JPS59117290A - Flexible copper-lined printed printed board - Google Patents

Flexible copper-lined printed printed board

Info

Publication number
JPS59117290A
JPS59117290A JP23181082A JP23181082A JPS59117290A JP S59117290 A JPS59117290 A JP S59117290A JP 23181082 A JP23181082 A JP 23181082A JP 23181082 A JP23181082 A JP 23181082A JP S59117290 A JPS59117290 A JP S59117290A
Authority
JP
Japan
Prior art keywords
printed circuit
circuit board
insulating layer
flexible
copper
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP23181082A
Other languages
Japanese (ja)
Other versions
JPS6330798B2 (en
Inventor
新田 功
尾島 信行
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP23181082A priority Critical patent/JPS59117290A/en
Publication of JPS59117290A publication Critical patent/JPS59117290A/en
Publication of JPS6330798B2 publication Critical patent/JPS6330798B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Laminated Bodies (AREA)
  • Manufacturing Of Printed Wiring (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 産業上の牙11用分野 本発明は、電子機器のプリント配線板に用いることがで
きるフレキシブル銅貼りプリント基板に関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a flexible copper-clad printed circuit board that can be used as a printed wiring board for electronic equipment.

従来例の構成とその問題点 近年、電子機器業界においてはプリント配線板にトラン
ジスタなど半導体のハイパワ一部品を実装し、なおかつ
小型軽量・薄型化を図るだめに高密度実装を行なう方向
にあり、プリント配線板として熱伝導性の優れたプリン
ト基板を使用することが要求されている。中でも電子機
器の小型軽量薄型化に対し、プリント配線板としては可
撓性を有するフレキシブルプリント配線板を使用1〜で
高密度実装する方向にあり、更には前記フレキシブルプ
リント配線板を貼り合せ多層化による高密度化の方向に
あって、熱伝導性の優れたフレキシブル銅貼りプリント
基板への需要が高い状況にある。
Conventional configurations and their problems In recent years, the electronic equipment industry has been moving toward high-density mounting of high-power semiconductor components such as transistors on printed wiring boards, and in order to make them smaller, lighter, and thinner. It is required to use a printed circuit board with excellent thermal conductivity as a wiring board. In particular, as electronic devices become smaller, lighter, and thinner, flexible printed wiring boards with flexibility are being used as printed wiring boards for high-density mounting. Due to the trend toward higher density, there is a high demand for flexible copper-clad printed circuit boards with excellent thermal conductivity.

以下図面を参照しながら従来のフレキシブル銅貼りプリ
ント基板について説明する。第1図は従来の片面銅貼り
構成でなるフレキシブル銅貼りプリント基板の断面構成
図であり、厚さ35μm程度のプリント基板用銅箔1と
厚さ35μm〜50μmのポリイミドフィルム基板2が
樹脂の接着剤3を介してラミネータの加圧プレス及び加
熱エージングによって貼り合わされ、片面銅貼りのフレ
キシブル銅貼りプリント基板が構成されている。第2図
は第1図と同様の従来の両面鋼貼りのフレキシブル銅貼
りプリント基板の断面構成図である。中央の厚さ35μ
m〜50μmのポリイミドフィルム基板2′の両面に厚
さ35μm程度のプリント基板用銅箔1′が、萌脂の接
着剤3′ を介してラミネータによる加圧プレス及び加
熱エージングエ法にて貼り合わされ、両面鋼貼りプリン
ト基板が構成されている。
A conventional flexible copper-clad printed circuit board will be described below with reference to the drawings. Fig. 1 is a cross-sectional view of a flexible copper-clad printed circuit board with a conventional single-sided copper-clad structure, in which a printed circuit board copper foil 1 with a thickness of about 35 μm and a polyimide film substrate 2 with a thickness of 35 μm to 50 μm are bonded with resin. They are bonded together by pressure pressing using a laminator and heat aging via the agent 3, thereby forming a flexible copper-bonded printed circuit board with copper bonded on one side. FIG. 2 is a cross-sectional diagram of a conventional flexible copper-clad printed circuit board with steel on both sides, similar to FIG. 1. Center thickness 35μ
Copper foil 1' for a printed circuit board with a thickness of about 35 μm is bonded to both sides of a polyimide film substrate 2' with a thickness of m to 50 μm using a pressure press using a laminator and a heat aging method via a moe fat adhesive 3'. , consists of a double-sided steel printed circuit board.

