JPH0770545B2 - Method for manufacturing GaAs field effect transistor - Google Patents

Method for manufacturing GaAs field effect transistor

Info

Publication number
JPH0770545B2
JPH0770545B2 JP32631589A JP32631589A JPH0770545B2 JP H0770545 B2 JPH0770545 B2 JP H0770545B2 JP 32631589 A JP32631589 A JP 32631589A JP 32631589 A JP32631589 A JP 32631589A JP H0770545 B2 JPH0770545 B2 JP H0770545B2
Authority
JP
Japan
Prior art keywords
gaas
manufacturing
effect transistor
field effect
fet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP32631589A
Other languages
Japanese (ja)
Other versions
JPH03185842A (en
Inventor
彰良 田村
薫 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP32631589A priority Critical patent/JPH0770545B2/en
Publication of JPH03185842A publication Critical patent/JPH03185842A/en
Publication of JPH0770545B2 publication Critical patent/JPH0770545B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Junction Field-Effect Transistors (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、化合物半導体GaAsを用いた電界効果型トラン
ジスタの製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a field effect transistor using compound semiconductor GaAs.

従来の技術 GaAsを半導体として用いたショットキゲート型電界効果
トランジスタで(以下MESFETと略す)は、従来のSiFET
に比して高速、低消費電力という利点を持ち、デジタル
およびアナログICの両分野で期待されている。特に、半
絶縁性GaAs基板に、イオン注入法を用いてFETを形成す
る方法は、均一な特性のFETの製造が容易で、最近で
は、ソース抵抗等の寄生抵抗を低減することが可能な高
融点金属ゲートを用いたセルフアライメント型FETが開
発され高性能化が計られている。
Conventional technology A Schottky gate type field effect transistor using GaAs as a semiconductor (hereinafter abbreviated as MESFET) is a conventional SiFET.
It has the advantages of high speed and low power consumption compared to, and is expected in both digital and analog IC fields. In particular, the method of forming a FET on a semi-insulating GaAs substrate by using an ion implantation method makes it easy to manufacture a FET with uniform characteristics, and recently, it is possible to reduce parasitic resistance such as source resistance. A self-aligned FET using a melting point metal gate has been developed and its performance is being improved.

発明が解決しようとする課題 しかし、こうした従来のGaAsMESFETでは、低周波(特に
200MHz以下)の領域でノイズが増大し、この低周波領域
を帯域とするアナログICへの応用が難しかった。
However, in such a conventional GaAs MESFET, low frequency (especially
Noise increases in the region below 200MHz), making it difficult to apply to analog ICs that cover this low frequency region.

課題を解決するための手段 本発明は上記の問題に鑑みなされたもので、GaAsFETの
製造においてP(リン)を含むガスプラズマ中でGaAs表
面を処理した後、適当な温度で熱処理する工程を行なう
ものである。
Means for Solving the Problems The present invention has been made in view of the above problems, and in manufacturing a GaAs FET, a step of heat-treating at a suitable temperature is performed after processing the GaAs surface in a gas plasma containing P (phosphorus). It is a thing.

作用 本発明の方法によれば、Pを含むガスプラズマ中でGaAs
表面を処理することによりGaAs表面に多数存在して表面
準位のもととなるAs空孔をP原子の拡散により減少さ
せ、低周波でのノイズの元となる表面準位密度を低減し
たGaAsFETを得ることができるものである。
According to the method of the present invention, GaAs is used in a gas plasma containing P.
By processing the surface, a large number of As vacancies that are present on the GaAs surface and are the source of the surface level are reduced by diffusion of P atoms, and the surface level density that is the source of noise at low frequencies is reduced. Is what you can get.

