JPS6047428A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPS6047428A
JPS6047428A JP58155006A JP15500683A JPS6047428A JP S6047428 A JPS6047428 A JP S6047428A JP 58155006 A JP58155006 A JP 58155006A JP 15500683 A JP15500683 A JP 15500683A JP S6047428 A JPS6047428 A JP S6047428A
Authority
JP
Japan
Prior art keywords
protective film
ions
semi
semiconductor device
approximately
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58155006A
Other languages
Japanese (ja)
Inventor
Akihiro Shibatomi
昭洋 柴富
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP58155006A priority Critical patent/JPS6047428A/en
Publication of JPS6047428A publication Critical patent/JPS6047428A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/26Bombardment with radiation
    • H01L21/263Bombardment with radiation with high-energy radiation
    • H01L21/265Bombardment with radiation with high-energy radiation producing ion implantation
    • H01L21/2654Bombardment with radiation with high-energy radiation producing ion implantation in AIIIBV compounds
    • H01L21/2656Bombardment with radiation with high-energy radiation producing ion implantation in AIIIBV compounds characterised by the implantation of both electrically active and inactive species in the same semiconductor region to be doped
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/322Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to modify their internal properties, e.g. to produce internal imperfections
    • H01L21/3221Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to modify their internal properties, e.g. to produce internal imperfections of silicon bodies, e.g. for gettering

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Junction Field-Effect Transistors (AREA)

Abstract

PURPOSE:To distribute an impurity uniformly, and to eliminate the variance of threshold voltage due to a crystal defect by applying a protective film on a semi-insulating GaAs substrate, implanting O2 ions or H2 ions having no adverse effect on a semiconductor device afterward through the protective film, implanting required impurity ions and thermally treating the whole as the protective film is left as it is. CONSTITUTION:A protective film of SiO2, Si3N4, AlN, etc. is applied on a semi- insulating GaAs substrate through a sputtering method or a thermal decomposition method, and H<+>: proton.ions are implanted through the protective film while the quantity of a dose is brought to approximately 10<14>/cm<2>. Si<+> ions are implanted through said protective film while the quantity of a dose is brought to approximately 2X10<12>/cm<2>, and the whole is thermally treated for approximately twenty min at approximately 850 deg.C as the protective film is left as it is. Accordingly, Si impurity is distributed extending over the whole operating region, and the variance of threshold voltage is eliminated while the resistance value of a resistance layer is equalized.

Description

【発明の詳細な説明】 発明の技術分野 本発明は、半絶縁性砒化ガリウム(GaAs)基板を用
いる半導体装置を製造する際に適用して好結果が得られ
る方法に関する。
TECHNICAL FIELD OF THE INVENTION The present invention relates to a method that can be successfully applied in manufacturing semiconductor devices using semi-insulating gallium arsenide (GaAs) substrates.

従来技術と問題点 近年、GaAs系集積回路或いは光−電気集積回路(O
EIC)等に関する開発及び研究が盛んである。。
Prior art and problems In recent years, GaAs-based integrated circuits or opto-electrical integrated circuits (O
Development and research regarding EIC) etc. are active. .

一般に、それ等半導体装置には、半絶縁性GaAs基板
が使用されていが、このGaAs基板はシリコン(St
)基板に比較して結晶欠陥が著しく多い。例えば、Ga
As基板に於ける転位密度は103〜105 〔個/C
m2)であり、Si基板に於けるそれは0である。
Generally, semi-insulating GaAs substrates are used in these semiconductor devices;
) There are significantly more crystal defects than the substrate. For example, Ga
The dislocation density in the As substrate is 103 to 105 [pieces/C
m2), which is 0 in the Si substrate.

