JPH0677649A - Multilayer circuit board, electronic module, and electronic device - Google Patents

Multilayer circuit board, electronic module, and electronic device

Info

Publication number
JPH0677649A
JPH0677649A JP4229533A JP22953392A JPH0677649A JP H0677649 A JPH0677649 A JP H0677649A JP 4229533 A JP4229533 A JP 4229533A JP 22953392 A JP22953392 A JP 22953392A JP H0677649 A JPH0677649 A JP H0677649A
Authority
JP
Japan
Prior art keywords
linear expansion
circuit board
heat
substrate
wiring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4229533A
Other languages
Japanese (ja)
Other versions
JP3210740B2 (en
Inventor
Hideo Arima
英夫 有馬
Kenji Takeda
健二 武田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP22953392A priority Critical patent/JP3210740B2/en
Publication of JPH0677649A publication Critical patent/JPH0677649A/en
Application granted granted Critical
Publication of JP3210740B2 publication Critical patent/JP3210740B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73253Bump and layer connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/153Connection portion
    • H01L2924/1531Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface
    • H01L2924/15312Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface being a pin array, e.g. PGA

Abstract

PURPOSE:To obtain a next generation multilayer circuit board, and a module and electronic device employing the multilayer circuit board, for forming a multilayer thin film circuit having high density wiring while suppressing warp of board and enhancing reliability in connection. CONSTITUTION:In a multilayer circuit board comprising a board 1 and a multilayer thin film circuit 4 formed of a heat resistant dielectric film 5 and a wiring on the board 1, the heat resistant dielectric film 5 is composed of an organic heat resistant material and an inorganic powder material where the coefficient of linear expansion of the organic heat resistant material is set substantially equal to that of the wiring 6 and the coefficient of linear expansion of the heat resistant dielectric film 5, formed by admixing inorganic powder to the organic heat resistant material, is set substantially equal to that of the board 1. The multilayer circuit board is employed in an electronic module and an electronic device.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、多層回路基板、これを
用いたモジュールおよび電子装置に係り、特に高密度、
高精度、かつ、信頼性の高い多層回路基板、モジュール
および電子装置に関するものである。特に、例えば、電
子計算機など、その実装密度が製品の優劣を左右する電
子装置に利用される。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a multilayer circuit board, a module and an electronic device using the same, and particularly to a high density circuit board.
The present invention relates to a highly accurate and highly reliable multilayer circuit board, module, and electronic device. In particular, it is used for an electronic device such as an electronic computer whose packaging density determines the superiority or inferiority of a product.

【0002】[0002]

【従来の技術】従来、大型計算機等の処理速度の向上が
強く要求される電子装置では、LSI等能動素子の高速
化と同様に素子間接続の短縮が、装置の性能を向上させ
るため必要であった。このような背景から、高密度の配
線を有するLSI搭載基板の技術においては、高速信号
の伝送に適した微細な高密度配線を形成できる多層回路
基板技術の実現が強く要望されていた。基板上に耐熱性
絶縁膜と銅等の導電性材料の配線がなされた多層薄膜回
路を積層した多層回路基板は、配線の高密度化やこれに
伴う信号伝送の高速化に有利である。このため、各種の
電子機器の回路としてその使用が検討されている。
2. Description of the Related Art Conventionally, in an electronic device such as a large-scale computer which is strongly required to have an improved processing speed, it is necessary to shorten the connection between the elements as in the case of increasing the speed of active elements such as LSI in order to improve the performance of the apparatus. there were. From such a background, in the technology of the LSI mounting board having high-density wiring, there has been a strong demand for realization of a multilayer circuit board technology capable of forming fine high-density wiring suitable for high-speed signal transmission. A multi-layer circuit board in which a heat-resistant insulating film and a multi-layer thin-film circuit in which wiring of a conductive material such as copper is formed on a board is advantageous for high-density wiring and accompanying high-speed signal transmission. For this reason, its use as a circuit for various electronic devices has been studied.

【0003】特に、計算機ゃワークステイション、通信
機、交換機において使用される多層回路基板は、その基
板上に多数のLSIや電子部品が搭載され、その搭載部
品間を接続する膨大な配線がその基板上で達成される必
要があった。このことは、配線の高密度化、基板の大形
化および回路層数の増大化をもたらした。一例として、
現在のスーパーコンピュータや超大形電子装置において
は、200〜300mm角程度の無機質多層基板上に数
層の多層薄膜回路を形成している。これが次世代のもの
になれば、基板はさらに大形化し、多層薄膜回路の層数
は10層を越えることは必至である。
In particular, a multilayer circuit board used in computers, workstations, communication devices, and exchanges has a large number of LSIs and electronic components mounted on the substrate, and enormous wiring for connecting the mounted components to the substrate. Had to be achieved above. This has brought about a higher density of wiring, a larger substrate and an increased number of circuit layers. As an example,
In current supercomputers and super-large electronic devices, several layers of multi-layer thin film circuits are formed on an inorganic multi-layer substrate of about 200 to 300 mm square. If this becomes the next generation, the size of the substrate will be further increased and the number of layers of the multilayer thin film circuit will inevitably exceed 10.

