JPS61135166A - Manufacture of schottky barrier gate type field-effect transistor - Google Patents
Manufacture of schottky barrier gate type field-effect transistorInfo
- Publication number
- JPS61135166A JPS61135166A JP25781684A JP25781684A JPS61135166A JP S61135166 A JPS61135166 A JP S61135166A JP 25781684 A JP25781684 A JP 25781684A JP 25781684 A JP25781684 A JP 25781684A JP S61135166 A JPS61135166 A JP S61135166A
- Authority
- JP
- Japan
- Prior art keywords
- layer
- implantation
- implanted
- gate
- crystal wafer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 230000005669 field effect Effects 0.000 title claims description 7
- 238000004519 manufacturing process Methods 0.000 title claims description 5
- 230000004888 barrier function Effects 0.000 title claims description 4
- 239000013078 crystal Substances 0.000 claims abstract description 22
- 239000004065 semiconductor Substances 0.000 claims abstract description 15
- 150000001875 compounds Chemical class 0.000 claims abstract description 14
- 238000005468 ion implantation Methods 0.000 claims abstract description 11
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 claims abstract description 4
- 229910052714 tellurium Inorganic materials 0.000 claims abstract description 4
- PORWMNRCUJJQNO-UHFFFAOYSA-N tellurium atom Chemical compound [Te] PORWMNRCUJJQNO-UHFFFAOYSA-N 0.000 claims abstract description 3
- 238000010438 heat treatment Methods 0.000 claims description 12
- 238000000034 method Methods 0.000 claims description 10
- 230000015572 biosynthetic process Effects 0.000 claims 1
- 238000002513 implantation Methods 0.000 abstract description 23
- 229910001218 Gallium arsenide Inorganic materials 0.000 abstract description 12
- 150000002500 ions Chemical class 0.000 abstract description 9
- 239000002184 metal Substances 0.000 abstract description 2
- 229910052751 metal Inorganic materials 0.000 abstract description 2
- 229910020286 SiOxNy Inorganic materials 0.000 abstract 1
- 238000007493 shaping process Methods 0.000 abstract 1
- 230000000694 effects Effects 0.000 description 11
- 238000009826 distribution Methods 0.000 description 9
- 239000012535 impurity Substances 0.000 description 9
- 238000002347 injection Methods 0.000 description 9
- 239000007924 injection Substances 0.000 description 9
- 238000009792 diffusion process Methods 0.000 description 5
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 4
- 238000000137 annealing Methods 0.000 description 4
- 229920002120 photoresistant polymer Polymers 0.000 description 4
- 230000008569 process Effects 0.000 description 4
- 229910052710 silicon Inorganic materials 0.000 description 4
- 239000010703 silicon Substances 0.000 description 4
- 230000007423 decrease Effects 0.000 description 3
- 230000004913 activation Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 239000007943 implant Substances 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 229910052718 tin Inorganic materials 0.000 description 2
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 1
- 229910008814 WSi2 Inorganic materials 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000002425 crystallisation Methods 0.000 description 1
- 230000008025 crystallization Effects 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 229910052738 indium Inorganic materials 0.000 description 1
- 230000001678 irradiating effect Effects 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 239000011593 sulfur Substances 0.000 description 1
- XCZXGTMEAKBVPV-UHFFFAOYSA-N trimethylgallium Chemical compound C[Ga](C)C XCZXGTMEAKBVPV-UHFFFAOYSA-N 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- H01L29/812—
Landscapes
- Junction Field-Effect Transistors (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明はショットキ接触ゲート!&1電界効果トランジ
スタ(以下、MliSfI’ETと記載する)、特に化
合物半導体のMESFETの製法に関する。[Detailed Description of the Invention] [Industrial Application Field] The present invention is a Schottky contact gate! &1 field effect transistor (hereinafter referred to as MliSfI'ET), particularly relates to a method for manufacturing a compound semiconductor MESFET.
