JPH0371641A - Manufacture of field-effect transistor - Google Patents

Manufacture of field-effect transistor

Info

Publication number
JPH0371641A
JPH0371641A JP20815189A JP20815189A JPH0371641A JP H0371641 A JPH0371641 A JP H0371641A JP 20815189 A JP20815189 A JP 20815189A JP 20815189 A JP20815189 A JP 20815189A JP H0371641 A JPH0371641 A JP H0371641A
Authority
JP
Japan
Prior art keywords
resist
wafer
film
fet
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20815189A
Other languages
Japanese (ja)
Inventor
Shigeharu Matsushita
重治 松下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP20815189A priority Critical patent/JPH0371641A/en
Publication of JPH0371641A publication Critical patent/JPH0371641A/en
Pending legal-status Critical Current

Links

Landscapes

  • Junction Field-Effect Transistors (AREA)

Abstract

PURPOSE:To reduce irregularity in FET characteristics within the surface of a wafer as well as to contrive the improvement of the gate breakdown strength characteristics of a FET by a method wherein hydrogen electrons are diffused in an ion-implanted layer and a heat treatment is performed. CONSTITUTION:Si<+> ions are implanted in a semi-insulative GaAs substrate 1 using a resist 2 as a mask and an ion-implanted layer 3 is formed. Then, after the resist 2 is removed and an SiN film 4 is formed on the whole surface of a wafer, a resist 5 is formed and source and drain regions 6a and 6b are formed using this resist 5 as a mask. Moreover, the resist 5 is etched, an SiO2 film 7 is deposited on the whole surface of the wafer and the resist 5 is removed. Thereby a gate opening part 7' is formed at a position, where corresponds to a scheduled gate electrode region site 5 ', on the film 7 and after then, the layer 3 and the regions 6a and 6b are activated by a short-time annealing. Thereby, irregularity in FET characteristics within the surface of the wafer can be lessened and the improvement of the gate breakdown strength characteristics of a FET is contrived.

Description

【発明の詳細な説明】 (イ)産業上の利用分野 本発明は電界効果トランジスタの製造方法に関するもの
である。
DETAILED DESCRIPTION OF THE INVENTION (a) Field of Industrial Application The present invention relates to a method of manufacturing a field effect transistor.

(ロ)従来の技術 GaAsをはじめとする化合物半導体デバイスは高速動
作、低消費電力の点などにおいて優れた特性を有するも
のが多く、超高速、超高周波集積回路への研究が様々な
形で行なわれている。
(b) Conventional technology Many compound semiconductor devices, including GaAs, have excellent characteristics in terms of high-speed operation and low power consumption, and research into ultra-high-speed and ultra-high frequency integrated circuits is being conducted in various forms. It is.

G a 、A s集積回路の場合、その高性能化のため
には該集積回路を構成するMESFETの高性能が不可
欠となる。G a A s M E S F E Tを
高性能化する有力な手段のひとつに動作層の高濃度薄層
化があり、これにより相互コンダクタンス(g、)の向
上や短チャンネル効果の抑制が期待できる。
In the case of a Ga, As integrated circuit, high performance of the MESFET that constitutes the integrated circuit is essential for its high performance. One of the effective ways to improve the performance of G a As M E S F E T is to make the active layer thinner and more concentrated, which is expected to improve mutual conductance (g) and suppress short channel effects. can.

また、動作層の形成はコスト、制御性及び均一性などの
点を考慮してイオン注入法が広く用いられており、近年
、低エネルギー高ドーズ注入により動作層の高濃度薄層
化を実現し、g、=630mS/Ioffiという極め
て高性能なMESFETが得られたことが報告されてい
る(K、0noderaet  al、IEEE  T
rans、Electron  Devices  L
etters  v。
In addition, ion implantation is widely used to form the active layer in consideration of cost, controllability, and uniformity, and in recent years, low-energy, high-dose implantation has been used to achieve high-concentration thinning of the active layer. It has been reported that an extremely high performance MESFET with ,g,=630mS/Ioffi was obtained (K,0noderaet al, IEEE T
rans, Electron Devices L
etters v.

1.9  No、8 1988  P、417〜P、4
18参照)。
1.9 No, 8 1988 P, 417-P, 4
(see 18).

しかしながら、イオン注入によって動作層の薄層化を実
現するには注入エネルギーの低エネルギー化が必要とな
るが、通常用いられる200KeV級のイオン;を入装
置では引出電圧の制約から約20KeV以下のイオン注
入ではイオンビームの安定性が悪化し、FET特性が面
内でバラツクという問題があり、また高濃度薄層化とと
もにゲート耐圧特性が低下するという問題がある。
However, in order to achieve thinning of the active layer by ion implantation, it is necessary to lower the implantation energy. In implantation, there is a problem that the stability of the ion beam deteriorates, the FET characteristics vary within the plane, and there is also a problem that the gate breakdown voltage characteristics deteriorate as the layer becomes thinner with high concentration.