【0004】さらに敷衍すれば、多層薄膜回路は、印刷
技術等を用いて製造する無機質多層基板や多層プリント
基板と比較して高密度化が可能であることは自明であ
る。したがって、電子回路は多層薄膜回路で形成する傾
向が大となる。この結果、無機質多層基板やプリント基
板は必然的に薄くなり、これに反して多層薄膜回路層は
厚くなる。このような高密度構成の基板においては、新
たに多層回路基板全体の反りの検討が必要となってく
る。この反りは、基本的にはベ−スとなる無機質多層基
板やプリント基板と多層薄膜回路層との線膨張率差に起
因している。
Further, if it is further spread, it is obvious that the multi-layer thin film circuit can be highly densified as compared with an inorganic multi-layer substrate or a multi-layer printed circuit board manufactured by using a printing technique or the like. Therefore, there is a large tendency for electronic circuits to be formed of multilayer thin film circuits. As a result, the inorganic multilayer substrate or the printed circuit board is necessarily thin, whereas the multilayer thin film circuit layer is thick. In such a high-density board, it is necessary to newly examine the warpage of the entire multilayer circuit board. This warp is basically due to the difference in linear expansion coefficient between the inorganic multi-layer substrate or the printed circuit board and the multi-layer thin film circuit layer, which are bases.

【0005】すなわち、多層薄膜回路を形成する場合、
通常、耐熱性絶縁膜として用いる有機絶縁膜をその材料
構成に応じて100〜500℃でベークする。この場
合、基板と耐熱性絶縁膜との線膨張率に差があると、こ
の耐熱性絶縁膜がベーク後、固化温度から徐々に冷えて
室温になるまで、多層回路基板全体がバイメタルの様に
反り返ることになる。このことは、各種の大型電子機器
の回路素子としては、重大な問題となる。
That is, when forming a multilayer thin film circuit,
Usually, the organic insulating film used as the heat resistant insulating film is baked at 100 to 500 ° C. depending on the material constitution. In this case, if there is a difference in the coefficient of linear expansion between the substrate and the heat-resistant insulating film, after the heat-resistant insulating film is baked, the entire multilayer circuit board is gradually cooled from the solidification temperature to room temperature, and the whole multilayer circuit board looks like a bimetal. It will be warped. This poses a serious problem as a circuit element for various large electronic devices.

【0006】一例として、200mm角、板厚3mmの
ムライト基板に通常のポリイミド材である、いわゆる、
PIQを膜厚0.6mm成膜すると、基板全体は約0.
4mm反ることになる。これが従来の小形の100mm
角基板においては、反りは約0.1mmとなる。板厚1
0mmの基板においては、反りは約0.03mmとな
る。これら反りの大きさは低配線密度の多層回路基板に
おいては殆ど問題にならなかった。
[0006] As an example, a so-called
When PIQ is formed to a film thickness of 0.6 mm, the entire substrate has a thickness of about 0.
It will be warped by 4 mm. This is the conventional small 100 mm
In a square substrate, the warp is about 0.1 mm. Thickness 1
For a 0 mm substrate, the warpage is about 0.03 mm. The magnitude of these warps has hardly caused a problem in a multilayer circuit board having a low wiring density.

【0007】問題となるのは、むしろ、この線膨張率差
により、多層薄膜回路が基板と剥離する点であり、剥離
がなければ、多層回路基板として十分使用することがで
きた。しかし、上記次世代のスーパーコンピュータ用の
多層回路基板においては、基板が大形・薄肉化し、多層
薄膜回路が厚くなるため、上記の反りが非常に大きくな
り、多層薄膜回路の形成上の欠点になっていた。
What is problematic is that the multi-layer thin film circuit is peeled off from the substrate due to the difference in the linear expansion coefficient. If there is no peeling, the multi-layer thin film circuit can be sufficiently used as a multi-layer circuit substrate. However, in the next-generation multi-layer circuit board for supercomputers, the board becomes large and thin and the multi-layer thin film circuit becomes thick, so the above warpage becomes extremely large, which is a drawback in forming the multi-layer thin film circuit. Was becoming.