電子計X機に匿われる論理素子や記憶素子は現在シリコ
ン結晶を素子材料にして製作されているが、GaAsに
代表される化合物半導体結晶はシリコン結晶に比べて数
倍大きな電子移動度をMする特長があり、将来の高性能
な論理素子・記憶素子用の半導体結晶として期待されて
いる。このような高性能な論理素子や記憶素子には高い
相互コンダクタン(Jlm)と浅いスレッシ箇オルト電
圧(Vt )を有する電界効果トランジスタ(ME8F
ET)が不可欠である。Logic elements and memory elements hidden in electronic counters are currently manufactured using silicon crystal as element material, but compound semiconductor crystals such as GaAs have electron mobility several times higher than silicon crystals. Due to its unique characteristics, it is expected to be used as a semiconductor crystal for future high-performance logic and memory devices. These high-performance logic elements and memory elements require field effect transistors (ME8F) with high transconductance (Jlm) and shallow threshold orthovoltage (Vt).
ET) is essential.
従来の化合物半導体MB8FETの製法に詔いては、熱
拡散係数の小さな軽元素のシリコン(8i)を化合物半
導体結晶表面にイオン注入してn形動作層を形成してい
た。このような従来の81 注入M18FE’rにおい
て、高Jm%性を得るには、浅く高濃度の電子濃度分布
の形成が必要である。In the conventional manufacturing method of compound semiconductor MB8FET, silicon (8i), a light element with a small thermal diffusion coefficient, is ion-implanted into the surface of a compound semiconductor crystal to form an n-type operating layer. In such conventional 81 injection M18FE'r, it is necessary to form a shallow and high electron concentration distribution in order to obtain high Jm% properties.
このためには注入8i+の注入エネルギをできるだけ低
くして形成したn形動作層が必要である。For this purpose, it is necessary to form an n-type active layer with the implantation energy of the implantation 8i+ as low as possible.
ところが、F31+の注入エネルギを30ke!V程度
にまで低下させたn形動作層を有する8i+ 注入Ga
Aa MESFETではそのJFmは増大せず番こむ
しろ低下する問題を有していた。低エネルギの8i+注
入によるGaAs MESFETのjIm低下は前記
の論理素子#記憶素子を低消費電力下で動作させるため
に用いられるOv近辺のVtを有するMESFETにお
いては特に著しかった。However, the implantation energy of F31+ is 30ke! 8i+ implanted Ga with n-type active layer reduced to about V
The Aa MESFET has a problem in that its JFm does not increase but rather decreases. The reduction in jIm of GaAs MESFETs due to low-energy 8i+ implants was particularly significant for MESFETs with Vt near Ov, which are used to operate the logic/memory devices at low power consumption.
n形動作層を構成する不純物としては上記のテルル(T
e)などが知られている。このうちSや8eのイオン注
入によってMESFETの動作層を形成することは良く
おこなわれているが、満足すべき充分な素子特性はSi
+ 同様に得られていなかった。またan+やTe中に
おいてはその高質量故に生じる大きな、注入損傷に注目
して、損傷そのものの性質8調査する手段としてイオン
注入された報告は多数ある(例えばT、αF 1nst
ad、et。The impurity constituting the n-type active layer is the above-mentioned tellurium (T).
e) etc. are known. Of these, forming the active layer of a MESFET by ion implantation of S or 8e is often done, but sufficient device characteristics to satisfy are not achieved with Si.
+ Similarly, it was not obtained. In addition, there are many reports on ion implantation in an+ and Te as a means of investigating the nature of the damage itself, focusing on the large implantation damage that occurs due to their high mass (for example, T, αF 1nst
ad, etc.
al、F’hys、 5lat、8o1 (a) 25
、P、 515(1974) )が、MESFET動
作層を形成すべくイオン注入された例はなかった。この
理由としてまず第1にSn・Teは高質t7c素である
ために、生じた結晶損傷の回復が容易でなく、容易な回
復を計るには、注入時に化合物半導体結晶をあえて加熱
・昇温しなければならなかった。(L K、 Surr
idge 、 et。al, F'hys, 5lat, 8o1 (a) 25
, P., 515 (1974)) was never ion-implanted to form a MESFET operating layer. First of all, the reason for this is that Sn/Te is a high-quality T7C element, so it is difficult to recover from the crystal damage that has occurred. I had to. (L.K., Surr.
idge, etc.
al l In5(Phys Conf Set、 N
o、 3aat p、 16.1(1977))こと、
第21こ8n” r T6+はS+や8e”同様に熱拡
散が著しく、イオン注入して形成した電子濃度分布が拡
がってしまうこと(F、)LEisen。al l In5 (Phys Conf Set, N
o, 3aat p, 16.1 (1977)),
The 21st 8n'' r T6+, like S+ and 8e'', undergoes significant thermal diffusion, and the electron concentration distribution formed by ion implantation expands (F,) LEisen.
ef、 al、 e 5olid−8f、 gleot
ronics e 20* P219(1977))な
どME8FET動作層として匣うには困難な点が多くあ
ったためであった。ef, al, e 5olid-8f, gleot
This was because there were many difficulties in implementing it as an operating layer for ME8FET, such as ronics e 20* P219 (1977)).