実施例 以下、高融点金属ゲートを用いたセルフアライメント型
FETを例に説明する。第1図(a)に示すように、半絶
縁性GaAs基板1をプラズマ装置のチャンバー20に入れ
て、ヒータ21で約300℃で加熱しながら、PH3(フォスフ
ィン)ガスを流して、13.56MHzの高周波で電極22間にPH
3プラズマを発生し、圧力0.3Torr,RFパワー100WでGaAs
基板表面を約15分間処理する。このPH3プラズマ処理に
より、GaAs表面に、P原子の拡散層2を形成するもので
ある。こうして処理した半絶縁性GaAs基板を用いて、同
図(b)〜(h)に示したプロセスフローによりGaAsME
SFETを作製する。まず、同図(b)に示すように、表面
にP原子拡散層2が形成された半絶縁性GaAs基板1の所
定の領域に、フォトレジスト膜3をマスクとしてSi29
オンを加速電圧30KeV,ドーズ8×1012cm-2注入してチャ
ンネル領域となるウエル層4を形成する。次にフォトレ
ジスト膜3A除去後同図(c)に示すように、スパッタ法
を用いて、WSiN(2000Å)/TaN(500Å)/Au(4000Å)
の3層膜5Aを形成する。次に、同図(d)に示すよう
に、所定の領域にフォトレジスト膜3Bをマスクとして、
Arイオンミリングと、CF4/O2ガスの異方性プラズマエッ
チングを行ない、3層膜5Aの一部からなるショットキー
ゲート電極5を形成する。次に、フォトレジスト膜Bを
除去後同図(e)に示すように所定の領域に再びフォト
レジスト膜3Cをマスクとして、Si29イオンを50KeV,5×1
012cm-2の条件で注入して、ソース,ドレインの一部と
なるn′層6を形成する。次にフォトレジスト膜3Cを除
去後、同図(f)に示すように全面に、SiO2膜7(2500
Å)を形成した後、所定の領域に、フォトレジスト膜3D
をマスクとして、SiO2膜を通してSi28イオンを160KeV,5
×1013cm-2の条件で注入してソース,ドレインの一部と
なるn+層8を形成する。次にフォトレジスト膜3Dを除去
後、同図(g)に示すように、アルシン雰囲気中で800
℃,15分間アニールを行ないイオン注入層を活性化させ
る。このアニール処理によりPH3プラズマのダメージも
回復されるものである。次に同図(h)に示すようにSi
O2膜7の所定の領域をフォトレジスト膜をマスクとし
て、フッ酸系のエッチング液を用いて開口した後、AuGe
を蒸着後リフトオフして450℃,3分間ミンターを行ない
ソース電極9,ドレイン電極10を形成し、FETを製造する
ものである。第2図は、第1図に示したPH3プラズマ処
理を施した本発明のFETと、プラズマ処理をしていない
従来のFETのノイズ指数の周波数依存性を示したもので
ある。FETのゲート長は1μm,ゲート幅は600μm,しきい
値電圧は、−0.9Vである。同図より本発明の製造方法に
よるFETは、従来の製造方法によるFETに比して、低周波
側(特に200MHz以下)の領域でノイズ指数が激減してい
ることがわかる。これは、PH3プラズマ処理により形成
したP原子拡散層2により、ゲート,ソース間、ゲー
ト,ドレイン間のGaAs表面付近の主としてAs空孔に起因
する表面準位密度が低減し、低周波領域でのノイズ特性
が改善されたためである。以上の説明では、PH3プラズ
マ処理は、プロセスの最初に実施したが、たとえば、第
1図の(c)の段階、即ちゲート形成後に実施しても同
様の効果があることはいうまでもない。またPH3プラズ
マ条件としては、あまり長時間行なうと、逆にプラズマ
処理によるダメージが大きくなるため、30分以内が望ま
しい。しかし、最近普及しだしたECR(電子サイクロト
ロン共鳴)タイプのプラズマ装置を用いると、プラズマ
発生部と基板の位置が離れているため、ダメージが少な
くさらに長時間のプラズマ処理が可能となる。なお以上
の説明で、PH3ガスを用いる場合について説明したが、
たとえば5フッ化リン(PH5)ガスを用いても同様であ
ることはいうまでもない。又、FETの製造方法について
は、イオン注入法を用いるものについて述べたが、エピ
タキシャル層を用いる製造方法について、適用できる。
ただしこの場合、プラズマ処理後プラズマダメージを回
復するため、適当な温度(たとえば400℃)で熱処理す
ることが望ましい。
Example Hereinafter, a self-alignment type using a refractory metal gate
A FET will be described as an example. As shown in FIG. 1 (a), the semi-insulating GaAs substrate 1 is put into the chamber 20 of the plasma device, and while the heater 21 heats it at about 300 ° C., PH 3 (phosphine) gas is caused to flow to 13.56 MHz. PH between electrodes 22 at high frequency
3 Plasma is generated, GaAs with pressure 0.3 Torr, RF power 100W
Treat the substrate surface for about 15 minutes. By this PH 3 plasma treatment, a P atom diffusion layer 2 is formed on the GaAs surface. Using the semi-insulating GaAs substrate treated in this way, the GaAsME is processed by the process flow shown in FIGS.
Fabricate SFET. First, as shown in FIG. 2B, Si 29 ions are accelerated into a predetermined region of a semi-insulating GaAs substrate 1 having a P atom diffusion layer 2 formed on the surface thereof with a photoresist film 3 as a mask and an accelerating voltage of 30 KeV, forming a dose 8 × 10 12 cm -2 implanted well layer 4 serving as a channel region. After removing the photoresist film 3A, the WSiN (2000Å) / TaN (500Å) / Au (4000Å) is formed by the sputtering method as shown in FIG.
The three-layer film 5A is formed. Next, as shown in FIG. 3D, the photoresist film 3B is used as a mask in a predetermined region,
Ar ion milling and anisotropic plasma etching of CF 4 / O 2 gas are performed to form the Schottky gate electrode 5 composed of a part of the three-layer film 5A. Next, after removing the photoresist film B, Si 29 ions are applied at 50 KeV, 5 × 1 in a predetermined region again using the photoresist film 3C as a mask as shown in FIG.
Implantation is performed under the condition of 0 12 cm −2 to form the n ′ layer 6 which will be a part of the source and drain. Next, after removing the photoresist film 3C, the SiO 2 film 7 (2500
After forming Å), the photoresist film 3D is
Si 28 ions as a mask through the SiO 2 film at 160 KeV, 5
Implantation is performed under the condition of × 10 13 cm -2 to form the n + layer 8 which will be a part of the source and drain. Next, after removing the photoresist film 3D, as shown in FIG.
Annealing is performed at 15 ° C for 15 minutes to activate the ion-implanted layer. This annealing treatment also recovers the PH 3 plasma damage. Next, as shown in FIG.
After opening a predetermined area of the O 2 film 7 with a hydrofluoric acid-based etching solution using the photoresist film as a mask, AuGe
After the vapor deposition, the substrate is lifted off and the source electrode 9 and the drain electrode 10 are formed by carrying out a minter at 450 ° C. for 3 minutes to manufacture a FET. FIG. 2 shows the frequency dependence of the noise figure of the FET of the present invention subjected to the PH 3 plasma treatment shown in FIG. 1 and the conventional FET not subjected to the plasma treatment. The gate length of the FET is 1 μm, the gate width is 600 μm, and the threshold voltage is −0.9V. From the figure, it can be seen that the FET according to the manufacturing method of the present invention has a drastically reduced noise figure in the low frequency region (especially 200 MHz or less) as compared with the FET according to the conventional manufacturing method. This is because the P atom diffusion layer 2 formed by the PH 3 plasma treatment reduces the surface state density mainly due to As vacancies near the GaAs surface between the gate and the source, and between the gate and the drain, and in the low frequency region. This is because the noise characteristic of is improved. In the above description, the PH 3 plasma treatment is performed at the beginning of the process, but it goes without saying that the same effect can be obtained even if it is performed at the stage of (c) of FIG. 1, that is, after the gate is formed. . Further, as the PH 3 plasma condition, if it is carried out for a too long time, the damage due to the plasma treatment becomes large on the contrary. However, when an ECR (Electron Cyclotron Resonance) type plasma device, which has recently been popularized, is used, the plasma generating portion and the substrate are located apart from each other, so that plasma processing can be performed for a longer period of time with less damage. In the above description, the case where PH 3 gas is used has been described.
It goes without saying that the same applies when phosphorus pentafluoride (PH 5 ) gas is used, for example. Further, as the method of manufacturing the FET, the one using the ion implantation method is described, but the manufacturing method using the epitaxial layer can be applied.
However, in this case, it is desirable to perform heat treatment at an appropriate temperature (for example, 400 ° C.) in order to recover plasma damage after the plasma treatment.