【0008】[0008]

【発明が解決しようとする課題】上記従来の多層回路基
板では、多層薄膜回路の配線を電気めっきで形成する場
合、形成された配線に耐熱性絶縁膜を被膜させ、その後
硬化させる。さらに、そのあとで、表面を平坦化するこ
とが行なわれていた。この場合、耐熱性絶縁膜表面を機
械的に研磨が施されていたが、基板全体が反っている
と、この平坦化精度は、極端に悪くなるという問題を有
していた。
In the conventional multilayer circuit board described above, when the wiring of the multilayer thin film circuit is formed by electroplating, the formed wiring is coated with a heat resistant insulating film and then cured. Furthermore, after that, the surface was flattened. In this case, the surface of the heat-resistant insulating film was mechanically polished, but if the entire substrate was warped, there was a problem that the flattening accuracy would be extremely deteriorated.

【0009】また、前述の平坦化精度は極端に悪くなる
という問題は、次の如き問題点を生じた。通常、この平
坦化加工においては、多層薄膜回路層の厚さ変動を当該
多層薄膜回路層の10%以下にすることが必要である。
すなわち、多層薄膜回路層の膜厚を0.6mmの場合、
60μm以内の精度で研磨しなければならない。多層回
路基板全体としての反りは60μm以内でないと上記精
度の研磨を施せないことになる。さらに、露光工程にお
いて、通常の密着方式で露光しようとすると、多層回路
基板が反っていては、焦点を全面に合わすことが困難に
なり、パターンの十分な解像度が得られないという問題
があった。
Further, the above-mentioned problem that the precision of flattening is extremely deteriorated causes the following problems. Usually, in this flattening process, it is necessary to reduce the thickness variation of the multilayer thin film circuit layer to 10% or less of the multilayer thin film circuit layer.
That is, when the thickness of the multilayer thin film circuit layer is 0.6 mm,
It must be polished with an accuracy within 60 μm. If the warp of the multilayer circuit board as a whole is less than 60 μm, the polishing with the above precision cannot be performed. Further, in the exposure process, when the exposure is performed by a normal contact method, it is difficult to focus on the entire surface when the multilayer circuit board is warped, and there is a problem that sufficient resolution of the pattern cannot be obtained. .

【0010】さらに、この多層回路基板の上にLSI等
の電子部品を搭載し、この基板全体を封止する場合、こ
れら電子部品の接続の信頼性が問題になる。つまり、電
子部品と多層回路基板との接続のたびに、温度サイクル
が加わる。そのたびに、該基板が反り返ったり原形に復
したりする。この温度サイクルは通電による発熱や外気
温度の変化によっても生じる。このため、極度の繰り返
し応力が前記接続部にかかり、接続の信頼性が大幅に低
下する。
Further, when electronic parts such as LSI are mounted on the multilayer circuit board and the whole board is sealed, the reliability of connection of these electronic parts becomes a problem. That is, a temperature cycle is added every time the electronic component is connected to the multilayer circuit board. Each time, the substrate warps or returns to its original shape. This temperature cycle also occurs due to heat generation due to energization and changes in the outside air temperature. Therefore, extreme repetitive stress is applied to the connection portion, and the reliability of the connection is significantly reduced.

【0011】このように、次世代の多層回路基板は、配
線が高密度、高精度を必要とするため、この多層回路基
板のもつ反りの問題点が顕在化した。さらに、多層薄膜
回路の形成上および電子部品の接続部の高信頼性上から
その反りを低減する必要がある。具体的数値で言えば、
200mm角の基板では、その反りを50μm程度以内
にしなければならないという問題があった。
As described above, since the next-generation multilayer circuit board requires high-density wiring and high accuracy, the problem of warpage of this multilayer circuit board has become apparent. Further, it is necessary to reduce the warp in view of formation of the multilayer thin film circuit and high reliability of the connection part of the electronic component. In concrete terms,
The 200 mm square substrate had a problem that its warpage must be within about 50 μm.

【0012】上記問題点にたいしては次のような提案が
なされていた。例えば、R.P.Himmel et
al.,"Fabrication of Large
−Area, Thin−Film Multilay
er Substrates” ISHM ’89 P
roceedings, P454−461(1989)
に紹介されている。これは、基板と耐熱性絶縁膜との線
膨張率差を無くすという方法である。
The following proposals have been made for the above problems. For example, RP. Himmel et
al. , "Fabrication of Large"
-Area, Thin-Film Multilay
er Substrates ”ISHM '89 P
roseceings, P454-461 (1989)
Have been introduced to. This is a method of eliminating the difference in linear expansion coefficient between the substrate and the heat resistant insulating film.