(ハ)発明が解決しようとする課題 イオン注入で動作層の高濃度薄層化を実現し、〜IES
FETを作製する場合、注入エネルギーの低エネルギー
化によりイオンビームの安定性が低下し、FET特性が
面内でバラツクという問題及び動作層の高濃度化に伴い
ゲート耐圧特性が低下するという問題がある。
(c) Problems to be solved by the invention Achieving high concentration and thinning of the active layer by ion implantation, ~IES
When manufacturing FETs, there are problems in that the stability of the ion beam decreases due to the lowering of the implantation energy, the FET characteristics vary within the plane, and the gate breakdown voltage characteristics deteriorate as the concentration of the active layer increases. .

(ニ)課題を解決するための手段 本発明は、半導体基板にイオン注入層を形成する工程と
、前記イオン注入層に水素原子を拡散する工程と、前記
イオン注入層を熱処理する工程と、を含むことを特徴と
する電界効果トランジスタの製造方法である。
(D) Means for Solving the Problems The present invention includes the steps of forming an ion implantation layer on a semiconductor substrate, diffusing hydrogen atoms into the ion implantation layer, and heat treating the ion implantation layer. 1 is a method of manufacturing a field effect transistor, characterized in that the method includes the steps of:

(ホ)作用 水素プラズマ処理によQSiやG a A sなどの半
導体中に水素を拡散することにより、該半導体中のドナ
ーが不活性化することが知られている(S、J、Pea
rtonet  al、J、Appi、Phys、59
,1986.P、28212827参照)。
(e) Action It is known that by diffusing hydrogen into semiconductors such as QSi and GaAs through hydrogen plasma treatment, donors in the semiconductors are inactivated (S, J, Pea
rtonet al, J, Appi, Phys, 59
, 1986. (See P, 28212827).

本願の発明者はイオン注入層にこの水素プラズマ処理を
施こすことにより、−旦ドナーを不活性化した後、熱処
理により再活性化を行った場合、注入飛程付近はほぼ1
00%再活性化されるのに対し、表面及びテイル部での
再活性化率が低いという現象を見い出した。本発明はこ
の現象に基づき、注入プロファイルを薄層化するので、
従来より高い注入エネルギーを用いることができるとと
もに表面付近でのキャリア濃度を低減することができる
The inventor of the present application has demonstrated that by subjecting the ion-implanted layer to this hydrogen plasma treatment, when the donor is first inactivated and then reactivated by heat treatment, the area near the implantation range is approximately 1
We have discovered a phenomenon in which the reactivation rate is low at the surface and tail parts, whereas the reactivation rate is 00%. The present invention is based on this phenomenon and thins the injection profile.
It is possible to use higher implantation energy than conventional methods and to reduce the carrier concentration near the surface.

第2図の(1)は半絶縁性G a A s基板にSi′
″イオンを100KeV、1,8xlO’1cm −’
で注入し、850℃、5秒の短時間アニールにより活性
化したサンプルAの注入キャリアプロファイルである。
(1) in Figure 2 shows Si' on a semi-insulating GaAs substrate.
''Ion at 100KeV, 1,8xlO'1cm-'
This is the implanted carrier profile of sample A, which was implanted at 850° C. and activated by short-time annealing for 5 seconds.

また、第2図の(2)はサンプルAに対し、ECRプラ
ズマ装置を用いて基板温度220℃で水素プラズマ処理
を15分行なったサンプルBの注入キャリアプロファイ
ルである。
Further, (2) in FIG. 2 is an injection carrier profile of sample B, which was obtained by subjecting sample A to hydrogen plasma treatment for 15 minutes at a substrate temperature of 220° C. using an ECR plasma device.

さらに、第3図の(3)はサンプルAに対し水素中で5
00℃10分の熱処理を行なった後のサンプルCの注入
キャリアプロファイルである。
Furthermore, (3) in Figure 3 shows that sample A has 5
This is the injection carrier profile of sample C after heat treatment at 00° C. for 10 minutes.

このように水素プラズマ処理と熱処理の工程を施したサ
ンプルCは注入キャリアプロファイルが薄層化され、か
つ表面でのキャリア濃度が低下していることがわかる。
It can be seen that sample C, which has been subjected to the hydrogen plasma treatment and heat treatment steps, has a thinner injected carrier profile and a lower carrier concentration on the surface.