本発明の目的は、Ov近辺のVtに右いても高Jmを得
るような浅くしかも高電子濃度分布を有するイオン注入
によるn形動作層と1+層からなるMESFETの製法
を提供することを目的とする。An object of the present invention is to provide a method for manufacturing a MESFET consisting of an n-type operating layer and a 1+ layer formed by ion implantation and having a shallow and high electron concentration distribution that can obtain a high Jm even at a Vt near Ov. do.
(間地点を解決するための手段)
本発明は、少なくともゲート電極形成領域を含む化合物
半導体結晶ウェーハ表面に錫(8n)又はテ/L//L
/ (Te ) o最大濃度が2.4 X 10” c
!L−”以下のイオン注入層を形成する工程と、ソース
及びドレイン電極形成領域の前記化合物半導体結晶表面
にドナー不純物を選択的に高濃度にイオン注入する工程
と、赤外線ランプアニールによる850℃以上の熱処理
をおこなう工程と、ゲート電極、ソース−ドレイン電極
を形成する工程とを有することを%敵とする。(Means for Solving the Intermediate Point) The present invention provides tin (8n) or Te/L//L on the surface of a compound semiconductor crystal wafer including at least a gate electrode forming region.
/ (Te) o Maximum concentration is 2.4 x 10”c
! A step of forming an ion implantation layer of L-" or less, a step of selectively ion-implanting donor impurities at a high concentration into the surface of the compound semiconductor crystal in the source and drain electrode forming regions, and an infrared lamp annealing step of 850° C. or higher. The disadvantage is that it includes a process of performing heat treatment and a process of forming gate electrodes and source-drain electrodes.
本発明に8いては、前記のソースおよびドレイン電極形
成領域の化合物半導体結晶表面に不純物を高濃度にイオ
ン注入する代わシに、エピタキシャル成長層を形成する
してもよい。According to the eighth aspect of the present invention, an epitaxial growth layer may be formed instead of implanting impurity ions at a high concentration into the surface of the compound semiconductor crystal in the source and drain electrode forming regions.
まず、動作層を形成すべくイオン注入するSnやTeの
作用・効果について説明する。一般にイオン注入して得
られた不純物は高質量のイオンはどその平均的な注入深
さRpが浅くなシ、且つ分布のばらつきを示す注入深さ
の標準偏差σ8も小さくなることが知られている。従っ
て質量が曾iより4倍以上にも大きなan+やTe中の
Rpやσ8は、計算上、同一注入エネルギのSi+の1
73程度に小さく、それだけ浅く急峻な電子濃度分布が
期待できる。First, the actions and effects of Sn and Te that are ion-implanted to form the active layer will be explained. In general, it is known that the average implantation depth Rp of impurities obtained by ion implantation is not shallow for high-mass ions, and the standard deviation σ8 of the implantation depth, which indicates distribution variation, is also small. There is. Therefore, Rp and σ8 in an+ and Te, whose mass is more than 4 times larger than zero i, are calculated to be 1 of that of Si+ with the same implantation energy.
73, and a shallower and steeper electron concentration distribution can be expected.
一般にMESFBTOVtやym 6′i電子濃度N。In general, MESFBTOVt and ym6'i electron concentration N.
動作層厚さり、移動度Mに対しては欠の様な関係がある
。There is a relationship between the thickness of the active layer and the mobility M.
