JPS59124170A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPS59124170A
JPS59124170A JP23370382A JP23370382A JPS59124170A JP S59124170 A JPS59124170 A JP S59124170A JP 23370382 A JP23370382 A JP 23370382A JP 23370382 A JP23370382 A JP 23370382A JP S59124170 A JPS59124170 A JP S59124170A
Authority
JP
Japan
Prior art keywords
gaas
layer
algaas
ions
implanted
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23370382A
Other languages
Japanese (ja)
Inventor
Hidetoshi Nishi
西 秀敏
Yasutaka Hirachi
康剛 平地
Junji Saito
淳二 斉藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP23370382A priority Critical patent/JPS59124170A/en
Publication of JPS59124170A publication Critical patent/JPS59124170A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/80Field effect transistors with field effect produced by a PN or other rectifying junction gate, i.e. potential-jump barrier

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Bipolar Transistors (AREA)
  • Junction Field-Effect Transistors (AREA)

Abstract

PURPOSE:To obtain a high resistance AlGaAs layer, by implanting O2 ions together with a VI group element in the surface of an AlGaAs layer, which is coated by GaAs, and thereafter performing heat treatment so as to obtain an inactive state. CONSTITUTION:On a semiinsulating substrate 1, to which Cr is added, nonadded AlxGa1-xAs (x is 0.2-0.4) 7 and nonadded GaAs 8 are continuously grown by a molecule beam epitaxial method. Then Se ions of a VI group element are implanted, and then O2 ions are implanted. The surface of the layer 8 is coated by an Al thin film by a reactive sputtering method, and heat treatment is performed at 625-850 deg.C. In this constitution, Se, which is activated in AlGaAs, can be made inactive by O2; carrier distribution is strikingly decreased in AlGaAs; and high resistance can be maintained. O2 does not perform inactivation in GaAs. Therefore, when this constitution is applied to the double structure of GaAs-AlGaAs in a GaAs FET, a high frequency power element, which is free from the effect of noises, can be obtained.

Description

【発明の詳細な説明】 (1)発明の技術分野 本発明は高抵抗のAlGaAs層を形成する半導体装置
の製造方法に関し、更に詳しくはGaAS−へ1ea八
82層構造のGaA3面から■族元素と酸素全イオン注
入し、熱処理を行なうことによって高抵抗のに狐aAa
層を得る、半導体装置、特にGa As電界効果トラン
ジスタの製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION (1) Technical Field of the Invention The present invention relates to a method for manufacturing a semiconductor device forming a high-resistance AlGaAs layer, and more specifically to a method for manufacturing a semiconductor device in which a high-resistance AlGaAs layer is formed. By implanting all ions of oxygen and heat treatment, a high-resistance aAa
The present invention relates to a method for manufacturing semiconductor devices, in particular GaAs field effect transistors, in which layers are obtained.

(2)技術の背景及び従来技術の問題点高周波のパワー
素子としてGa八へ  FfCTが広く用いられており
、その高周波特性が、活性層として用いられるチャンネ
ル層を成長させる前に成長されるバッファ層自体の、あ
るいはバッファ層−とチャンネル層界面の性質により左
右されることは良く知られている。パワーFBliT用
のバッファ層としては特に高抵抗が要求される。また、
チャンネル層のドーピング・プロファイルとしてはより
急峻な濃度分布をもったものが有利とされている。
(2) Background of the technology and problems with the conventional technology FfCT is widely used as a high-frequency power device for Ga8, and its high-frequency characteristics are unique to the buffer layer that is grown before growing the channel layer used as the active layer. It is well known that it depends on the properties of the buffer layer itself or the interface between the buffer layer and the channel layer. A particularly high resistance is required as a buffer layer for power FBliT. Also,
It is considered advantageous for the doping profile of the channel layer to have a steeper concentration distribution.

第1図は、従来のショットキーゲート形Ga AsFK
Tの断面図で、図中、1は半絶縁性GaA3基板、2は
アンドープの()aAsAsバラフッ3はn型Ga A
s活性層、4と5はソースまたはドレイ/電極、6はシ
ョットキーゲートである。
Figure 1 shows a conventional Schottky gate type GaAsFK.
This is a cross-sectional view of T. In the figure, 1 is a semi-insulating GaA3 substrate, 2 is an undoped ()aAsAs substrate, and 3 is an n-type GaA substrate.
s active layer, 4 and 5 are sources or drains/electrodes, and 6 is a Schottky gate.

