10.OMg 0.6) T
lo, + Y2030.7 mat! %+' S lo
z O,7+ Mn O,01+ T lo* 0.3
It has a composition of +h120s 0.5. Here I3a
, Pb, Mg indicate mol%, others are W
[Indicates %.

とれよシ明らかな如く、従来のものは Rminが小さ
いために突入電流も大きく、また、正特性を示す温度範
囲も狭いのが本発明によシ大幅に改善されて使用し易い
特性になっていることがわかる。
As is clear, the conventional type has a small Rmin, so the inrush current is large, and the temperature range in which it exhibits positive characteristics is also narrow, but the present invention has greatly improved the characteristics, making it easier to use. I understand that.

なおりaTIOsK対してMgを添加することは2例え
ば[チタン酸バリウム系半導体の実験的研究」(佐分別
)やI)、J、BROWN、 F、A、W、SLY a
nd G、AR’111−UR[The Effect
  of 0xide  Impuritiell o
n  theElectrical Re5lstiv
lty o(La−doped BaTl0jIInt
ernational  Re5earch  and
 Development  Co。
Adding Mg to Naori aTIOsK has been reported in 2 For example, [Experimental Research on Barium Titanate Semiconductors] (Sabaketsu) and I), J, BROWN, F, A, W, SLY a.
nd G, AR'111-UR [The Effect
of Oxide Impuritiell o
n the Electrical Re5lstiv
lty o(La-doped BaTl0jIInt
national research and
Development Co.

Lid Newcastle upon Tyne 6
等に記載されているが、これらはMg K iり半導体
化剤のぶ−が多量に必要となることが明示されておし、
  (IlaPbMg)TIO,に関するものではない
Lid Newcastle upon Tyne 6
etc., but it has been clearly stated that these require a large amount of MgKi semiconducting agent.
(IlaPbMg)TIO.

またチタン酸バリウム半導体[MgとPbを含有させる
ことが本出願人から特許出願されているが(特開昭55
−46524号公報)、こiLF’iMgの量が本発明
とは全く異なり、しかも本発明のように突六電流抑制と
いうようか効果を奏するものではない。
Furthermore, the present applicant has filed a patent application for a barium titanate semiconductor [containing Mg and Pb (Japanese Unexamined Patent Application Publication No. 55-1979).
46524), the amount of iLF'iMg is completely different from that of the present invention, and moreover, unlike the present invention, it does not have the effect of suppressing the sudden current.

効  果 本発明により抵抗温度特性のキュリ一点渦庇以下の湿度
範囲(NTC領域)での負の勾配を小さくコントロール
することができる。そしてこれ罠より突入電流を小さく
抑えることができる。またキュリ一点温度以上のPTC
領域での正の勾配に関してはなだらかなものとなり正特
性が持続する温度範囲が拡がり2発熱体として使用命件
も拡がるととKなる。このようKして経時変化も小さく
な?、かくして経時変化のlJ−さい、高電力の発熱体
を提供することが可能忙なりた。
Effects According to the present invention, the negative slope of the resistance temperature characteristic in the humidity range below the Curie point vortex (NTC region) can be controlled to be small. And the inrush current can be kept smaller than this trap. Also, the PTC temperature is higher than the curri point temperature.
The positive gradient in the region becomes gentle, and the temperature range in which the positive characteristics persist expands, and the usage requirements as a 2-heating element also expand. With K like this, the change over time is also small, right? It has thus become possible to provide a high power heating element during aging.

【図面の簡単な説明】[Brief explanation of the drawing]

添付図面は従来の半導体磁器組成物と本発明の半導体磁
器組成物の一実施例の特性曲線を示す。 特許出願人 東京電気化学工業株式会社代理人弁理士 
 山 谷 晧 榮 T#++ r(す
The accompanying drawings show characteristic curves of a conventional semiconductor ceramic composition and an embodiment of the semiconductor ceramic composition of the present invention. Patent applicant Tokyo Denki Kagaku Kogyo Co., Ltd. Representative Patent Attorney
Akira Yamatani Sakae T#++ r(su

Claims (1)