ところで、GaAs系半導体装置を製造する場合、半絶
縁性GaAs基板に対してイオン注入法を適用し、不純
物イオン、例えばStイオンを1Xl017 (ω−3
〕程度打ち込み、その後、全面に保護膜を形成してから
温度800(’C)乃至850〔℃〕程度で20〔分〕
乃至30〔分〕程度の熱処理をして動作領域を形成し、
その動作領域に素子を作り込むことが行なわれている。
By the way, when manufacturing a GaAs-based semiconductor device, an ion implantation method is applied to a semi-insulating GaAs substrate, and impurity ions, for example, St ions are added to 1Xl017 (ω-3
] After that, after forming a protective film on the entire surface, the temperature is about 800 ('C) to 850 [℃] for 20 [minutes].
A heat treatment is performed for about 30 to 30 minutes to form an operating region.
Efforts are being made to build elements into the operating region.

然し乍ら、注入されたStイオンを活性化する為の前記
熱処理を行なうと、Stイオンが前記半絶縁性GaAs
基板中の結晶欠陥にゲッタリング(吸着)され、前記動
作領域内で活性化された不純物の濃度、即ちキャリヤ濃
度が局所的に不均一になり、例えば前記結晶欠陥が存在
する部分ではキャリヤ濃度が5 X 10” (cm−
3)にもなってしまう。
However, when the heat treatment for activating the implanted St ions is performed, the St ions are transferred to the semi-insulating GaAs.
The concentration of impurities that are gettered (adsorbed) by crystal defects in the substrate and activated within the operating region, that is, the carrier concentration, becomes locally non-uniform. 5 x 10” (cm-
It also becomes 3).

このような動作領域に、GaAs系半導体装置の基本的
素子の一つである電界効果トランジスタを形成した場合
、その闇値電圧vthにバラツキが発生する。例えば結
晶欠陥がある部分、或いはその近傍に電界効果トランジ
スタのゲート電極が存在した場合、キャリヤ濃度が他の
部分より高いから闇値電圧vthは深く (大きく)な
り、また、結晶欠陥がない部分にゲート電極が存在した
場合、キャリヤ濃度は低いから闇値電圧v−thは浅く
 (小さく)なる。そして、動作領域全域に亙り結晶欠
陥の密度に比例して闇値電圧の標準偏差σvthが大き
くなる。GaAs系半導体装置では、電界効果トランジ
スタを高密度に広い面積に亙り集積化したものであるか
ら、或既定値以上に闇値電圧の標準偏差σvthが大き
くなると装置は動作することができなくなる。
When a field effect transistor, which is one of the basic elements of a GaAs-based semiconductor device, is formed in such an operating region, variations occur in its dark value voltage vth. For example, if the gate electrode of a field effect transistor exists in a part where there is a crystal defect or in the vicinity thereof, the dark value voltage vth becomes deeper (larger) because the carrier concentration is higher than in other parts. When the gate electrode exists, the carrier concentration is low, so the dark value voltage v-th becomes shallow (small). Then, the standard deviation σvth of the dark value voltage increases in proportion to the density of crystal defects over the entire operating region. In a GaAs-based semiconductor device, field effect transistors are integrated at high density over a wide area, so if the standard deviation σvth of the dark value voltage becomes larger than a certain predetermined value, the device becomes unable to operate.

また、前記とは別に、半導体装置では、回路を構成する
上で抵抗層が必要であって、これはGaAs系も例外で
はなく、特に、シート抵抗として1 (KΩ〕乃至5 
(KΩ〕程度の値のものが要求される。
In addition, apart from the above, semiconductor devices require a resistance layer to form a circuit, and GaAs systems are no exception to this, and in particular, the sheet resistance ranges from 1 (KΩ) to 5
(KΩ) is required.

この抵抗層をイオン注入法で形成するとした場合、抵抗
層の抵抗値を高くするには不純物濃度を下げることが必
要である。
If this resistance layer is formed by ion implantation, it is necessary to lower the impurity concentration in order to increase the resistance value of the resistance layer.