バッファ層2として、GaAsよりパンドギャッ −プ
が大きく、高抵抗層が得られ易いAlGaAs を用い
ることが提案されている。このGa As −AlGa
 As 2層構造に、n型不純物であるシリコンをイオ
ン注入し、アニールする場合には、第2図の如く、ある
範囲の温度では、GaAs中でのみ、電気的活性化がお
こるため、より急1唆な濃度分布をもったチャンネル層
の形成が可能となってきている。
As the buffer layer 2, it has been proposed to use AlGaAs, which has a larger breadth gap than GaAs and can easily form a high resistance layer. This Ga As -AlGa
When silicon, which is an n-type impurity, is ion-implanted into an As two-layer structure and annealed, electrical activation occurs only in GaAs at a certain temperature range, as shown in Figure 2, so the process becomes more rapid. It has become possible to form a channel layer with a uniform concentration distribution.

第2図中、横軸は深さを示し、縦軸はキャリア濃度を示
す。図中の点線は、1oOKevのエネルギーでシリコ
ンイオンを注入した場合の注入イオン分布であり、70
0℃で熱処理したときのキャリア分布は実線にて示しで
ある。AlGaAs 中で特に、キャリア濃度分布が低
下しているのは、AlGaAsにおける活性化温度がG
aAs中に比べおよそ200℃高いことに依るものであ
る。
In FIG. 2, the horizontal axis indicates depth, and the vertical axis indicates carrier concentration. The dotted line in the figure is the implanted ion distribution when silicon ions are implanted with an energy of 1oOKev, which is 70
The carrier distribution when heat treated at 0° C. is shown by a solid line. Especially in AlGaAs, the carrier concentration distribution decreases because the activation temperature in AlGaAs is G.
This is due to the fact that the temperature is approximately 200°C higher than that in aAs.

このようにAI Ga As 中でキャリア濃度’Th
1O”crn−3以ドと極めて低くできるが、ノくワー
F’EfiTとしては充分な高抵抗となっていない。
In this way, the carrier concentration 'Th in AI Ga As
Although the resistance can be extremely low as less than 10" crn-3, the resistance is not high enough for a lower F'EfiT.

(3)発明の目的 本発明の目的は、上記AlGaAg層の抵抗を更に高め
得る方法を提供するものである。更には、Ga As 
−Al Ga As 二重層におけるGaA3活性層の
キャリア濃度は変えずに、AlGaAs層の抵抗を更に
高め得るGaAsFKTの製造方法を提供するものであ
る。
(3) Purpose of the Invention An object of the present invention is to provide a method for further increasing the resistance of the AlGaAg layer. Furthermore, GaAs
The present invention provides a method for manufacturing GaAsFKT that can further increase the resistance of the AlGaAs layer without changing the carrier concentration of the GaA3 active layer in the -AlGaAs double layer.

(4)発明の構成 上記の目的は、本発明によれば (イ) AlGaAs層に■族元素全イオン注入すると
共に、酸素イオンを注入する工程および該注入工程後不
活性化のための熱処理を行なう工程により高抵抗の八1
()aAs層を形成すること全特徴とする半導体装置の
製造方法、 (ロ)前記AI Ga As層がGaAS層によって覆
われ、前記■族元素が該Ga As層表面からイオン注
入されることを特徴とす−る前記の半導体装置の製造方
法とすることにより達成される。
(4) Structure of the Invention According to the present invention, the above-mentioned object is achieved by (a) implanting all ions of group (I) elements into the AlGaAs layer, as well as a step of implanting oxygen ions and a heat treatment for inactivation after the implantation step; 81 with high resistance depending on the process performed.
(2) A method for manufacturing a semiconductor device characterized in that an aAs layer is formed, (b) the AI GaAs layer is covered with a GaAS layer, and the group (3) element is ion-implanted from the surface of the GaAs layer. This is achieved by the above-described method for manufacturing a semiconductor device.

(5)発明の実施例 以下に図面全参照して本発明の詳細な説明する。(5) Examples of the invention The present invention will be described in detail below with reference to all the drawings.

第3図は、Ga八へ−AIGaAs2重層を形成した基
板の断面図で、クロム全添加した半絶縁性基板lの上に
、分子ビームエピタキシャル法により、アンドープでα
5μmの厚さにAlxGa1−1 As (X =α3
)層7を形成し、続いて、アンドープで0.2μmの厚
さのGa As層8を連続成長させる。
Fig. 3 is a cross-sectional view of a substrate on which a Ga-AIGaAs double layer is formed, and it is undoped with α
AlxGa1-1 As (X = α3
) layer 7 is formed, followed by successive growth of an undoped GaAs layer 8 with a thickness of 0.2 μm.

第3図の構造に対して、■族元素のセレンイオyi 4
00 KeVのエネルギー、2 X 、 10 ” 2
Cnr2の密度でイオン注入し、次いで酸素イオンを1
50KeV  I X 10 ”cm−2の条件でイオ
ン注入する。
For the structure shown in Figure 3, the group ■ element selenium io yi 4
00 KeV energy, 2 X, 10 ” 2
Ion implantation at a density of Cnr2 followed by oxygen ions at 1
Ion implantation is performed under the condition of 50 KeV I x 10''cm-2.