【特許請求の範囲】 1、 チタン酸バリウムVCおけるバリウムの1〜50
モル%を鉛で、0.1〜1.0%ル%をマグネシウムで
同IIk置換した組成物に半導体化用元素を0.1〜−
3. oモル%添加したことをIPf徴とする半導体磁
器組成物。 2 前記半導体化用元素としてイツトリウム。 アンチモン、ニオブ、タン−タル1.ディストpジウム
、ガドリニウム、ネオジウム、サマリウムの少くとも1
つを使用したことを特徴とする特許請求の範囲第1項記
載の半導体磁器組成物。 5、  sio、を0,1〜5.Owt−%、更に添加
したことを特徴とする特許請求の範囲第1項記載の半導
体磁器組成物。 4、wyガンを0.002〜0.05 wt%更に添加
してなる仁とを特徴とする特許請求の範囲第1項記載の
半導体磁器組成物。 5、  810.を0.1〜3. Owt %、Mnを
0.002〜0.03wt%2人603を0.1〜1.
0wt%、TiO2を0.1〜2.0wt%更に添加し
てなることを特徴とする特許請求の範囲第1項記載の半
導体磁器組成物。
[Claims] 1. 1 to 50 of barium in barium titanate VC
In a composition in which mol% is replaced with lead and 0.1 to 1.0% with magnesium, 0.1 to -
3. A semiconductor ceramic composition whose IPf characteristic is that o mol % is added. 2. Yttrium as the semiconductor element. Antimony, niobium, tantalum 1. At least one of dystopdium, gadolinium, neodymium, and samarium
2. The semiconductor ceramic composition according to claim 1, characterized in that: 5. sio, 0.1-5. The semiconductor ceramic composition according to claim 1, further comprising Owt-%. 4. The semiconductor ceramic composition according to claim 1, further comprising 0.002 to 0.05 wt% of Wygan. 5, 810. 0.1 to 3. Owt%, Mn 0.002-0.03wt%2 people 603 0.1-1.
2. The semiconductor ceramic composition according to claim 1, further comprising 0.1 to 2.0 wt% of TiO2.
JP57122574A 1982-07-13 1982-07-13 Semiconductor porcelain composition Granted JPS5913301A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57122574A JPS5913301A (en) 1982-07-13 1982-07-13 Semiconductor porcelain composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57122574A JPS5913301A (en) 1982-07-13 1982-07-13 Semiconductor porcelain composition

Publications (2)

Publication Number Publication Date
JPS5913301A true JPS5913301A (en) 1984-01-24
JPS6258642B2 JPS6258642B2 (en) 1987-12-07

Family

ID=14839267

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57122574A Granted JPS5913301A (en) 1982-07-13 1982-07-13 Semiconductor porcelain composition

Country Status (1)

Country Link
JP (1) JPS5913301A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20090082105A (en) 2006-10-27 2009-07-29 히다찌긴조꾸가부시끼가이사 Semiconductor ceramic composition and method for producing the smae

Also Published As

Publication number Publication date
JPS6258642B2 (en) 1987-12-07

Similar Documents

Publication Publication Date Title
KR20170016805A (en) Semiconductive ceramic composition and ptc thermistor
JPS5913301A (en) Semiconductor porcelain composition
JP2014034505A (en) Semiconductor ceramic composition and method of producing the same
JP5988388B2 (en) Semiconductor porcelain composition and method for producing the same
JP3554786B2 (en) Semiconductor ceramic, degaussing positive temperature coefficient thermistor, degaussing circuit, and method of manufacturing semiconductor ceramic
JP3166787B2 (en) Barium titanate-based semiconductor porcelain composition
JP6075877B2 (en) Semiconductor porcelain composition and method for producing the same
JP2976702B2 (en) Semiconductor porcelain composition
JP2007008768A (en) Barium titanate semiconductor porcelain composition
KR100353592B1 (en) Semiconductor ceramic
JPH04144201A (en) Positive temperature coefficient thermistor and manufacture thereof
JP3617795B2 (en) Positive thermistor porcelain composition
JPH0822773B2 (en) Method for manufacturing barium titanate porcelain semiconductor
JPH02192457A (en) Semiconductor ceramic
JP4800956B2 (en) Barium titanate semiconductor porcelain composition
JPH09330805A (en) Positive characteristic thermistor and manufacture thereof
JPH07211512A (en) Positive temperature coefficient thermistor
JPH01143201A (en) Variable positive temperature coefficient resistance(ptcr) element
JPH1070007A (en) Manufacture of positive temperature coefficient thermistor
JPH02192456A (en) Semiconductor ceramic
JPS5919442B2 (en) Semiconductor ceramic material and its manufacturing method
JPH07230902A (en) Semiconductor ceramic element
JPH1070009A (en) Positive temperature coefficient thermistor and manufacture thereof
JPS5848404A (en) Barium titanate series semiconductor porcelain
JPS58143502A (en) Barium titanate series semiconductor porcelain composition