以上のように構成された従来のフレキシブル銅貼りプリ
ント基板は、接着剤3,3′が樹脂材料のみでできてい
ること、また基板となる材料がポリイミドフィルムなど
の樹脂材料で構成されているだめ、フレキシブル配線板
としだ時、ハイパワーを要す半導体や印刷抵抗体を前記
フレキシブル配線板へ直接実装することは、熱伝導性か
らみると限界があり、まして高密度実装となると実装す
る部品の放熱が難しい問題を生じている。
The conventional flexible copper-bonded printed circuit board constructed as described above has the disadvantages that the adhesives 3 and 3' are made only of resin material, and that the substrate material is made of resin material such as polyimide film. When starting out as a flexible wiring board, there are limits to the direct mounting of semiconductors and printed resistors that require high power on the flexible wiring board in terms of thermal conductivity. Heat dissipation is a difficult problem.

発明の目的 本発明の目的は、熱伝導性を良くしたフレキシブル銅貼
りプリント基板を提供することにある。
OBJECTS OF THE INVENTION An object of the present invention is to provide a flexible copper-clad printed circuit board with improved thermal conductivity.

発明の構成 本発明のフレキシブル銅貼りプリント基板は、銀箔ベー
スの一面に少なくとも2層の絶縁層を形成し、その内の
少なくとも1層をセラミック絶縁層で形成したものであ
り、前記セラミック絶縁層を介在させることによって熱
伝導の優れたフレキシブル金向貼りプリント基板となる
ものである。
Structure of the Invention The flexible copper-clad printed circuit board of the present invention has at least two insulating layers formed on one surface of a silver foil base, at least one of which is a ceramic insulating layer. By interposing it, a flexible gold-plated printed circuit board with excellent heat conduction can be obtained.

実施例の説明 以下本発明の実施例について、図面を参照しながら説明
する。
DESCRIPTION OF EMBODIMENTS Hereinafter, embodiments of the present invention will be described with reference to the drawings.

第3図(8)、(B)は、片面の銅貼りを構成するフレ
キシブル銅貼りプリント基板の製造工程を示す断面図で
あり、まず第3図(8)に示すようにエツチングにより
導体形成が容易なプリント基板用銅箔4に、ジルコニア
、シリカ、窒化珪素、炭化珪素などを主成分とし、塗料
化したセラミック(例えば日板研究所で製造されている
商品名がセラミ力なる水溶1竹性の超耐熱、耐蝕のセラ
ミックコート剤など)を塗工してセラミック絶縁層5を
形成する。
Figures 3 (8) and (B) are cross-sectional views showing the manufacturing process of a flexible copper-clad printed circuit board with one side copper-clad. First, conductor formation is performed by etching as shown in Figure 3 (8). Ceramics (for example, a water-soluble 1 bamboo-based paint manufactured by Nippan Research Institute, whose product name is Cerami-Ryoku) are made by using easy-to-use copper foil 4 for printed circuit boards, and the main ingredients are zirconia, silica, silicon nitride, silicon carbide, etc. A ceramic insulating layer 5 is formed by applying a super heat-resistant, corrosion-resistant ceramic coating agent, etc.

次に、第3図(B)に示すように前記セラミック絶縁層
5の上にポリフェニレンオキサイド、ポリサルフォン、
ポリエーテルサルフォン、ポリエーテルケトン、ポリア
ミドイミド、ポリイミド系などの師1熱性エンジニアリ
ングプラスチックの塗料化したものを樹脂絶縁層6とし
て塗工する。これにより片面銅貼りのフレキシブル銅貼
りプリント基板が得られる。
Next, as shown in FIG. 3(B), polyphenylene oxide, polysulfone,
A resin insulating layer 6 is coated with a paint made of a heat-resistant engineering plastic such as polyether sulfone, polyether ketone, polyamide-imide, or polyimide. As a result, a flexible copper-clad printed circuit board with copper on one side is obtained.