VtoeND” (1)ym a
c M h L2)よって同じVt値
でもDが小さな、即ち浅い動作層を形成するほどNを高
くでき、その結果1mを増大させることができる。した
がって高質量のanやTeをイオン注入して形成した動
作層からなるSn十注入ME8FETのymは同一エネ
ルギ注入による8i+ 注入ME8FETのflmと比
較して約3倍の大きな値を示すことlこなる。VtoeND” (1)ym a
c M h L2) Therefore, even if the Vt value is the same, the smaller D is, that is, the shallower the active layer is formed, the higher N can be made, and as a result, 1 m can be increased. Therefore, the ym of the Sn+-implanted ME8FET, which has an active layer formed by ion-implanting high-mass ann and Te, is about three times as large as the flm of the 8i+-implanted ME8FET, which is implanted with the same energy. .
しかし、浅い動作層を得るだけなら81+ の注入エネ
ルギを低くしても良いのであるが、第3@ta)に示す
ように、低エネルギ注入したS1+ 注入MESFET
のpmは必ずしも増大しないことが実験から判明した。However, if only to obtain a shallow active layer, the implantation energy of 81+ can be lowered, but as shown in Part 3 @ta), the S1+ implanted MESFET with low energy implantation
It has been found from experiments that the pm does not necessarily increase.
この図かられかるように、Si+注入MhSFETの場
合、注入エネルギを30keV程度に低くするとVt〜
0誓近辺のJamは50keVのときより小さくなって
しまった。ところが、本発明になる8n十圧注入E8F
ETでは第3図(b)に示す如く注入エネルギを30k
eV程度に低くしてもVt−0v近辺の9mは増大する
ことがわかった。As can be seen from this figure, in the case of Si + implanted MhSFET, when the implantation energy is lowered to about 30 keV, Vt ~
Jam near 0 oath has become smaller than when it was 50 keV. However, the 8n ten-pressure injection E8F according to the present invention
In ET, the implantation energy was set to 30k as shown in Figure 3(b).
It was found that even if the voltage is lowered to about eV, the 9m around Vt-0v increases.
これは8n”+T6などの崗質量元素のイオン注入によ
るMESFETにみられた特長である。This is a feature found in MESFETs using ion implantation of high mass elements such as 8n''+T6.
矢に本発明の効果を得るために必要な8 n”。8" necessary for obtaining the effect of the present invention on the arrow.
Tc+ の注入条件ζごついで説明する。第3図(b)
に示したSn十 注入MESFETにおけるJamの注
入エネルギ依存性から前述のq<0〜−〇、5Vの■を
範囲でに注入エネルギを低下させた効果が見られるが、
Vtへ−1,0V程度の深いVt では注入エネルギを
低くするほどym o低下を生じてしまうことがわかっ
た。この原因としては同一の注入エネルギにおいてVt
値を深くするには高ドースで注入しなければならないの
で、それだけ注入損傷も大きく、熱処理をした後にも損
湯に′JK囚した活性化率や移動にの低下を生じたこと
が考えられる。The injection conditions ζ for Tc+ will be explained below. Figure 3(b)
From the implantation energy dependence of Jam in the Sn-doped MESFET shown in Figure 2, the effect of lowering the implantation energy in the range of q < 0 to -〇, 5V, as described above, can be seen.
It has been found that at a deep Vt of about -1.0 V, the lower the implantation energy, the more the ymo decreases. The cause of this is that at the same implantation energy, Vt
In order to deepen the value, it is necessary to implant at a high dose, so the implantation damage is correspondingly large, and even after heat treatment, it is thought that the activation rate and movement of JK were lowered due to the loss of hot water.
結晶の注大損鶴に原因したと考えらnる9m低下を避け
るようなSn”+’re+ の注入条件は数多くの実験
結果から、本発明の如く最大不純物濃度が2.4 X
10”cm 以下になるように設定すると良いことがわ
かった。Based on numerous experimental results, the conditions for Sn''+'re+ implantation that avoid the 9m drop that is thought to be caused by the large crystallization loss are as follows: the maximum impurity concentration is 2.4X as in the present invention.
It was found that it is best to set the distance to 10"cm or less.
欠に、8n+やTe十圧注入た化合物中一体結晶の熱処
理条件について説明する。anやTeの注入層濃度分布
は理論計算して得た濃度分布より拡がってしまうことを
既に説明したが、このような8rl+やTe+ の拡散
は赤外線ランプアニールをおこなうことにより防止でき
ることがわかった。In short, we will explain the heat treatment conditions for an integrated crystal in a compound in which 8n+ or Te is injected at ten pressures. It has already been explained that the concentration distribution of an and Te in the injection layer is wider than the concentration distribution obtained by theoretical calculation, but it has been found that such diffusion of 8rl+ and Te+ can be prevented by performing infrared lamp annealing.