然し乍ら、GaAsの表面準位が抵抗層表面に容易に形
成されること及び抵抗層の不純物濃度が低いことと相俟
って、表面準位密度に起因する空乏層が抵抗層側へ表面
から延びて来て、抵抗層の電流値を変化させ、従って、
抵抗層の抵抗値にバラツキを生じ、特に高い抵抗値の抵
抗層を得ようとするとその傾向が著しくなる。
However, because the surface states of GaAs are easily formed on the surface of the resistance layer and the impurity concentration of the resistance layer is low, a depletion layer due to the density of surface states extends from the surface toward the resistance layer side. changes the current value of the resistive layer, and therefore,
Variations occur in the resistance value of the resistance layer, and this tendency becomes remarkable when attempting to obtain a resistance layer with a particularly high resistance value.

発明の目的 本発明は、半絶縁性GaAs基板に不純物を導入して動
作領域を形成しても、その不純物が動作領域全域に均一
に分布し、結晶欠陥に依る闇値電圧のバラツキが発生し
ないように、また、抵抗層の抵抗値を容易に制御するこ
とが可能であるようにする。
Purpose of the Invention The present invention provides a method for forming an operating region by introducing impurities into a semi-insulating GaAs substrate, but the impurities are uniformly distributed over the entire operating region, and variations in dark voltage due to crystal defects do not occur. In addition, it is possible to easily control the resistance value of the resistive layer.

発明の構成 本発明の半導体装置の製造方法では、半絶縁性GaAs
基板上に保護膜を形成し、次いで、該保護膜を通して前
記半絶縁性GaAs基板に酸素イオン或いは水素イオン
など後に半導体装置に悪影響を与えないイオン及び所要
の不純物イオンを注入し、次いで、前記保護膜を残留さ
せたまま熱処理する工程を採ることに依り、動作領域全
域に前記不純物を均一に分布させるようにしている。
Structure of the Invention In the method for manufacturing a semiconductor device of the present invention, semi-insulating GaAs
A protective film is formed on the substrate, and then, ions such as oxygen ions or hydrogen ions that do not have an adverse effect on the semiconductor device later and necessary impurity ions are implanted into the semi-insulating GaAs substrate through the protective film. By employing a heat treatment step with the film remaining, the impurities are uniformly distributed over the entire operating region.

発明の実施例 本発明を実施してGaAs系半導体装置を作成する場合
について説明する。
Embodiments of the Invention A case will be described in which a GaAs-based semiconductor device is manufactured by implementing the present invention.

先ず、半絶縁(’l G a A s基板上にスパッタ
法或いは熱分解法を通用して保護膜を形成する。この保
護膜の材料としては、例えば二酸化シリコン(SiOz
)、窒化シリコン(Si’3N4)、窒化アルミニウム
(A e N)等を用いることができるが、ここではA
72N膜を使用することにする。
First, a protective film is formed on a semi-insulating ('lGaAs) substrate using a sputtering method or a thermal decomposition method.The material for this protective film is, for example, silicon dioxide (SiOz).
), silicon nitride (Si'3N4), aluminum nitride (A e N), etc., but here A
A 72N membrane will be used.

その理由は、AINはGaAsと熱膨張係数が略等しい
ので、熱処理時にAl1N膜とGaAs基板との界面に
歪みを発生することがなく、しかも、GaAsとは化学
的に反応せず、安定しているので好ましいことに依る。
The reason for this is that AIN has approximately the same coefficient of thermal expansion as GaAs, so it does not cause distortion at the interface between the Al1N film and the GaAs substrate during heat treatment, and it does not chemically react with GaAs, making it stable. It depends on what is preferable.

尚、保護膜の厚さは、例えば20〜30〔μm〕程度で
良い。
Note that the thickness of the protective film may be, for example, about 20 to 30 [μm].

次いで、保護膜を通して水素イオン(H+:プロトン・
イオン)を加速電圧例えば300(Ke■〕、ドーズ量
例えば1014(cm−2)程度として注入する。
Next, hydrogen ions (H+: protons) pass through the protective film.
Ions) are implanted at an acceleration voltage of, for example, 300 (Ke) and a dose of, for example, about 1014 (cm-2).