次に、第4図(8)、(B)は、両面鋼貼り構成に基づ
くフレキシブル銅貼りプリント基板の製造工程を示すの
1面図であり、まず、第4図(八に示すように一方のプ
リント基板用銅箔7にセラミック絶縁層8を形成し、次
に第4図(B)に示すように、他方のプリント配線板用
銅箔7′との間に第3図の実施例と同様の耐熱性エンジ
ニアリングプラスチックでなる樹脂絶縁層9を介在し接
着したものである。
Next, FIGS. 4(8) and (B) are front views showing the manufacturing process of a flexible copper-clad printed circuit board based on a double-sided steel-clad structure. First, as shown in FIG. A ceramic insulating layer 8 is formed on the copper foil 7 for a printed circuit board, and then, as shown in FIG. A resin insulating layer 9 made of a similar heat-resistant engineering plastic is interposed and bonded.

次に、第5図(八〜(qも第4図と同様尾両面銅貼り構
成のフレキシブル銅貼りプリント基板の製造工程を示す
断面図であるが、前記第4図の実施例と異なるところは
セラミック絶縁層を2層設けた点にあり、まず第5図[
有]に示すように2つのプリント基板用銅箔10,10
′にそノ1ぞれセラミック絶縁層11.11’を形成し
、次にg5図(B)に示すようにセラミック絶縁層11
 、11’を内側に向は耐熱性エンジニアリングプラス
チックを接着シート化(接着剤をシート化し、加熱プレ
スすることで接着可能なもの)しだもの、1だは、塗料
化し塗工した樹脂絶縁層12を介して、第5図(qに示
すように熱圧着して接着したものである。
Next, Figures 5 (8 to q) are cross-sectional views showing the manufacturing process of a flexible copper-clad printed circuit board with copper-clad structure on both sides of the tail, similar to Figure 4, but the differences from the embodiment shown in Figure 4 are as follows. The first point is that two ceramic insulating layers are provided, as shown in Fig. 5 [
Two printed circuit board copper foils 10, 10 as shown in
A ceramic insulating layer 11 and a ceramic insulating layer 11' are then formed on each layer 11 and 11' as shown in Fig. g5 (B).
, 11' facing inward is an adhesive sheet made of heat-resistant engineering plastic (which can be bonded by making adhesive into a sheet and hot pressing). As shown in FIG. 5 (q), they were bonded together by thermocompression.

以上のように構成された各実施例のフレキシブル銅貼り
プリント基板について、次に構成上の特徴を説明する。
Next, the structural features of the flexible copper-clad printed circuit boards of each embodiment configured as described above will be explained.

まずプリント基板として熱伝導性を良くするために塗料
化したセラミックを塗工してセラミック絶縁層を形成し
ていること、更にフレキシブル銅貼りプリント基板とし
て可撓性をもたすだめに前記セラミック層の少なくとも
一方の面に樹脂絶縁層を接着の形で形成し、セラミック
絶縁層の脆さを解消していることである。また上記各実
施例の説明図でも分るように、セラミック絶縁層はプリ
ント基板用銀箔面に形成されている。
First, in order to improve thermal conductivity as a printed circuit board, a ceramic insulating layer is formed by coating a ceramic coating, and furthermore, in order to provide flexibility as a flexible copper-clad printed circuit board, the ceramic layer is A resin insulating layer is adhesively formed on at least one surface of the ceramic insulating layer, thereby eliminating the brittleness of the ceramic insulating layer. Further, as can be seen from the explanatory drawings of each of the above embodiments, the ceramic insulating layer is formed on the surface of the silver foil for the printed circuit board.