赤外線ランプアニールは、既に知られているように化合
物半導体に赤外線を照射して半導体結晶を加熱する熱処
理方法である。このような赤外線ランプアニールを用い
るとたとえば硫黄の如< GaAs中で拡散し得い不純
物の拡散を抑制できる(M、 Kuzhara、 at
、al、J、Appl、 Phys、 + 54 eP
、3121(1983)) ことが知られていた。本
発明の如く8n+やTe+においても赤外線ランプによ
る比較的短時間の熱処理をおこなうとミ理論計算に近い
急峻な電子濃度分布を得ることが確認できたのである。Infrared lamp annealing, as already known, is a heat treatment method in which a compound semiconductor is irradiated with infrared rays to heat the semiconductor crystal. By using such infrared lamp annealing, it is possible to suppress the diffusion of impurities, such as sulfur, which cannot be diffused in GaAs (M. Kuzhara, at
, al., J., Appl., Phys., +54 eP.
, 3121 (1983)). It was confirmed that when 8n+ and Te+ are subjected to a relatively short heat treatment using an infrared lamp as in the present invention, a steep electron concentration distribution close to that calculated by theory can be obtained.
熱処理温度としては本発明のように最低850″C以上
が必要で、850℃未満では注入不純物の活性化が不充
分であった。As in the present invention, the heat treatment temperature is required to be at least 850''C or higher, and if it is lower than 850C, the activation of the implanted impurity is insufficient.
以上、説明してきたように、本発明では本質的に浅い注
入層を容易に得るような高質量のSn+又はTe+をそ
の最大濃度が2.4X10”cm +超えないよう
なイオン注入条件で化合物半導体結晶表面に注入する工
程と、注入不純物の拡散が抑制できるような赤外線ラン
プによる850℃以上の熱処理工程とを組合わせること
によシ、浅く急峻な電子濃度分布を有する動作層を容易
に得、ざらにSi+ MESFETで問題であった■t
〜Ov近辺におけるJi+m低下を防止できる効果を有
するのである。As explained above, in the present invention, a compound semiconductor is implanted under ion implantation conditions such that the maximum concentration of Sn+ or Te+ does not exceed 2.4X10"cm+, which makes it easy to obtain essentially a shallow implanted layer. By combining the step of implanting into the crystal surface and the step of heat treatment at 850° C. or higher using an infrared lamp to suppress the diffusion of the implanted impurities, an active layer having a shallow and steep electron concentration distribution can be easily obtained. There was a problem with the rough Si+ MESFET.
This has the effect of preventing a decrease in Ji+m near ~Ov.
最後に、ソース拳ドレイン領域に形成するN十形のイオ
ン注入後又はN十形のエピタキシャル層の作用について
説明を加える。先の(2)式においてIIm==Mff
なる関係式について述べた。この(2)式はソース
の直列抵抗R8の影響を無視したものであるが、現実に
はVt=Ov近辺のn形動作用ではR3の影響を無視で
きない。Rs = OとしたときのIimをjTmo
とすると調定される1mは次式を満す
1m = #mO/(1+RsJiFmo) (
3)したがってRsを低減することはMESFETのp
mを増大させる効果がある。Rsの低減にはソース・ド
レイン両電極領域に高濃度・低抵抗層を形成すると良い
。本発明のドナー不純物を選択的に高濃度にイオン注入
して形成したN中層やエピタキシャル成長によるN中層
はソースの直列抵抗R8を低減させる効果がある。Finally, an explanation will be given of the effect of the N+ type epitaxial layer formed in the source and drain regions after N+ type ion implantation or N+ type epitaxial layer. In the above equation (2), IIm==Mff
I have described the relational expression. This equation (2) ignores the influence of the source series resistance R8, but in reality, for n-type operation near Vt=Ov, the influence of R3 cannot be ignored. Iim when Rs = O is jTmo
Then, the adjusted 1m satisfies the following formula: 1m = #mO/(1+RsJiFmo) (
3) Therefore, reducing Rs will reduce the MESFET's p
This has the effect of increasing m. In order to reduce Rs, it is preferable to form a high concentration, low resistance layer in both the source and drain electrode regions. The N intermediate layer formed by selectively ion-implanting donor impurities at a high concentration of the present invention or the N intermediate layer formed by epitaxial growth has the effect of reducing the series resistance R8 of the source.