次いで、同じく保護膜を通してシリコン・イオン(St
”)を加速電圧例えば80(KeV)、ドーズ量例えば
2X1012(ω−2〕程度として注入する。
Next, silicon ions (St
'') is implanted at an accelerating voltage of, for example, 80 (KeV) and a dose of, for example, about 2×10 12 (ω-2).

次いで、保護膜を残留させたまま温度例えば850(”
c)程度、時間20 〔分〕程度の熱処理を行なう。
Next, with the protective film remaining, the temperature is increased to, for example, 850 ("
c) Heat treatment is performed for about 20 minutes.

前記のようにして動作領域が完成されるので、そこに、
通當の技法でソース電極及びドレイン電極、ゲート電極
を形成して電界効果トランジスタを形成する。
Since the operating area is completed as described above, there is
A field effect transistor is formed by forming a source electrode, a drain electrode, and a gate electrode using conventional techniques.

第1図は本発明を適用して形成した電界効果トランジス
タと従来技術を適用して形成した電界効果トランジスタ
とに於ける闇値電圧の標準偏差σvth及び11+ドー
ズ量の関係を表わす線図であって、TP(実線)は本発
明に依るもの、PA(破線)は従来技術に依るものを示
している。
FIG. 1 is a diagram showing the relationship between the standard deviation σvth of the dark value voltage and the 11+ dose in a field effect transistor formed by applying the present invention and a field effect transistor formed by applying the conventional technology. TP (solid line) shows the one according to the present invention, and PA (broken line) shows the one according to the prior art.

図から判るように、H+ドーズ量が増加するにつれて闇
値電圧の標準偏差σvthは小さくなり、或値以上にな
ると飽和する。
As can be seen from the figure, as the H+ dose increases, the standard deviation σvth of the dark value voltage becomes smaller, and becomes saturated when it exceeds a certain value.

このように、H+の注入に依り閾値電圧の標準偏差σv
thのバラツキ幅が小さくなると同時に低くなる原因に
関しては種々な推測が成り立つが、その一つとして次の
ように考えることができる。
In this way, the standard deviation of the threshold voltage σv due to the injection of H+
Various speculations can be made regarding the reason why the variation width of th becomes smaller and lower at the same time, and one of them can be considered as follows.

H+を半絶縁性GaAs基板中に注入することに依り、
その領域はアモーファス化している。そして、熱処理す
る際、このアモーファス化している領域が再結晶化する
ので、不純物イオンのゲッタリング作用が低減され、該
領域内で均一化される。その結果、該領域内に於けるキ
ャリヤ濃度分布も均一になり、闇値電圧の標準偏差σv
thが小さくなる。 ところで、本発明は、前記したよ
うに、所定領域内のキャリヤ濃度分布を均一化すること
に卓効があることから、抵抗層の抵抗値を安定に一定化
するのにもを効にであり、次に、その実施例について説
明する。
By implanting H+ into a semi-insulating GaAs substrate,
That area has become amorphous. Then, during heat treatment, this amorphous region is recrystallized, so that the gettering effect of impurity ions is reduced and the impurity ions are made uniform within the region. As a result, the carrier concentration distribution within the region becomes uniform, and the standard deviation of the dark value voltage σv
th becomes smaller. By the way, as described above, the present invention is extremely effective in uniformizing the carrier concentration distribution within a predetermined region, and therefore is also effective in stably keeping the resistance value of the resistive layer constant. , Next, an example thereof will be described.