これは塗料化したセラミックを前記プリント基板用銅箔
面へ塗工接着する方が樹脂を塗工し硬化した而及び樹脂
フィルム面へ塗工接着する場合よりはるかに前記セラミ
ック絶縁層の密着強度が強いこと、寸だ、前記塗料化し
たセラミックを塗料化した樹脂を塗工硬化した樹脂絶縁
層の面へ塗工形成するよりも逆にセラミック絶縁層を形
成した上に前記塗料化した樹脂を塗工酸−は樹脂の接着
シー l−を接着する方が相互の密着強度が告れている
からである。
This is because the adhesion strength of the ceramic insulating layer is much greater when coating and adhering ceramic in the form of paint to the copper foil surface for the printed circuit board than when coating and adhering resin to the resin film surface. Rather than coating the surface of a hardened resin insulating layer, it is possible to form a ceramic insulating layer and then apply the resin as a coating. This is because the mutual adhesion strength is known to be higher when the artificial acid is used as a resin adhesive.

なお、本発明のフレキシブル鋼貼りプリント基板を構成
する上で必要なセラミック絶縁層の厚みであるか、セラ
ミックコート剤は通常できるたけ細いセラミック粒子で
作られているが、現状では最大6μm〜1ol血径のも
のの混入が卓けられない状況である。この粒子径を含ん
だセラミックコート剤を塗工し、本発明のフレキシブル
銅貼リプリント基板を、気泡もピンホールもなく、平滑
な面の状態に作製するには、セラミック絶縁層の厚みと
して5μm以上を必要とする。他方、樹脂絶縁層の厚み
に関しては、セラミック絶縁層の厚みとの関連とフレキ
シブル基板としての可撓性及び絶縁層としての層数によ
って設定されるものである。
The thickness of the ceramic insulating layer required to construct the flexible steel-laminated printed circuit board of the present invention may be determined by the thickness of the ceramic coating agent, which is usually made of ceramic particles as thin as possible, but currently the maximum thickness is 6 μm to 1 mol. The situation is such that it is impossible to avoid the contamination of large diameter particles. In order to apply a ceramic coating agent containing this particle size and to produce a flexible copper-clad printed circuit board of the present invention with a smooth surface without bubbles or pinholes, the thickness of the ceramic insulating layer must be 5 μm or more. Requires. On the other hand, the thickness of the resin insulating layer is determined in relation to the thickness of the ceramic insulating layer, the flexibility of the flexible substrate, and the number of insulating layers.

次に、第6図に第3図(B)の片面胴貼り構成でなるフ
キシブル銅箔プリント基板において、セラミック絶縁層
5の厚さを10μm、樹脂絶縁層6の厚みを40μmに
したものの構成で、プリント基板用銅箔4を全面エツチ
ング処理で取り除いたテストピース基板と、従来の厚さ
50μmのポリイミドフィルムを基材とした片面銅張り
のフレキシブル鋼貼りプリント基板の銅箔をエツチング
で除去シたテストヒース基板を用意し、それぞれエソナ
ング面にカーボン・樹脂系印刷抵抗体を3μm角の寸法
で形成させ放熱特性の比較したデータを示している。そ
の第6図は、前記印刷抵抗体に負荷をかけそれぞれの負
荷条件による印刷抵抗体の温度上昇をもとめた周囲温度
20℃における印刷抵抗体の負荷一温度特性図である。
Next, FIG. 6 shows a structure in which the thickness of the ceramic insulating layer 5 is 10 μm and the thickness of the resin insulating layer 6 is 40 μm in the flexible copper foil printed circuit board with the single-sided shell-bonded structure shown in FIG. 3(B). , a test piece board from which the copper foil 4 for printed circuit boards was removed by etching the entire surface, and a conventional flexible steel-clad printed circuit board with one side of copper cladding made of polyimide film with a thickness of 50 μm, in which the copper foil was removed by etching. Test heather substrates were prepared, and carbon/resin-based printed resistors were formed on the esonant surface of each substrate in a size of 3 μm square, and the heat dissipation characteristics were compared. FIG. 6 is a load-temperature characteristic diagram of the printed resistor at an ambient temperature of 20° C., in which a load was applied to the printed resistor and the temperature rise of the printed resistor was determined under each load condition.