発明の効果 以上述べたように、PH3プラズマ中でGaAs表面を処理し
て表面にP原子拡散層を形成し後、イオン注入を行ない
FETを形成することにより、GaAsの表面準位密度を低減
し、低周波でのノイズを低減したGaAsFETを得ることが
可能である。
Effects of the Invention As described above, after the GaAs surface is treated in PH 3 plasma to form a P atom diffusion layer on the surface, ion implantation is performed.
By forming a FET, it is possible to obtain a GaAs FET in which the surface state density of GaAs is reduced and the noise at low frequencies is reduced.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の一実施例のGaAsMESFETの製造方法の工
程図、第2図は本発明の製造方法と従来の製造方法によ
るGaAsMESFETのノイズ特性の周波数依存性を示す図であ
る。 1……GaAs基板、2……P原子拡散層、5……ゲート電
極。
FIG. 1 is a process diagram of a method for manufacturing a GaAs MESFET according to an embodiment of the present invention, and FIG. 2 is a diagram showing frequency dependence of noise characteristics of a GaAs MESFET according to the manufacturing method of the present invention and a conventional manufacturing method. 1 ... GaAs substrate, 2 ... P atom diffusion layer, 5 ... Gate electrode.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】P原子を含むガスプラズマ中で、GaAs基板
表面を処理して前記GaAs基板表面にP原子拡散層を形成
する工程と、前記P原子拡散層を適当な温度で熱処理す
る工程を含むことを特徴とするGaAs電界効果型トランジ
スタの製造方法。
1. A step of treating a GaAs substrate surface to form a P atom diffusion layer on the GaAs substrate surface in a gas plasma containing P atoms, and a step of heat-treating the P atom diffusion layer at an appropriate temperature. A method of manufacturing a GaAs field effect transistor, comprising:
JP32631589A 1989-12-15 1989-12-15 Method for manufacturing GaAs field effect transistor Expired - Lifetime JPH0770545B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32631589A JPH0770545B2 (en) 1989-12-15 1989-12-15 Method for manufacturing GaAs field effect transistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32631589A JPH0770545B2 (en) 1989-12-15 1989-12-15 Method for manufacturing GaAs field effect transistor