【0013】しかし、この方法はいくつかの問題点を新
たに生じさせる。すなわち、耐熱絶縁膜を構成する有機
材料の熱膨張率は、本来、無機材料と比較して大であ
る。これを無機材料と同程度に低下させることは、他の
特性を犠牲にすることを伴うのが常である。特に、耐熱
性絶縁膜と基板との間および耐熱性絶縁膜同士間での密
着性が大幅に劣化するという深刻な問題を新たに発生す
る。また、配線材料として、通常使用される銅等の金属
の線膨張率は、基板に使用される無機材料より大であ
る。耐熱性絶縁膜の低線膨張率化は、配線材料の線膨張
率と耐熱性絶縁膜の線膨張率との差を大きくし、両者間
に働く応力を大にする結果となる。このため、薄膜回路
として信頼性が、著しく悪化してしまうという問題があ
った。
However, this method introduces some new problems. That is, the coefficient of thermal expansion of the organic material forming the heat resistant insulating film is originally higher than that of the inorganic material. Reducing this to the same extent as an inorganic material usually involves sacrificing other properties. In particular, a new serious problem arises in that the adhesion between the heat-resistant insulating film and the substrate and between the heat-resistant insulating films is significantly deteriorated. Moreover, the coefficient of linear expansion of a metal such as copper that is usually used as a wiring material is higher than that of an inorganic material used for a substrate. Reducing the linear expansion coefficient of the heat resistant insulating film results in increasing the difference between the linear expansion coefficient of the wiring material and the linear expansion coefficient of the heat resistant insulating film, and increasing the stress acting between them. Therefore, there is a problem that the reliability of the thin film circuit is significantly deteriorated.

【0014】このような弊害を起こす多層回路基板の反
りを低減するには、基板と耐熱性絶縁膜との線膨張率の
差を低減し、基板と耐熱性絶縁膜との密着性を確保する
ことが必要である。前述の多層薄膜回路内の配線の接続
信頼性を確保するには、前記配線と耐熱性絶縁膜との線
膨張率差を低減し、両者の密着性を確保しなければなら
ない。この条件を総合すると、基板と耐熱性絶縁膜と多
層薄膜回路配線との線膨張率をほぼ同等とすることが必
要となる。しかし、基板と薄膜回路配線の線膨張率は、
それらの材質が通常、セラミックと金,銅等であり、そ
のため一般的には異なるものである。したがって、上記
の条件を満足する耐熱性絶縁材料を得ることは困難であ
る。
In order to reduce the warp of the multilayer circuit board which causes such an adverse effect, the difference in the coefficient of linear expansion between the substrate and the heat resistant insulating film is reduced and the adhesion between the substrate and the heat resistant insulating film is secured. It is necessary. In order to secure the connection reliability of the wiring in the above-mentioned multilayer thin film circuit, it is necessary to reduce the difference in the coefficient of linear expansion between the wiring and the heat resistant insulating film and secure the adhesion between them. When these conditions are combined, it is necessary that the substrate, the heat resistant insulating film, and the multilayer thin film circuit wiring have substantially the same linear expansion coefficient. However, the linear expansion coefficient of the substrate and the thin film circuit wiring is
Their materials are usually ceramic and gold, copper, etc., and are therefore generally different. Therefore, it is difficult to obtain a heat resistant insulating material that satisfies the above conditions.

【0015】本発明は、上記従来技術の問題点を、上記
条件を満足する耐熱性絶縁膜材料の適用によることな
く、他の手段により解決したもので、次世代の多層回路
基板において、多層回路基板の反りを低減し、かつ、高
密度配線の薄膜回路を形成することがが可能であり、接
続の信頼性が確保された多層回路基板を提供することを
第一の目的とする。また、本発明の第二の目的は、基板
の反りが低減され、かつ、高密度配線の多層薄膜回路を
形成し、接続の信頼性が確保された多層回路基板を組み
込んだ電子モジュールを提供することにある。さらに、
本発明の第三の目的は該電子モジュールを組み込んだ高
速化処理性能をもつ電子装置を提供することにある。
The present invention solves the above-mentioned problems of the prior art by other means without applying a heat-resistant insulating film material satisfying the above conditions. In a next-generation multilayer circuit board, a multilayer circuit is provided. It is a first object of the present invention to provide a multilayer circuit board which can reduce the warp of the board, can form a thin film circuit of high-density wiring, and ensure the reliability of connection. A second object of the present invention is to provide an electronic module incorporating a multilayer circuit board in which warpage of the board is reduced, a multilayer thin film circuit of high-density wiring is formed, and reliability of connection is secured. Especially. further,
A third object of the present invention is to provide an electronic device incorporating the electronic module and having high-speed processing performance.