また、水素プラズマ処理後の熱処理の処理時間を12時
間にした場合にも(3)と同様の注入キャリアプロファ
イルが得られる。
Further, even when the treatment time of the heat treatment after the hydrogen plasma treatment is set to 12 hours, the same injection carrier profile as in (3) can be obtained.

(へ)実施例 本発明方法をGaAsMESFETに適用した場合につ
いて第1図(a)乃至(j)を用いて説明する。
(F) Example A case in which the method of the present invention is applied to a GaAs MESFET will be explained using FIGS. 1(a) to (j).

まず、半絶縁性GaAs基板(1)にレジスト(2)を
マスクとしてSi”イオンを35KeV。
First, Si'' ions were applied to a semi-insulating GaAs substrate (1) at 35 KeV using a resist (2) as a mask.

1゜;> X 10 ”cm−”で注入し、イオン注入
層(3)を形成する(第1図(a))。このとき35K
eV程度の注入エネルギーであれば、200KeV級の
注入装置でもイオンビームを安定して取り出すことがで
きる。
1°; > X 10 "cm-" to form an ion implantation layer (3) (FIG. 1(a)). At this time 35K
If the implantation energy is on the order of eV, an ion beam can be stably extracted even with a 200KeV class implantation device.

レジスト(2)を除去しECRプラズマCVD法でウェ
ハ全面にSiN膜(4)を300λ形威した後レジスト
(5)を形成する。このとき、ゲート電極形成7一定部
位(5゛)の幅は0.5μmとした。
After removing the resist (2) and depositing a SiN film (4) of 300λ on the entire surface of the wafer by ECR plasma CVD, a resist (5) is formed. At this time, the width of the constant portion (5°) of the gate electrode formation 7 was set to 0.5 μm.

このレジスト(5)をマスクとして、Si“イオンを1
00KeV、3X10’″cm −’で注入し、ソース
領域(6a)及びドレイン領域(6b)を形成する(同
図(b))。
Using this resist (5) as a mask, one Si" ion was
A source region (6a) and a drain region (6b) are formed by implanting at 00 KeV and 3×10′″cm −’ (FIG. 2(b)).

酸素プラズマを用いてレジスト(5)をエツチングし、
前記部位(5′)の幅を0.25μn1とする(同図(
C))。
Etching the resist (5) using oxygen plasma,
The width of the part (5') is 0.25 μn1 (see the same figure (
C)).

ECRプラズマCVD法でウェハ全面にSiQ。SiQ is deposited on the entire surface of the wafer using the ECR plasma CVD method.

膜(7)を300人堆積し、レジスト(5)を除去する
ことによりSin、膜(7)の前記部位(5′)に対応
する位置にゲート開孔部(7゛)を形威し、しかるのち
880℃、5秒のハロゲンランプによる短時間アニール
でイオン注入層(3)及び領域(6a)(6b)を活性
化する(同図(d))。
By depositing 300 films (7) and removing the resist (5), a gate opening (7') was formed at a position corresponding to the part (5') of the film (7). Thereafter, the ion-implanted layer (3) and regions (6a) and (6b) are activated by short-time annealing using a halogen lamp at 880° C. for 5 seconds (FIG. 4(d)).

510!膜(7)をマスクとしてSiN膜(4)をRI
Eを用いてエツチングし、SiN膜(4)の前記部位(
5′)に対応する位置にゲート開孔部(4°)を形成し
た後、ECR水素プラズマ処理を5分間行なう。このと
き基板温度は220℃、水素圧は5xlO−’Torr
としたく同図(e))。
510! RI the SiN film (4) using the film (7) as a mask.
Etching is performed using E to remove the above-mentioned portion (
After forming a gate opening (4°) at a position corresponding to 5'), ECR hydrogen plasma treatment is performed for 5 minutes. At this time, the substrate temperature was 220℃, and the hydrogen pressure was 5xlO-'Torr.
Figure (e)).

その後、水素中で500℃、10分の熱処理を加える(
同図(f))。(作用)の項で説明したようにこの水素
プラズマ処理と熱処理の工程によりチャネル層(動作層
)(8)は薄層化し、自動的にLDD構造(チャネル層
とドレイン領域の中間にチャネル層のキャリア濃度とド
レイン領域のそれの中間的なキャリア濃度を有する領域
が形威される)が実現される。
After that, heat treatment is applied for 10 minutes at 500℃ in hydrogen (
Figure (f)). As explained in the section (Function), the channel layer (active layer) (8) becomes thinner through the hydrogen plasma treatment and heat treatment steps, automatically creating an LDD structure (with a channel layer between the channel layer and the drain region). A region having a carrier concentration intermediate between that of the drain region and that of the drain region is realized.