先ず、半絶縁性GaAs基板上に、例えば気相成長法を
適用して、高抵抗或いは半絶縁性であるGaxAβl−
x A S半導体層を厚さ例えば40〜50(nm)程
度に成長する。この時、適用する気相成長法としてはハ
ライド法、MOCVD(metal organic 
chemical Vapour depositio
n)法、MBE(molecular beam ep
itaxy)法等を適用して良い。また、X値は0.2
〜0.6とする。
First, high resistance or semi-insulating GaxAβl- is deposited on a semi-insulating GaAs substrate by, for example, vapor phase growth.
The x AS semiconductor layer is grown to a thickness of, for example, about 40 to 50 (nm). At this time, the vapor phase growth methods to be applied include the halide method, MOCVD (metal organic
chemical vapor deposition
n) method, MBE (molecular beam ep
itaxy) method etc. may be applied. Also, the X value is 0.2
~0.6.

次いで、スパッタ法を適用して保護膜を厚さ例えば20
(nm)乃至4.0(nm)程度に形成する。この保護
膜の材料は、前記同様、5i02、S i 3 N 4
、AlN等から選択して良い。
Next, a protective film is formed to a thickness of, for example, 20 mm by applying a sputtering method.
(nm) to about 4.0 (nm). As above, the material of this protective film is 5i02, S i 3 N 4
, AlN, etc.

次いで、保護膜並びに高抵抗或いは半絶縁性であるGa
xAβト。As半導体層を通してH+を加 −速電圧3
00 (’KeV) 、ドーズ量例えば10I4(10
l4(程度として注入する。 次いで、同じく保護膜並
びにGaxAβl−X A S半導体層を通してSi+
を加速電圧を例えば175(KeV)程度として注入す
る。尚、ドーズ量は必要な抵抗値に対応して選択する。
Next, a protective film and high resistance or semi-insulating Ga are formed.
xAβt. Accelerate H+ through the As semiconductor layer - Accelerate voltage 3
00 ('KeV), dose amount e.g. 10I4 (10
Then, Si + is implanted through the protective film and the Ga
is injected at an accelerating voltage of, for example, about 175 (KeV). Note that the dose amount is selected depending on the required resistance value.

次いで、保護膜を残留させたまま温度例えば750(’
C)乃至850(’C)程度、時間例えば20〔分〕程
度に選定して熱処理を行なう。
Next, with the protective film remaining, the temperature is, for example, 750 ('
The heat treatment is performed at a temperature of about 850 ('C) and a time of about 20 minutes, for example.

これに依り、所定の抵抗値を有する抵抗層を再現性よく
形成することができる。
With this, a resistive layer having a predetermined resistance value can be formed with good reproducibility.

第2図は本発明を適用して形成した抵抗層と従来技術を
適用して形成した抵抗層とに於けるシート抵抗値〔Ω−
ロ〕及びSt+のドーズ量の関係を表わす線図であって
、TP(実線)は本発明に依るものであり、PA(破線
)は従来技術に依るものを示している。
FIG. 2 shows the sheet resistance values [Ω-
B] is a diagram showing the relationship between the doses of St + and TP, in which TP (solid line) is based on the present invention, and PA (broken line) is based on the prior art.

図から判るように、St+のドーズ量が少なくなるにつ
れてシート抵抗値は増加している。そして、従来技術で
作成された抵抗では、シート抵抗値の増大とともにバラ
ツキも大きくなっている。
As can be seen from the figure, the sheet resistance value increases as the St+ dose decreases. Furthermore, in resistors made using conventional techniques, as the sheet resistance value increases, the variation also increases.

しかも、1012 (cm−2)以下のドーズ量では基
板に於ける一部で高抵抗化し、その抵抗値制御は不可能
な状態になっている。
Moreover, if the dose is less than 10@12 (cm@-2), a portion of the substrate becomes highly resistive, making it impossible to control the resistance value.

これは、GaAs基板の表面準位に依る空乏層が抵抗層
へ延びてきて、完全に抵抗層チャネルを遮断した状態で
高抵抗になったものであると考察される。
This is considered to be because the depletion layer due to the surface level of the GaAs substrate extends to the resistance layer, and the resistance layer becomes high in a state where the channel is completely blocked.