【0016】[0016]

【課題を解決するための手段】上記第一の目的を達成す
るため、すなわち、基板との線膨張率の差がなく、多層
薄膜回路の配線材料との線膨張率の差もない、耐熱性絶
縁膜材料を用いる代わりに、多層回路基板に係る第一の
発明の構成は、基板と、基板上に耐熱性絶縁膜と配線と
を形成した多層薄膜回路とからなる多層回路基板におい
て、前記耐熱性絶縁膜が耐熱性有機材料と無機材料粉末
との混合物とから成膜され、該耐熱性有機材料の線膨張
率が前記薄膜回路の配線材料の線膨張率と同等であり、
耐熱性有機材料に無機材料粉末を混合して成膜した前記
耐熱性絶縁膜の線膨張率が前記基板の線膨張率と同等と
したものである。
In order to achieve the above-mentioned first object, that is, there is no difference in the coefficient of linear expansion from the substrate, and there is also no difference in the coefficient of linear expansion from the wiring material of the multilayer thin film circuit. Instead of using an insulating film material, the structure of the first invention relating to a multilayer circuit board is a multilayer circuit board comprising a substrate and a multilayer thin film circuit in which a heat resistant insulating film and wiring are formed on the substrate. A heat insulating organic film is formed from a mixture of a heat resistant organic material and an inorganic material powder, and the coefficient of linear expansion of the heat resistant organic material is equal to the coefficient of linear expansion of the wiring material of the thin film circuit,
The coefficient of linear expansion of the heat resistant insulating film formed by mixing the inorganic material powder with the heat resistant organic material is equal to the coefficient of linear expansion of the substrate.

【0017】また、上記第一の目的を達成するため多層
回路基板に係る第一の発明の他の構成は、基板上に形成
した多層薄膜回路層上に、別に作成された耐熱性絶縁膜
またはこの膜の一部に配線を形成した多層薄膜回路層を
接着してなる多層回路基板において、この接着に使用さ
れる接着材が耐熱性有機材料と無機材料粉末から成り、
該耐熱性有機材料の線膨張率が多層薄膜回路の配線材料
の線膨張率と同等であり、前記接着材の線膨張率が基板
の線膨張率と同等としたものである。さらに、基板上に
別に作成された耐熱性絶縁膜の一部に配線を形成した多
層薄膜回路層を接着して多層回路基板を形成する場合に
おいても、その接着に使用される接着材は上述と同様と
するものである。
In order to achieve the above-mentioned first object, another structure of the first invention relating to a multilayer circuit board is a heat-resistant insulating film or a separately prepared heat-resistant insulating film formed on a multilayer thin-film circuit layer formed on the board. In a multi-layer circuit board obtained by adhering a multi-layer thin film circuit layer in which wiring is formed on a part of this film, the adhesive used for this adhesion is composed of a heat-resistant organic material and an inorganic material powder,
The heat-resistant organic material has a coefficient of linear expansion equal to that of the wiring material of the multilayer thin film circuit, and the adhesive has a coefficient of linear expansion equal to that of the substrate. Further, even when a multilayer thin film circuit layer in which wiring is formed is adhered to a part of a heat-resistant insulating film separately formed on a substrate to form a multilayer circuit board, the adhesive material used for the adhesion is the same as described above. The same shall apply.

【0018】さらに、多層薄膜回路の配線材料に銅また
は金を使用し、耐熱性絶縁膜または接着材には、その線
膨張率が10ppm/Kないし20ppm/Kの耐熱性
有機絶縁材料に無機材料粉末を混合し、この線膨張率が
基板と同一か大きくても基板の線膨張率より7ppm/
K大きい範囲内にあるようにしたものである。さらに、
耐熱性有機絶縁材料はポリイミド樹脂を用い、基板はセ
ラミックスまたはガラスで絶縁した厚膜基板を用い、耐
熱性絶縁膜または接着材には、ポリイミド樹脂30〜9
0Vol%と平均粒径2μm以下の溶融石英ガラス粉7
0〜10Vol%とを混合して形成したものを用いるよ
うしたものである。
Further, copper or gold is used for the wiring material of the multilayer thin film circuit, and the heat-resistant insulating film or adhesive has a linear expansion coefficient of 10 ppm / K to 20 ppm / K and the inorganic material is the heat-resistant organic insulating material. Powder is mixed, and even if this linear expansion coefficient is the same as or larger than that of the substrate, 7 ppm /
K is set to be in a large range. further,
A polyimide resin is used as the heat-resistant organic insulating material, a thick film substrate insulated with ceramics or glass is used as the substrate, and polyimide resins 30 to 9 are used as the heat-resistant insulating film or the adhesive.
Fused silica glass powder 7 with 0 Vol% and average particle size of 2 μm or less
A mixture formed with 0 to 10 Vol% is used.