ウェハ全面にWSi膜(9)をスパッタ法で蒸着し、該
WSi膜(9)上にレジスト(10)を形成する(同図
(g))。
A WSi film (9) is deposited over the entire surface of the wafer by sputtering, and a resist (10) is formed on the WSi film (9) (FIG. 2(g)).

ウェハ全面にAu膜(11)を蒸着し、レジスト(10
)を除去し、その後A u膜(11)をマスクとしてW
Si膜(9)をエツチングする(同図(h))。
An Au film (11) is deposited on the entire surface of the wafer, and a resist (10) is deposited on the entire surface of the wafer.
) is removed, and then W is removed using the Au film (11) as a mask.
The Si film (9) is etched ((h) in the same figure).

レジスト(12)を形威し、このレジスト(12)とA
 u膜(11)をマスクとしてSt N膜(4)及び5
iO=QI(7)をエツチングする(同図(i))。
Applying resist (12), this resist (12) and A
St N films (4) and 5 using the u film (11) as a mask
Etch iO=QI (7) ((i) in the same figure).

全面にA u / T i / P d膜(13)を蒸
着し、レジスト(12)を除去することでゲート電8i
(14)が完成し、さ4に、水素中で450℃、2分3
0秒のオーミヴクアロイを施こすことで、ソース電極(
15)及びドレイン電極(16)が完成する(同図(j
))。
By depositing an A u / Ti / P d film (13) on the entire surface and removing the resist (12), the gate electrode 8i is
(14) was completed, and in step 4, it was heated at 450℃ for 2 minutes and 3 minutes in hydrogen.
By applying Ohmive Quaalloy for 0 seconds, the source electrode (
15) and drain electrode (16) are completed (see figure (j)
)).

上述の如く完成したGaAsMESFETはチャネル層
(8)のピークキャリア濃度は1.2×IQ”cm−”
を有しているにもかかわらず耐圧が8V以上という高い
値を示した。またFETの特性ではg、 = 580 
m s /rm、 NFm1n= 1.  OdBとい
う非常に優れた特性が得られた。これはチャネル層(8
〉の薄層化とともにキャリアプロファイルのテイ孔部の
急俊化も寄うしていると考えられる。また面内のしきい
値電圧の偏差も30mV以下と優れていることを確認し
た。
In the GaAs MESFET completed as described above, the peak carrier concentration of the channel layer (8) is 1.2×IQ"cm-"
Even though it has a high breakdown voltage of 8V or more, it has a high breakdown voltage of 8V or more. Also, in the characteristics of FET, g = 580
m s /rm, NFm1n=1. Very excellent characteristics of OdB were obtained. This is the channel layer (8
It is thought that this is due to the thinning of the carrier profile as well as the sharpening of the tooth hole in the carrier profile. It was also confirmed that the in-plane threshold voltage deviation was excellent, being 30 mV or less.

尚、本実施例では半導体基板としてGaASを用いS!
イオンを注入したが、半導体基板としてInPを用いS
iを注入してよいし、半導体基板としてSiを用いAs
を注入してもよい。また、ECR水素プラズマ処理に代
えて高周波水素プラズマ地理を用いてもよい。
In this example, GaAS is used as the semiconductor substrate and S!
Although ions were implanted, InP was used as the semiconductor substrate and S
It is also possible to implant As using Si as the semiconductor substrate.
may be injected. Furthermore, high-frequency hydrogen plasma may be used instead of ECR hydrogen plasma treatment.

(ト)発明の効果 本発明は以上の説明から明らかなように、イオン注入層
に水素原子を拡散し、熱処理を施すことによりFET特
性の面内でのバラツキを低減することができるとともに
、ゲート耐圧特性を向上させることができる。
(G) Effects of the Invention As is clear from the above description, the present invention can reduce in-plane variations in FET characteristics by diffusing hydrogen atoms into the ion-implanted layer and subjecting it to heat treatment. Withstand voltage characteristics can be improved.