欠に、本発明の実施例について詳述しよう。 Let us now briefly describe embodiments of the present invention in detail.
まず本発明の実施例を化合物半導体としてGaAsを、
注入イオンとしてSn+を例に図面を用いて説明する。First, in an embodiment of the present invention, GaAs is used as a compound semiconductor.
This will be explained with reference to the drawings, taking Sn+ as an example of implanted ions.
第1図は本発明の一実施例を説明するための各工程にお
けるGaAs結晶ウェーハの断面図である。第1図で(
a)は半絶縁性GaAs結晶ウェーハlの一方の面側に
注入マスクとなるフォトレジスト膜2を選択的に形成し
て8n”3を注人工ネルギア0keVで4XIO”個1
dだけイオン注入した様子を示す。このとき、注入層1
8のSn濃度は最高値で1.65 X 1 o”cR−
”である。第1図(bJはフォトレジスト膜2を全て除
去した後に、シコットキゲート金属たるWSi2を厚さ
0.5μ扉被着し、次に該W8iゲート4をマスクとし
てSi+5’F−100ke■で4 X I O”ca
t−”イオン注入して高濃度注入層19を形成した様子
を示す。ijgt図(C)は前記W8i4を含む半絶縁
性GaAs結晶ウ結晶ウェーハ1面
し、半絶縁性GaAs結晶1の両面側に赤外線7を照射
による熱処理を2こなってn形動作層8及びN十層9を
形成した様子を示す。赤外線による熱処理は950℃、
4秒間8こなった。第1図(d)は8i0xNy膜を除
去したのち通常の目合せ方法によ,9N十層9上にソー
スIE極10、ドレイン電極11を形成してなるシ璽ッ
トキ障壁ゲート記電界効果トランジスタを示す。FIG. 1 is a cross-sectional view of a GaAs crystal wafer at each step for explaining an embodiment of the present invention. In Figure 1 (
In a), a photoresist film 2 serving as an implantation mask is selectively formed on one side of a semi-insulating GaAs crystal wafer l, and 8n"3 is injected into 4XIO" pieces at 0 keV.
This shows how ions are implanted by d. At this time, injection layer 1
The highest Sn concentration in No. 8 was 1.65 x 1 o”cR-
1 (bJ) After removing all the photoresist film 2, WSi2, which is a silicon gate metal, is deposited to a thickness of 0.5μ, and then using the W8i gate 4 as a mask, Si+5'F- 4 X I O”ca with 100ke■
This figure shows how a high-concentration implantation layer 19 is formed by implanting t-'' ions. FIG. This figure shows how the n-type active layer 8 and the N-type layer 9 were formed by two heat treatments by irradiation with infrared rays 7.The heat treatment with infrared rays was performed at 950°C;
I did 8 in 4 seconds. FIG. 1(d) shows a sealed barrier gate field effect transistor in which a source IE electrode 10 and a drain electrode 11 are formed on the 9N layer 9 by the usual alignment method after removing the 8i0xNy film. show.
第2図は本発明の他の実施例を説明するための図で、各
工程におけるG@A3結晶ウェーハの断面図である。第
2図(a)は半絶縁aGaAs結晶ウェーハ1の一方の
面側に注入マスクたるフォトレジスト膜2を選択的に形
成してSn”3を70keVで4XlO”個1dだけイ
オン注入した様子を示す。FIG. 2 is a diagram for explaining another embodiment of the present invention, and is a cross-sectional view of a G@A3 crystal wafer at each step. FIG. 2(a) shows how a photoresist film 2 serving as an implantation mask is selectively formed on one side of a semi-insulating aGaAs crystal wafer 1, and Sn"3 is ion-implanted by 4XlO" pieces 1d at 70 keV. .