本発明の場合には、Si+のドーズ量の減少につれてシ
ート抵抗値は増加するが基板内に於けるバラツキに然程
の変化は無く、また、制御し得ない程の高抵抗にもなら
ない。
In the case of the present invention, although the sheet resistance value increases as the Si+ dose decreases, the variation within the substrate does not change appreciably, and the resistance does not become uncontrollably high.

この理由としては、少ない不純物が全域に亙り均一に分
布していること、保護膜と高抵抗或いは半絶縁性Gax
AβトウAs半導体層との界面に於ける表面準位密度が
低減されていること、表面準位に基因する空乏層がG 
a X A It I−X A s半導体層で遮断され
ていること等に依ると考えられる。尚、Al1N膜−半
絶縁性GaAs基板からなる構造でも、かなり表面準位
密度を低下させることが可能ではあるが、G 、a x
A A I−X A s半導体層を介挿することに依り
、前記効果は更に向上することが確認されている。
The reason for this is that a small number of impurities are uniformly distributed over the entire area, and that the protective film and high resistance or semi-insulating Gax
The surface state density at the interface with the Aβ to As semiconductor layer is reduced, and the depletion layer based on the surface state is
This is thought to be due to the fact that it is blocked by the aXAItI-XAs semiconductor layer. Although it is possible to considerably reduce the surface state density even with a structure consisting of an Al1N film and a semi-insulating GaAs substrate, G, a x
It has been confirmed that the above effect is further improved by interposing an AAI-XAs semiconductor layer.

前記二つの実施例の何れに於いても、H+の注入に依る
半絶縁性GaAs基板のアモーファス化が重要な役割を
果しているが、この場合、H+に限らず、酸素イオン(
0+)或いは他のイオンで半導体装置に悪影響を及ぼす
虞がないものであれば使用することができる。また、該
アモーファス化の為のイオン注入は導電性に影響を与え
る不純物イオンの注入の前後いずれの時期に行なっても
良い。
In both of the above two embodiments, making the semi-insulating GaAs substrate amorphous by implanting H+ plays an important role, but in this case, not only H+ but also oxygen ions (
0+) or other ions that have no risk of adversely affecting the semiconductor device can be used. Further, the ion implantation for making the material amorphous may be performed either before or after the implantation of impurity ions that affect conductivity.

発明の効果 本発明の半導体装置の製造方法では、半絶縁性GaAs
基板に保護膜を形成し、次いで、該保護膜を通して酸素
イオン或いは水素イオンなど後に半導体装置に悪影響を
与えないイオン及び所要の不純物イオンを注入し、次い
で、前記保護膜を残留させたまま熱処理する工程を採る
ことに依り、前記半絶縁性GaAs基板に結晶欠陥が存
在していても不純物の分布を均一にすることが可能であ
る為、特性が揃った素子を形成することができ、特に、
多数の電界効果トランジスタの闇値電圧を一定に保つの
有効である。また、同じ理由から、抵抗層の抵抗値を制
御性良く均一化することができ、特に高抵抗値の抵抗層
を容易に且つ再現性良く作成することができる。
Effects of the Invention In the method for manufacturing a semiconductor device of the present invention, semi-insulating GaAs
A protective film is formed on the substrate, and then, through the protective film, ions such as oxygen ions or hydrogen ions, as well as necessary impurity ions, which will not have a negative effect on the semiconductor device are implanted, and then heat treatment is performed with the protective film remaining. By adopting this process, it is possible to make the distribution of impurities uniform even if crystal defects exist in the semi-insulating GaAs substrate, so it is possible to form an element with uniform characteristics, and in particular,
This is effective in keeping the dark voltage of a large number of field effect transistors constant. Furthermore, for the same reason, the resistance value of the resistance layer can be made uniform with good controllability, and a resistance layer with particularly high resistance value can be easily created with good reproducibility.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は闇値電圧の標準偏差σvth及びH+のドーズ
量(cs −2)の関係を説明する為の線図、第2図は
シート抵抗〔Ω−ロ〕及びSi+のドーズ量(c、−2
)の関係を説明する為の線図である。 特許出願人 富士通株式会社 代理人弁理士 相 谷 昭 司 代理人弁理士 渡 邊 弘 −
Fig. 1 is a diagram for explaining the relationship between the standard deviation σvth of the dark value voltage and the H+ dose (cs -2), and Fig. 2 is a diagram for explaining the relationship between the standard deviation σvth of the dark value voltage and the H+ dose (cs -2), and Fig. 2 is a diagram showing the relationship between the sheet resistance [Ω-b] and the Si+ dose (c, -2
) is a diagram for explaining the relationship. Patent applicant: Fujitsu Ltd. Representative Patent Attorney Shoji Aitani Representative Patent Attorney Hiroshi Watanabe −