【0019】さらにまた、耐熱性絶縁膜または接着材は
ポリイミド樹脂30〜90Vol%と石英を主成分とし
た線膨張率が3.5ppm/K以下の無機材料粉末とを
混合したものを用いるようにしたものである。さらにま
た、多層薄膜回路内の配線は銅または金の配線の表面の
一部に別の金属膜を形成して該配線を多重化したもので
ある。さらにまた、上記第二の目的を達成するため電子
装置に係る第二の発明の構成は、多層回路基板と、該多
層回路基板に搭載されたLSI素子とこれらを封止する
キヤップを有する電子モジュールにおいて、前記回路素
子の組込み基板に上記第一の発明に係る構成の多層回路
基板を用いるようにしたものである。さらにまた、上記
第三の目的を達成するため電子装置に係る第三の発明の
構成は、多数の電子素子が組み込まれた電子装置におい
て、この電子素子に上記第二の発明に係る構成の電子モ
ジュールを使用し組み込むようにしたものである。
Furthermore, as the heat resistant insulating film or adhesive, it is preferable to use a mixture of 30 to 90% by volume of a polyimide resin and an inorganic material powder containing quartz as a main component and having a linear expansion coefficient of 3.5 ppm / K or less. It was done. Furthermore, the wiring in the multilayer thin film circuit is formed by forming another metal film on a part of the surface of the wiring of copper or gold and multiplexing the wiring. Furthermore, in order to achieve the above second object, the configuration of the second invention relating to an electronic device is an electronic module having a multilayer circuit board, an LSI element mounted on the multilayer circuit board, and a cap for sealing these elements. In the above, the multi-layer circuit board having the structure according to the first aspect of the invention is used as the circuit board-embedded board. Furthermore, in order to achieve the above-mentioned third object, the structure of the third invention relating to the electronic device is an electronic device in which a large number of electronic elements are incorporated. It uses a module and is built in.

【0020】[0020]

【作用】上記各技術的手段の働きは次のとおりである。
第一の発明の構成によれば、基板と、基板上に積層した
耐熱性絶縁膜と多層薄膜配線とからなる多層回路基板に
おいて、前記耐熱性絶縁膜を耐熱性有機材料と無機材料
粉末との混合物とから形成し、該耐熱性有機材料の線膨
張率と前記多層薄膜配線の材料の線膨張率と合わせ、耐
熱性有機材料に無機材料粉末を混合して成膜した前記耐
熱性絶縁膜の線膨張率が前記基板の線膨張率と同等とし
たので、以下に記載した様な働きがある。 (1)次世代の多層回路基板となる大形、かつ、多数の
層数から成る多層薄膜回路を有する基板の反りを少なく
し、この基板の製造を容易にする。 (2)薄膜多層回路内での配線と耐熱絶縁膜との密着性
を確保し、さらに、応力の分散を図る事により多層薄膜
回路内の熱的,機械的,電気的な信頼性が確保される。
The function of each of the above technical means is as follows.
According to the structure of the first invention, in a multilayer circuit board comprising a substrate and a heat-resistant insulating film laminated on the substrate and a multilayer thin-film wiring, the heat-resistant insulating film comprises a heat-resistant organic material and an inorganic material powder. Of the heat-resistant insulating film formed by mixing the heat-resistant organic material with the inorganic material powder, and combining the linear expansion coefficient of the heat-resistant organic material with the linear expansion coefficient of the material of the multilayer thin-film wiring. Since the coefficient of linear expansion is made equal to the coefficient of linear expansion of the substrate, it has the following functions. (1) The warp of a large-sized substrate, which is a next-generation multilayer circuit board and has a multilayer thin-film circuit having a large number of layers, is reduced, and the manufacture of this board is facilitated. (2) By ensuring the adhesion between the wiring and the heat-resistant insulating film in the thin-film multilayer circuit, and by distributing the stress, thermal, mechanical, and electrical reliability in the multilayer thin-film circuit is secured. It