このとき注入層18の5nWk度は最高値で1.65X
1 0” ” art−3である。第1図(bJは前
記フォトレジスト膜2を全て除去したのち8i0xNy
膜(屈折率1、75)6を厚さ0.1μmrL仮着し、
赤外線ランプを用いて赤外#M7を照射して熱処理をお
こないn形動作層8を形成した様子を示す。熱処理条件
は第1図と同erj)6o gz図(C)4t8i0x
Ny膜6を除去したのち、ゲートta部分にWSi4を
0.5μmの厚さに被着し、さらにMOCVD法(:M
etalOrganic Chemical Va
pow Deposition)によ)トリメチルガ
リウムとAsH.をソースとしてSi ドープのn”
− GaAs N (厚さ0.4μm〕12を650
℃でソース・ドレイン電極部分に選択的にエピタキシア
ル成長した様子を示す。Si濃度は1. 2 X 1
0”cm7”である。第2図(d)は通常の目合せ方法
によ’) N” −GaAs 1 2上にソース電極
10.ドレイン電極11を形成してなるシ1ットキKm
ゲートm電界効果トランジスタを示す。At this time, the maximum value of 5nWk degree of the injection layer 18 is 1.65X
10"" art-3. FIG. 1 (bJ is 8i0xNy after completely removing the photoresist film 2.
Temporarily adhere a film (refractive index 1, 75) 6 with a thickness of 0.1 μm,
A state in which an n-type operating layer 8 is formed by heat treatment by irradiating infrared light #M7 using an infrared lamp is shown. The heat treatment conditions are the same as in Figure 1erj)6o gzFigure (C)4t8i0x
After removing the Ny film 6, WSi4 was deposited on the gate ta to a thickness of 0.5 μm, and further MOCVD (:M
etalOrganic Chemical Va
pow Deposition)) trimethylgallium and AsH. Si-doped n” as a source
- GaAs N (thickness 0.4 μm) 12 to 650
This figure shows selective epitaxial growth on the source and drain electrodes at ℃. The Si concentration is 1. 2 x 1
It is 0"cm7". FIG. 2(d) shows a sheet Km formed by forming a source electrode 10 and a drain electrode 11 on N''-GaAs 12 using the usual alignment method.
Figure 3 shows a gate m field effect transistor.
本発明になるシジットキ障壁ゲート型電界効果トランジ
スタは実施例にて説明したGaAsMESF’ETの,
9mでともに平均230m8/W(Vt〜Ov) を
得た。この値は同じYtを有する同一FgT構造の8i
+注入ME8 FIT cD 11m O約1、4倍に
も大きな良好な値でR.低減の効果が現われた結果であ
る。このように本発明は従来方法ではなし得なかった特
性向上を容易になし得えるのである。尚、前述の実施例
においてSn+について説明したば、はぼ同じ質量のT
e+においても同様の効果が得られている。さらに本発
明の思想は工np,In()aAl,GaAlAs5I
nGIAsPなどの他の化合物半導体結晶にも適用で
きることは云うべくもない。The Sigitky barrier gate field effect transistor according to the present invention is a GaAs MESF'ET described in the embodiment.
An average of 230 m8/W (Vt~Ov) was obtained for both at 9 m. This value is 8i for the same FgT structure with the same Yt.
+ Injection ME8 FIT cD 11m O with a good value of about 1,4 times larger R. This is the result of the reduction effect. In this way, the present invention can easily improve properties that could not be achieved with conventional methods. In addition, if Sn+ is explained in the above-mentioned example, T
Similar effects have been obtained with e+. Furthermore, the idea of the present invention is that np, In()aAl, GaAlAs5I
It goes without saying that the present invention can also be applied to other compound semiconductor crystals such as nGIAsP.