Publications (2)

Publication Number Publication Date
JPH03185842A JPH03185842A (en) 1991-08-13
JPH0770545B2 true JPH0770545B2 (en) 1995-07-31

Family

ID=18186391

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32631589A Expired - Lifetime JPH0770545B2 (en) 1989-12-15 1989-12-15 Method for manufacturing GaAs field effect transistor

Country Status (1)

Country Link
JP (1) JPH0770545B2 (en)

Also Published As

Publication number Publication date
JPH03185842A (en) 1991-08-13

Similar Documents

Publication Publication Date Title
JPS6336147B2 (en)
JPH05218081A (en) Formation method of shallow semiconductor junction
JP2001326352A (en) Method for forming thin gate oxide having reliability improved by formation of nitride on upper surface of gate oxide to form barrier of nitrogen atom on upper surface of gate oxide and resulting product
JP2673109B2 (en) Method of manufacturing self-aligned T-gate gallium arsenide metal semiconductor field effect transistor
JPH05299441A (en) Manufacture of field effect transistor
JPH0770545B2 (en) Method for manufacturing GaAs field effect transistor
JPH04132232A (en) Field-effect transistor and its manufacture
JPS6292327A (en) Semiconductor device and manufacture thereof
JP3640546B2 (en) Manufacturing method of semiconductor device
JP2528660B2 (en) Method for forming compound semiconductor conductive layer
JPS6347982A (en) Semiconductor device
JPH0371641A (en) Manufacture of field-effect transistor
JP4186267B2 (en) Method for manufacturing compound semiconductor device
JPH0257340B2 (en)
KR930007197B1 (en) MANUFACTURING METHOD OF GaAs MESFET BY ISOTHERMAL TWO STAGE ANNEALING
KR940010561B1 (en) Manufacturing method of mesfet
JPH024137B2 (en)
JPS6348868A (en) Manufacture of schottky gate type field effect transistor
JPH0870011A (en) Manufacture of semiconductor device
JPH03106035A (en) Manufacture of field-effect transistor
JPH0695530B2 (en) Method for manufacturing semiconductor device
JPS6190468A (en) Manufacture of semiconductor device
JPH0245332B2 (en)
JPH06310710A (en) Fabrication of compound semiconductor device
JPH023297B2 (en)