Claims (2)

【特許請求の範囲】[Claims] (1)半絶縁性砒化ガリウム基板上に保護膜を形成し、
次いで、該保護膜を通して前記半絶縁性砒化ガリウム基
板に酸素イオン或いは水素イオンなど後に半導体装置に
悪影響を与えないイオン及び所要の不純物イオンを注入
し、次いで、前記保護膜を残留させたまま熱処理する工
程が含まれてなることを特徴とする半導体装置の製造方
法。
(1) Forming a protective film on a semi-insulating gallium arsenide substrate,
Next, ions such as oxygen ions or hydrogen ions that do not have a negative effect on the semiconductor device and necessary impurity ions are implanted into the semi-insulating gallium arsenide substrate through the protective film, and then heat treatment is performed while the protective film remains. 1. A method for manufacturing a semiconductor device, comprising the steps of:
(2)半絶縁性砒化ガリウム基板上に高抵抗或いは半絶
縁性ガリウム・アルミニウム砒素層を形成し、次いで、
該高抵抗或いは半絶縁性ガリウム・アルミニウム砒素層
」二に保護膜を形成し、次いで、該保護膜並びに前記高
抵抗或いは半絶縁性ガリウム・アルミニウム砒素層を通
して前記半絶縁性砒化ガリウム基板に酸素イオン或いは
水素イオンなど後に半導体装置に悪影響を与えないイオ
ン及び所要の不純物イオンを注入し、次いで、前記保護
膜を残留させたまま熱処理する工程が含まれてなること
を特徴とする半導体装置の製造方法。
(2) forming a high resistance or semi-insulating gallium aluminum arsenide layer on a semi-insulating gallium arsenide substrate;
A protective film is formed on the high resistance or semi-insulating gallium aluminum arsenide layer, and then oxygen ions are introduced into the semi-insulating gallium arsenide substrate through the protective film and the high resistance or semi-insulating gallium aluminum arsenide layer. Alternatively, a method for manufacturing a semiconductor device comprising the steps of implanting ions such as hydrogen ions that do not have an adverse effect on the semiconductor device and necessary impurity ions, and then performing heat treatment with the protective film remaining. .
JP58155006A 1983-08-26 1983-08-26 Manufacture of semiconductor device Pending JPS6047428A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58155006A JPS6047428A (en) 1983-08-26 1983-08-26 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58155006A JPS6047428A (en) 1983-08-26 1983-08-26 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPS6047428A true JPS6047428A (en) 1985-03-14

Family

ID=15596630

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58155006A Pending JPS6047428A (en) 1983-08-26 1983-08-26 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPS6047428A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4701422A (en) * 1986-04-07 1987-10-20 Rockwell International Corporation Method of adjusting threshold voltage subsequent to fabrication of transistor
JPS62250635A (en) * 1986-04-23 1987-10-31 Matsushita Electric Ind Co Ltd Manufacture of semiconductor device
US4713354A (en) * 1985-02-28 1987-12-15 Oki Electric Industry Co., Ltd. Method of heat treatment for reduction of dislocation density near III-V substrate surface
FR2627901A1 (en) * 1988-02-29 1989-09-01 Mitsubishi Electric Corp METHOD FOR MANUFACTURING A COMPOUND SEMICONDUCTOR DEVICE HAVING A CONDUCTIVE LAYER HAVING A CONCENTRATION OF UNIFORM DOPANT
EP3836193A1 (en) * 2019-12-12 2021-06-16 Commissariat à l'Energie Atomique et aux Energies Alternatives Method for manufacturing a doped semiconductor layer