従来の片面胴貼りのフレギシプ銅貼り基板での印刷抵抗
体の温度上昇が13の特性に示されるようにo、1W負
荷に対し80℃温度上昇するのに対し、本発明のフレキ
シブル鋼貼りプリント基板では、14の特性に示される
ように2層℃の温度上昇にすぎず、Z寸で温度上昇立下
げることができる。この温度上昇については、セラミッ
ク絶縁層の厚みを厚くするほど小さくでき、前記印刷抵
抗体の高電力のもの、或いはトランジスタなどハイパワ
ーの半導体素子などを塔載し実装することが可能である
As shown in the characteristic No. 13, the temperature of the printed resistor on the conventional single-sided flexible copper-clad printed circuit board increases by 80°C for a 1W load, whereas the temperature rise of the printed resistor on the conventional single-sided flexible copper-clad printed circuit board increases by 80°C for a 1W load. In this case, as shown in the characteristic No. 14, the temperature rise is only 2 degrees Celsius, and the temperature rise and fall can be caused by the Z dimension. This temperature rise can be reduced by increasing the thickness of the ceramic insulating layer, and it is possible to mount high-power printed resistors or high-power semiconductor elements such as transistors.

発明の効果 以上の説明から明らかなように本発明は、プリント基板
用銅箔ベースの一面に少なくとも2層の絶縁層を形成し
、その内の少なくとも1層をセラミ、り絶縁層で構成し
たものであり、熱伝導性の陵ね、だ可撓性のあるフレキ
シブル鋼貼りプリント基板が得られ、フレキシブ配線板
とした時、ハイパワーを要す半導体や印刷抵抗体を実装
可能という優れた効果が得られる。
Effects of the Invention As is clear from the above explanation, the present invention provides a method in which at least two insulating layers are formed on one surface of a copper foil base for a printed circuit board, and at least one of the layers is made of a ceramic or other insulating layer. As a result, a flexible steel printed circuit board with thermal conductivity and flexibility can be obtained, and when used as a flexible wiring board, it has the excellent effect of being able to mount semiconductors and printed resistors that require high power. can get.

また、セラミック絶縁層の厚みを5μm以上にこ塗工す
ることにより、熱伝導性をpくする効果は勿論のこと、
フレキシブル鋼貼りプリント基板を作製する上で気泡の
混入のない平滑な基板が得られ、併せてセラミック絶縁
層にピンホールなどのないフレキシブル鋼貼りプリント
基板が製造できる効果が得られる。
In addition, by coating the ceramic insulating layer with a thickness of 5 μm or more, it is possible to increase the thermal conductivity by p.
When producing a flexible steel-laminated printed circuit board, a smooth substrate without air bubbles can be obtained, and at the same time, a flexible steel-laminated printed circuit board without pinholes in the ceramic insulating layer can be manufactured.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図及び第2図は従来の片面胴貼り、両面銅貼りのフ
レキシブル鋼貼りプリント基板の断面図第3図(8)、
(B)、第4図(8)、(B)および第6図(八〜p1
よ本発明の各実施例におけるフレキシブル鋼貼りプリン
ト基板の製造工程を示す断面図、第6図は本発明の一実
施例だ係るフレキシブル鋼貼りプリント基板の特性図で
ある。 4 、7 、7’、 10 、10’−−−山プリント
基板用銅箔、5,8,11.11’・・・・・・セラミ
ック絶縁層、6,9.12・・・・・・樹脂絶縁層。 第1図 第2図 第3図 第4図
Figures 1 and 2 are cross-sectional views of a conventional flexible steel printed circuit board with one-sided body bonding and double-sided copper bonding; Figure 3 (8);
(B), Figure 4 (8), (B) and Figure 6 (8-p1
FIG. 6 is a cross-sectional view showing the manufacturing process of a flexible steel-laminated printed circuit board in each embodiment of the present invention, and FIG. 6 is a characteristic diagram of the flexible steel-laminated printed circuit board according to an embodiment of the present invention. 4, 7, 7', 10, 10'---Copper foil for mountain printed circuit board, 5, 8, 11.11'... Ceramic insulation layer, 6, 9.12... Resin insulation layer. Figure 1 Figure 2 Figure 3 Figure 4

Claims (4)