R記の条件でのセレンイオンのRp (飛程距離)は約
015μm1酸素イオンのRpはα24μmである。
The Rp (range distance) of selenium ions under the conditions described in R is approximately 015 μm, and the Rp of oxygen ions is α24 μm.

注入イオンの活性化のための熱処理を行なうにあたって
、GaAB層8の表面を反応スパッタ法によって01μ
mのAQN膜で被覆し、この状態で800℃、20分の
熱処理を行なう。
When performing heat treatment for activating the implanted ions, the surface of the GaAB layer 8 is coated with 01 μm by reactive sputtering.
It is coated with an AQN film of 100 m thick, and in this state, heat treatment is performed at 800° C. for 20 minutes.

この結+i第4図に示す。横軸は深さであり、縦軸に#
度を示す。点綴はセレンのイオン分布であり、実線がキ
ャリア分布である。AlGaAs中でキャリア分布が急
激に減少していることがわかる。
This result is shown in FIG. The horizontal axis is depth and the vertical axis is #
Show degree. The dotted line is the selenium ion distribution, and the solid line is the carrier distribution. It can be seen that the carrier distribution in AlGaAs decreases rapidly.

この/qGaA8層の抵抗は周知のC−V法で測定した
が、比抵抗として106Ω・m以上のものであった。
The resistance of this /qGaA8 layer was measured by the well-known CV method, and the specific resistance was 106 Ω·m or more.

尚、■族元素として、セレンの他イオウ、テルル等があ
り、同様に実施できる。
Incidentally, in addition to selenium, sulfur, tellurium, and the like can be used as group (Ⅰ) elements, and the same method can be used.

ところで、前記のセレン注入に代えてシリコンイオンを
注入した場合には、注入酸素イオンによる不活性化が檄
しく、N型としてのキャリア濃度は低下するかもしくは
N型が得られない場合があり、GaAs中でのドーピン
グ教の制御が困難であるのに対し、■族ドナー不純物で
は酸素注入による不活性化がGaAs中ではみとめられ
ていない。
By the way, when silicon ions are implanted instead of the selenium implantation described above, inactivation by the implanted oxygen ions is a problem, and the N-type carrier concentration may decrease or the N-type may not be obtained. While it is difficult to control the doping behavior in GaAs, inactivation of group III donor impurities by oxygen implantation has not been observed in GaAs.

このため、GaAS中のドーピングはセレン注入のみで
制御され、かつ、AlGaAs中では酸素原子の導入す
る深いレベルのために高抵抗層が形成される0 上記の実施例においてAl()aAsのX値はα3とし
たが、このX値は02〜α4の範囲で変えることができ
、注入後の熱処理温度は625〜850℃の範囲で変え
ることができる。
Therefore, the doping in GaAS is controlled only by selenium implantation, and in AlGaAs, a high resistance layer is formed due to the deep level of oxygen atoms introduced. is α3, but this X value can be changed in the range of 02 to α4, and the heat treatment temperature after injection can be changed in the range of 625 to 850°C.

GaAs1T[nTの製作にあたっては、コンタクト抵
抗減少のためソース、ドレイン電極の形成すべきGa 
As部分に■族元素を高濃度に注入する工程全付加する
のがよく、セレン注入の場合は、例えば50 KeVで
1〜3X1013cr1r2のイオンを行なう。
When manufacturing GaAs1T[nT, the source and drain electrodes are formed using GaAs to reduce contact resistance.
It is preferable to add a complete step of implanting group (I) elements at a high concentration into the As portion. In the case of selenium implantation, ions of 1 to 3×10 13 cr 1 r 2 are implanted at 50 KeV, for example.