【0021】(3)基板と耐熱性絶縁膜との密着性を確
保し、さらに、境界面での発生応力の低減により基板と
多層薄膜回路との熱的,機械的,電気的接続の信頼性を
確保する。 (4)多層回路基板の反りが小さくなる結果、基板と該
基板上に搭載するLSI等の電子部品との接続が容易に
なり、温度の変化による前記基板の反りの変動幅が少な
くなる。したがって、基板と搭載電子部品間,搭載電子
部品間同士の接続部にかかる繰り返し応力が低減され、
これらの接続の信頼性が向上し、同時に基板の封止部の
接続信頼性が向上する。 (5)上記の作用が相互に働き、多層回路基板の製造歩
留まりを向上でき、また、基板の長寿命化が達成でき
る。
(3) Adhesion between the substrate and the heat-resistant insulating film is ensured, and the stress generated at the interface is reduced, so that the reliability of the thermal, mechanical and electrical connection between the substrate and the multilayer thin film circuit is improved. Secure. (4) As a result of the warp of the multilayer circuit board becoming smaller, the connection between the board and an electronic component such as an LSI mounted on the board becomes easier, and the fluctuation range of the warp of the board due to temperature change is reduced. Therefore, the repetitive stress applied to the connection between the board and the mounted electronic components and between the mounted electronic components is reduced,
The reliability of these connections is improved, and at the same time, the connection reliability of the sealing portion of the substrate is improved. (5) The above-mentioned actions work together to improve the manufacturing yield of the multilayer circuit board, and to extend the life of the board.

【0022】第二の発明の構成によれば、多層回路基板
と、該基板に搭載されたLSIと、これらを封止する封
止キヤップとを有する電子モジュールにおいて、前記多
層回路基板に第一の発明の多層回路基板を用いたので該
回路素子間の接続距離の短縮された、信頼性の高い電子
モジュールとなる。第三の発明の構成によれば、多数の
電子素子が組み込まれた電子装置において、この電子素
子に第二の発明の構成による電子モジュールを組み込ん
だので、高密度配線がなされた処理速度の早い電子装置
となる。
According to the structure of the second invention, in the electronic module having the multilayer circuit board, the LSI mounted on the board, and the sealing cap for sealing them, the first multilayer circuit board is provided. Since the multilayer circuit board of the invention is used, a highly reliable electronic module having a short connection distance between the circuit elements can be obtained. According to the configuration of the third invention, in an electronic device incorporating a large number of electronic elements, since the electronic module according to the configuration of the second invention is incorporated in this electronic element, high-density wiring and high processing speed are achieved. It becomes an electronic device.

【0023】[0023]

【実施例】以下、本発明の各実施例を図1ないし図4を
参照して説明する。 〔実施例 1〕図1は本発明の一実施例に係る多層回路
基板の断面図である。本実施例は、ベ−スとなる基板と
多層薄膜回路との界面での接続信頼性を確保し、多層回
路基板の反りを少なくするため、基板と耐熱性絶縁膜と
の密着性を確保するように両者の線膨張率の差を低減し
たものである。多層薄膜回路内での配線の接続信頼性を
確保するために、前記配線と耐熱性絶縁膜との密着性を
確保するように、耐熱性絶縁膜の耐熱性有機材料と多層
薄膜回路の配線材料との線膨張率の差を低減したもので
ある。
Embodiments of the present invention will be described below with reference to FIGS. [Embodiment 1] FIG. 1 is a sectional view of a multilayer circuit board according to an embodiment of the present invention. In this embodiment, the connection reliability at the interface between the base substrate and the multilayer thin film circuit is secured, and the warpage of the multilayer circuit substrate is reduced, so that the adhesion between the substrate and the heat resistant insulating film is secured. Thus, the difference in linear expansion coefficient between the two is reduced. In order to secure the connection reliability of the wiring in the multilayer thin film circuit, the heat resistant organic material of the heat resistant insulating film and the wiring material of the multilayer thin film circuit are secured so as to ensure the adhesion between the wiring and the heat resistant insulating film. The difference in the coefficient of linear expansion between and is reduced.