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5247676A (en) * 1975-10-14 1977-04-15 Matsushita Electric Ind Co Ltd Process for production of semiconductor device
JPS57186326A (en) * 1981-05-13 1982-11-16 Nec Corp Ion implanting method
JPS583236A (en) * 1981-06-30 1983-01-10 Fujitsu Ltd Manufacture of gallium arsenide element

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5247676A (en) * 1975-10-14 1977-04-15 Matsushita Electric Ind Co Ltd Process for production of semiconductor device
JPS57186326A (en) * 1981-05-13 1982-11-16 Nec Corp Ion implanting method
JPS583236A (en) * 1981-06-30 1983-01-10 Fujitsu Ltd Manufacture of gallium arsenide element

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4713354A (en) * 1985-02-28 1987-12-15 Oki Electric Industry Co., Ltd. Method of heat treatment for reduction of dislocation density near III-V substrate surface
US4701422A (en) * 1986-04-07 1987-10-20 Rockwell International Corporation Method of adjusting threshold voltage subsequent to fabrication of transistor
JPS62250635A (en) * 1986-04-23 1987-10-31 Matsushita Electric Ind Co Ltd Manufacture of semiconductor device
FR2627901A1 (en) * 1988-02-29 1989-09-01 Mitsubishi Electric Corp METHOD FOR MANUFACTURING A COMPOUND SEMICONDUCTOR DEVICE HAVING A CONDUCTIVE LAYER HAVING A CONCENTRATION OF UNIFORM DOPANT
EP3836193A1 (en) * 2019-12-12 2021-06-16 Commissariat à l'Energie Atomique et aux Energies Alternatives Method for manufacturing a doped semiconductor layer
FR3104808A1 (en) * 2019-12-12 2021-06-18 Commissariat A L'energie Atomique Et Aux Energies Alternatives Method for producing a doped semiconductor layer

Similar Documents

Publication Publication Date Title
US4426767A (en) Selective epitaxial etch planar processing for gallium arsenide semiconductors
JPS5999717A (en) Manufacture of semiconductor device
JPS6236000B2 (en)
JPS6047428A (en) Manufacture of semiconductor device
JPH061786B2 (en) Method of manufacturing thin film transistor
JPS62265717A (en) Heat treating method for substrate for gallium arsenide integrated circuit
JPH0797567B2 (en) Method of forming thin film
JPS6327852B2 (en)
JPS6216532A (en) Manufacture of gaas integrated circuit
JP3103629B2 (en) Method for manufacturing arsenic compound semiconductor device
JPS5853863A (en) Preparation of semiconductor device
JPH0212875A (en) Manufacture of semiconductor device
JPS6142911A (en) Forming method of conductive layer by implanting ion
US5153703A (en) Semiconductor device
JPH0226781B2 (en)
JPH04181731A (en) Method of processing surface of compound semiconductor crystal
JPS62250635A (en) Manufacture of semiconductor device
JPS6149427A (en) Manufacture of semiconductor device
JPH04274320A (en) Method for forming ion-implantation active layer within gaas substrate
JP3103693B2 (en) Method for manufacturing semiconductor device
JPH02266534A (en) Manufacture of semiconductor device
JPH04137619A (en) Manufacture of semiconductor device
JPH0758700B2 (en) Heat treatment method
JPH07245266A (en) Compound semiconductor substrate and its manufacturing method
JPH03205820A (en) Manufacture of semiconductor device