(6)発明の効果 本発明ではAI Ga As層に■族元素と酸素を注入
し、熱処理を行なうことにより、AlGaAs層中で活
性化する■族元素は酸素によって不活性化させることが
でき、高抵抗を保つことができる。更に、このイオン注
入はGaAsFB’l”における様なGa As −A
IGa As二重構造に対してなせば、酸素はGaAs
中では不活性化の働きをしないので、GaAs中のキャ
リア濃度は■族元素のみで制御できると共に、AI G
a Asは高抵抗となし得るので好都合であり、ノイズ
の影響のない高周波パワー素子が実現できる。
(6) Effects of the Invention In the present invention, by injecting group Ⅰ elements and oxygen into the AI GaAs layer and performing heat treatment, the group Ⅰ elements activated in the AlGaAs layer can be inactivated by oxygen. Can maintain high resistance. Furthermore, this ion implantation can be applied to GaAs-A as in GaAsFB'l''.
When applied to the IGaAs double structure, oxygen
Since the carrier concentration in GaAs does not act as inactivation, it is possible to control the carrier concentration in GaAs only by using group III elements.
aAs is advantageous because it can have a high resistance, and a high frequency power device without the influence of noise can be realized.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来のショットキーゲート形GaASFELT
の断面図、第2図は従来提案されているGaAs −A
’lGa As構造にシリコンイオン全注入しアニール
したときの濃度分布金示す図、第3図は本発明の実施に
用いたGa As 7 AI Ga As構造の断面図
、第4図は第3図の構造にセレンと酸素を共にイオン注
入し、アニールしたときの濃度分布を示す図である。 図中、lは半絶縁性基板、7はAI Ga As層、8
はGa As層である。 第 1 図 0.20.4ノ1 1蚤さ 第2口 第3 図 θ、2    071m 、+@  さ 第4 図
Figure 1 shows a conventional Schottky gate type GaASFELT.
Figure 2 is a cross-sectional view of the conventionally proposed GaAs-A
Figure 3 is a cross-sectional view of the GaAs 7 AI GaAs structure used in the implementation of the present invention, and Figure 4 is the same as that of Figure 3. FIG. 3 is a diagram showing the concentration distribution when both selenium and oxygen are ion-implanted into a structure and annealed. In the figure, l is a semi-insulating substrate, 7 is an AI Ga As layer, and 8 is a semi-insulating substrate.
is a GaAs layer. 1st Figure 0.20.4 No. 1 1 Flea 2nd mouth 3rd figure θ, 2 071m, +@sa Figure 4

Claims (2)

【特許請求の範囲】[Claims] (1)  A1GaA43層に■族元素をイオン注入す
ると共に、酸素イオン金注入する工程および該注入工程
後年活性化のための熱処理を行なう工程により高抵抗の
AI GakS層を形成することを特徴とする半導体装
置の製造方法。
(1) A high-resistance AI GakS layer is formed by ion-implanting a group III element into the A1GaA43 layer, implanting oxygen ions with gold, and performing heat treatment for activation after the implantation step. A method for manufacturing a semiconductor device.
(2)前記AlGaAs層がGa As層によって覆わ
れ、前記■族元素が該Ga As層表面からイオン注入
されることを特徴とする特許請求の範囲第(1)項記載
の半導体装置の製造方法。
(2) The method for manufacturing a semiconductor device according to claim (1), characterized in that the AlGaAs layer is covered with a GaAs layer, and the Group Ⅰ element is ion-implanted from the surface of the GaAs layer. .
JP23370382A 1982-12-29 1982-12-29 Manufacture of semiconductor device Pending JPS59124170A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23370382A JPS59124170A (en) 1982-12-29 1982-12-29 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23370382A JPS59124170A (en) 1982-12-29 1982-12-29 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPS59124170A true JPS59124170A (en) 1984-07-18

Family

ID=16959218

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23370382A Pending JPS59124170A (en) 1982-12-29 1982-12-29 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPS59124170A (en)

Similar Documents

Publication Publication Date Title
US4489480A (en) Method of manufacturing field effect transistors of GaAs by ion implantation
US3909307A (en) Process for compensating boundary charges in silicon thin layers epitaxially grown on a substrate
IE52184B1 (en) Device isolation in silicon semiconductor substrates
JPH01175265A (en) Field-effect transistor and its manufacture
EP0177494A1 (en) PROCESS FOR FABRICATING GaAs FET WITH ION IMPLANTED CHANNEL LAYER
JPS59124170A (en) Manufacture of semiconductor device
US3936321A (en) Method of making a compound semiconductor layer of high resistivity
JPS596054B2 (en) Method for manufacturing semiconductor devices
JPS6327852B2 (en)
JPS5853863A (en) Preparation of semiconductor device
JPS6047428A (en) Manufacture of semiconductor device
JPH0212875A (en) Manufacture of semiconductor device
JPH0533527B2 (en)
JPS6157714B2 (en)
JP3035941B2 (en) Method for manufacturing group III-V compound semiconductor device
FR2463825A1 (en) METHOD FOR MANUFACTURING A SEMICONDUCTOR DEVICE IN A SIMULATED EPITAXIAL LAYER
JPS61135166A (en) Manufacture of schottky barrier gate type field-effect transistor
JPH01286308A (en) Manufacture of gallium arsenide field effect transistor
JPS60254672A (en) Manufacture of fet
JPH02266534A (en) Manufacture of semiconductor device
JPS59228713A (en) Manufacture of semiconductor device
JPS58145119A (en) Manufacture of compound semiconductor device
JPS6223175A (en) Manufacture of semiconductor device
WO1988006802A1 (en) IMPROVED ION-IMPLANTED GaAs FIELD-EFFECT TRANSISTOR
JPH0373542A (en) Manufacture of ga-as field effect transistor