第1図(a)乃至(d)は本発明の一実施例を示す工程
断面図、第2図(a)乃至(dlは他の実施例を示す工
程断面図で、1は半絶縁性G a A sウェーハ、3
は8nイオン、4はW8i膜、5は8iイオン、 6は
8i0XNY膜、7は赤外署、8はn形動作層、9はN
中層、10と11はそれぞnソース電極、ドレイン電極
,18は81十注入層をそれぞれ示す。
第3図はSi+注入MBSFET<川と本発明の81+
ME81i’ET(b)のJilmを比較した図で横軸
に注入エネルギを、パラメータとしてスレッシlオルト
電圧Vtをとって示している。
第1図
第2図
注Xエネルギ hav
3図
ジ主入エネルギ、KtVFIGS. 1(a) to (d) are process sectional views showing one embodiment of the present invention, FIGS. 2(a) to (dl are process sectional views showing another embodiment, and 1 is a semi-insulating G aA s wafer, 3
is 8n ion, 4 is W8i film, 5 is 8i ion, 6 is 8i0XNY film, 7 is infrared radiation, 8 is n-type active layer, 9 is N
In the middle layer, 10 and 11 indicate an n source electrode and a drain electrode, respectively, and 18 indicates an injection layer. Figure 3 shows the Si+ injection MBSFET<81+ of the present invention.
In the diagram comparing Jilm of ME81i'ET (b), the horizontal axis shows the implantation energy and the threshold l ortho voltage Vt is taken as a parameter. Figure 1 Figure 2 Note X Energy hav Figure 3 Main input energy, KtV
Claims (1)
ウェーハ表面に錫又はテルルのイオン注入層を形成し、
その後熱処理をおこなうことによって、ショットキ電極
が形成される動作層を形成することを特徴とするショッ
トキ障壁ゲート型電界効果トランジスタの製法。forming a tin or tellurium ion implantation layer on the surface of the compound semiconductor crystal wafer including at least the gate electrode formation region;
A method for manufacturing a Schottky barrier gate field effect transistor, characterized in that an active layer in which a Schottky electrode is formed is formed by subsequent heat treatment.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP25781684A JPS61135166A (en) | 1984-12-06 | 1984-12-06 | Manufacture of schottky barrier gate type field-effect transistor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP25781684A JPS61135166A (en) | 1984-12-06 | 1984-12-06 | Manufacture of schottky barrier gate type field-effect transistor |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS61135166A true JPS61135166A (en) | 1986-06-23 |
Family
ID=17311519
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP25781684A Pending JPS61135166A (en) | 1984-12-06 | 1984-12-06 | Manufacture of schottky barrier gate type field-effect transistor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS61135166A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5445977A (en) * | 1992-04-24 | 1995-08-29 | Matsushita Electric Industrial Co., Ltd. | Method of fabricating a Schottky field effect transistor |
-
1984
- 1984-12-06 JP JP25781684A patent/JPS61135166A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5445977A (en) * | 1992-04-24 | 1995-08-29 | Matsushita Electric Industrial Co., Ltd. | Method of fabricating a Schottky field effect transistor |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4749660A (en) | Method of making an article comprising a buried SiO2 layer | |
JPH01502379A (en) | Low leakage CMOS/insulating substrate device and its manufacturing method | |
JPS63174355A (en) | Semiconductor device | |
JPH02191341A (en) | Manufacture of mos field effect transistor | |
JPS61135166A (en) | Manufacture of schottky barrier gate type field-effect transistor | |
JPH01235276A (en) | Thin film semiconductor device | |
JPH02224223A (en) | Semiconductor device | |
JPS60253217A (en) | Manufacture of semiconductor device | |
JPH03276765A (en) | Manufacture of semiconductor integrated circuit | |
JPH05315556A (en) | Manufacture of complementary-type mos semiconductor device | |
JPS6165478A (en) | Manufacture of fet | |
KR0167667B1 (en) | Method of fabricating semiconductor | |
JPS596054B2 (en) | Method for manufacturing semiconductor devices | |
JPH01245519A (en) | Manufacture of semiconductor device | |
JP3142614B2 (en) | Method for manufacturing N-channel MOSFET | |
JPH01214169A (en) | Semiconductor device | |
JPH04158529A (en) | Fabrication of semiconductor element | |
CA1299069C (en) | Method of making an article comprising a buried sio _layer, and article produced thereby | |
JPH0371641A (en) | Manufacture of field-effect transistor | |
JPH01286308A (en) | Manufacture of gallium arsenide field effect transistor | |
JPS6010906A (en) | Manufacture of semiconductor device | |
JPS63249377A (en) | Schottky barrier gate field effect transistor | |
JPH02222547A (en) | Manufacture of mos field-effect transistor | |
KR20010017518A (en) | Formation method of device of mos field effect transistor | |
JPH01179448A (en) | Complementary semiconductor device |