また、ゲート電極形成予定部位以外に保護膜を設けた後
に、水素原子の拡散及び熱処理をすることにより、セル
ファライン的にLDD構造とすることができる。
Further, by providing a protective film in areas other than the portion where the gate electrode is to be formed, and then performing hydrogen atom diffusion and heat treatment, an LDD structure can be obtained in a self-aligned manner.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(a)乃至(j)は本発明方法を説明するための
工程説明図、第2図は注入キャリアプロファイルを示す
図である。 (1)・・・半絶縁性GaAs基板、(2)(5)(1
0)(12)・・・レジスト、(3)・・・イオン注入
層、(4)・・・SiN膜、(7)・・・5ins膜、
(8〉・・・チャネル層、(9)・”W S i膜、(
11)・・・Au膜、(13)−A u 、/Ti、/
Pd膜、(14)・・・ゲート電極、(15)・・・ソ
ース電極、(16)・・・ドレイン電極。
FIGS. 1(a) to (j) are process explanatory diagrams for explaining the method of the present invention, and FIG. 2 is a diagram showing an injection carrier profile. (1) ... Semi-insulating GaAs substrate, (2) (5) (1
0) (12)...Resist, (3)...Ion implantation layer, (4)...SiN film, (7)...5ins film,
(8>...Channel layer, (9)"W Si film, (
11)...Au film, (13)-A u , /Ti, /
Pd film, (14)...gate electrode, (15)...source electrode, (16)...drain electrode.

Claims (1)

【特許請求の範囲】 1、半導体基板にイオン注入層を形成する工程と、前記
イオン注入層に水素原子を拡散する工程と、前記イオン
注入層を熱処理する工程と、を含むことを特徴とする電
界効果トランジスタの製造方法。 2、前記イオン注入層のゲート電極形成予定部位以外に
保護膜を形成する工程を含むことを特徴とする請求項1
に記載の電界効果トランジスタの製造方法。
[Claims] 1. The method is characterized by comprising the steps of forming an ion implantation layer on a semiconductor substrate, diffusing hydrogen atoms into the ion implantation layer, and heat treating the ion implantation layer. A method of manufacturing a field effect transistor. 2. Claim 1, further comprising the step of forming a protective film on a portion of the ion-implanted layer other than a portion where a gate electrode is to be formed.
A method for manufacturing a field effect transistor according to.
JP20815189A 1989-08-10 1989-08-10 Manufacture of field-effect transistor Pending JPH0371641A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20815189A JPH0371641A (en) 1989-08-10 1989-08-10 Manufacture of field-effect transistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20815189A JPH0371641A (en) 1989-08-10 1989-08-10 Manufacture of field-effect transistor

Publications (1)

Publication Number Publication Date
JPH0371641A true JPH0371641A (en) 1991-03-27

Family

ID=16551486

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20815189A Pending JPH0371641A (en) 1989-08-10 1989-08-10 Manufacture of field-effect transistor

Country Status (1)

Country Link
JP (1) JPH0371641A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5650335A (en) * 1994-09-05 1997-07-22 Mitsubishi Denki Kabushiki Kaisha Method of fabricating a semiconductor device including a process of adjusting fet characteristics after forming the fet

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5650335A (en) * 1994-09-05 1997-07-22 Mitsubishi Denki Kabushiki Kaisha Method of fabricating a semiconductor device including a process of adjusting fet characteristics after forming the fet

Similar Documents

Publication Publication Date Title
US4905061A (en) Schottky gate field effect transistor
JPH0371641A (en) Manufacture of field-effect transistor
JPS58147172A (en) Manufacture of semiconductor device
JPH03106035A (en) Manufacture of field-effect transistor
JPH03280552A (en) Manufacture of field effect transistor
JPS59165460A (en) Semiconductor device and manufacture thereof
JPH01260816A (en) Manufacture of compound semiconductor device
JPH0373542A (en) Manufacture of ga-as field effect transistor
JPH0425030A (en) Manufacture of semiconductor device
JPH0770545B2 (en) Method for manufacturing GaAs field effect transistor
JPS59158565A (en) Manufacture of field-effect transistor
JPS6010906A (en) Manufacture of semiconductor device
JPH0770546B2 (en) Method for manufacturing GaAs field effect transistor
JPS6347982A (en) Semiconductor device
JPH02270336A (en) Manufacture of gaas field-effect transistor
JPH02219242A (en) Manufacture of field effect transistor
JPS63147371A (en) Manufacture of schottky gate field-effect transistor
JPS6348868A (en) Manufacture of schottky gate type field effect transistor
JPS60241271A (en) Schottky type fet
JPS6356959A (en) Manufacture of field-effect transistor
JPS62259472A (en) Semiconductor device
JPH04352333A (en) Manufacture of semiconductor device
JPS61135166A (en) Manufacture of schottky barrier gate type field-effect transistor
JPH03178128A (en) Manufacture of iii-v compound semiconductor device
JPH04267530A (en) Semiconductor device