【特許請求の範囲】[Claims] (1)  氷箔ベースの一方の面にセラミック絶縁層と
可撓性を有する樹脂絶縁層で構成された2層以上の絶縁
層を接着してなるフレキシブル銅貼りプリント基板。
(1) A flexible copper-bonded printed circuit board made by adhering two or more insulating layers consisting of a ceramic insulating layer and a flexible resin insulating layer to one side of an ice foil base.
(2)  セラミック絶縁層の厚みを5μm以上とした
特許1fl−1求の範囲第(1)項記載のフレキシブル
銅貼りプリント基板。
(2) A flexible copper-clad printed circuit board according to item (1) of Patent No. 1fl-1, in which the thickness of the ceramic insulating layer is 5 μm or more.
(3)2板の銅箔ベースをセラミック絶縁層と可撓性を
有する樹脂絶縁層で構成された2層以上の絶縁層を介在
させて接着してなるフレキシブル鉤貼りプリント基板。
(3) A flexible hook-attached printed circuit board formed by bonding two copper foil bases with two or more insulating layers interposed, each consisting of a ceramic insulating layer and a flexible resin insulating layer.
(4)  セラミック絶縁層の厚みを5μm以上とした
特許請求の範囲第(3)項記載のフレキシブル銅貼りプ
リント基板。
(4) The flexible copper-clad printed circuit board according to claim (3), wherein the thickness of the ceramic insulating layer is 5 μm or more.
JP23181082A 1982-12-24 1982-12-24 Flexible copper-lined printed printed board Granted JPS59117290A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23181082A JPS59117290A (en) 1982-12-24 1982-12-24 Flexible copper-lined printed printed board

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23181082A JPS59117290A (en) 1982-12-24 1982-12-24 Flexible copper-lined printed printed board

Publications (2)

Publication Number Publication Date
JPS59117290A true JPS59117290A (en) 1984-07-06
JPS6330798B2 JPS6330798B2 (en) 1988-06-21

Family

ID=16929370

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23181082A Granted JPS59117290A (en) 1982-12-24 1982-12-24 Flexible copper-lined printed printed board

Country Status (1)

Country Link
JP (1) JPS59117290A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004200159A (en) * 2002-12-05 2004-07-15 Midtronics Inc Battery test module

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH027498U (en) * 1988-06-27 1990-01-18

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004200159A (en) * 2002-12-05 2004-07-15 Midtronics Inc Battery test module

Also Published As

Publication number Publication date
JPS6330798B2 (en) 1988-06-21

Similar Documents

Publication Publication Date Title
US4612601A (en) Heat dissipative integrated circuit chip package
JP5343283B2 (en) Composite materials, especially multilayer materials and adhesive or bonding materials
JP2783751B2 (en) Method for manufacturing multilayer ceramic substrate
JPWO2018225809A1 (en) Ceramic circuit board
JPS59117290A (en) Flexible copper-lined printed printed board
JPS60216573A (en) Manufacture of flexible printed circuit board
JPH08125294A (en) Metal base board and manufacture thereof
JPH0677649A (en) Multilayer circuit board, electronic module, and electronic device
JPH0283995A (en) Ceramic multilayer circuit board and its applications
JP2598931B2 (en) Metal core printed circuit board and method of manufacturing the same
JPH06169147A (en) Metal base circuit board and manufacture thereof
JPH11204941A (en) Manufacture of circuit board
JPH01157589A (en) Manufacture of metal base substrate
JPH03297159A (en) Semiconductor device
JPH10163594A (en) Electronic circuit board and its manufacture
JPS6372192A (en) Manufacture of circuit board
JPH02198194A (en) Manufacture of ceramic circuit board
JPS617698A (en) Method of producing multilayer circuit board
JPH02125728A (en) Composite base and its manufacture
JPS61245555A (en) Terminal connecting structure for semiconductor
JPH01100958A (en) Resin-coated ceramic wiring board
JPS62114245A (en) Manufacture of substrate for hybrid integrated circuit
JPS60249390A (en) Circuit board
JPH04317389A (en) Forming method for wiring pattern
JPS62244197A (en) Manufacture of multilayer board using baked ceramic plate