【0024】一般に、材料において、その密着性の高い
材料を選定すると、線膨張率が高い材料となり、線膨張
率の低い材料は密着性が低い。特に、線膨張率が10p
pm/K以下の材料になると密着性は急激に低下し不適
当となる。そこで、本実施例では、配線材料として適用
する銅(線膨張率:17ppm/K)、金(線膨張率:14p
pm/K)、アルミニウム(線膨張率:23ppm/K)と同
等の線膨張率の耐熱有機材料を適用して、耐熱性絶縁膜
と多層薄膜回路の配線との密着性を確保したものであ
る。また、基板との反りを低減するために、この耐熱性
有機材料に無機粉末を混合することにより耐熱性絶縁膜
自体の線膨張率を下げ、基板の線膨張率に近ずけた構成
としたものである。
In general, when a material having high adhesiveness is selected, a material having a high linear expansion coefficient is obtained, and a material having a low linear expansion coefficient has low adhesiveness. Especially, the linear expansion coefficient is 10p
If the material is less than pm / K, the adhesiveness will be drastically lowered and it will be unsuitable. Therefore, in this embodiment, copper (linear expansion coefficient: 17 ppm / K) and gold (linear expansion coefficient: 14 p) applied as wiring materials are used.
pm / K) and aluminum (coefficient of linear expansion: 23 ppm / K), a heat-resistant organic material having a coefficient of linear expansion equivalent to that of the heat-resistant insulating film and the wiring of the multilayer thin film circuit is secured. . In addition, in order to reduce the warp with the substrate, the linear expansion coefficient of the heat-resistant insulating film itself is lowered by mixing inorganic powder with this heat-resistant organic material, so that the linear expansion coefficient of the substrate is close to that of the substrate. Is.

【0025】図1において、1は各200mmの多層
(本実施例においては、5層)セラミック基板(以下、
単に基板という)、2はアルミナシ−ト、3はアルミナ
シ−ト2の表面および内部の導体配線(以下、単に導体
配線という)、4は基板1上の多層薄膜回路、5は多層
の(本実施例においては、20層)ポリイミドの耐熱性
絶縁膜(以下、単に耐熱性絶縁膜という)、6は多層薄
膜回路4内の配線(以下、単に薄膜配線という)であ
る。この多層回路基板を、下記の順序で製造した。
In FIG. 1, 1 is a multilayer (5 layers in this embodiment) ceramic substrate (hereinafter, referred to as 200 mm each).
2 is an alumina sheet, 3 is a conductor wiring on the surface and inside of the alumina sheet 2 (hereinafter, simply referred to as conductor wiring), 4 is a multilayer thin film circuit on the substrate 1, and 5 is a multilayer (this embodiment). In the example, a heat-resistant insulating film made of polyimide (20 layers) (hereinafter, simply referred to as heat-resistant insulating film), and 6 are wirings in the multilayer thin film circuit 4 (hereinafter simply referred to as thin film wiring). This multilayer circuit board was manufactured in the following order.

【0026】(1)複数のグリーン状のアルミナシート
2は形成させる。各アルミナシート2は、その上にタン
グステンペーストを用いて導体配線3が形成される。ペ
ーストの一部は、アルミナシート2内のヴィアホール内
にも充填される。 これらのアルミナシート2は、四隅に形成したガイド穴
を基準にして必要な数量の5枚が積層される。この積層
体は、120℃の温度下で加圧され、水素雰囲気下で1
600℃に加熱され、グリーン状からセラミックとな
り、基板1を形成する。
(1) A plurality of green alumina sheets 2 are formed. Conductor wiring 3 is formed on each alumina sheet 2 by using a tungsten paste. Part of the paste is also filled in the via holes in the alumina sheet 2. These alumina sheets 2 are laminated in a required number of five sheets based on the guide holes formed at the four corners. This laminated body was pressed at a temperature of 120 ° C.
The substrate 1 is formed by being heated to 600 ° C. and changing from green to ceramic.

【0027】(2)この基板1の表面は、めっきの下地
膜となるCr/Cuを成膜される。その上に感光性レジ
ストが被覆され、さらに露光・現像されたのち、レジス
ト膜がパターニングされる。 (3)該レジスト膜は、その溝内に、薄膜配線6が電気
銅めっきにより形成される。そののち、このレジスト膜
全体および前記薄膜配線6間のCr/Cuの下地膜が除
去され、さらに、この薄膜配線6の銅表面は無電解めっ
きでニッケルが被覆される。
(2) On the surface of the substrate 1, Cr / Cu is formed as a base film for plating. After that, a photosensitive resist is coated, and after exposure and development, the resist film is patterned. (3) In the resist film, the thin film wiring 6 is formed in the groove by electrolytic copper plating. After that, the entire resist film and the Cr / Cu base film between the thin film wirings 6 are removed, and the copper surface of the thin film wirings 6 is coated with nickel by electroless plating.

【0028】(4)薄膜配線6間および薄膜配線6上
は、耐熱性絶縁膜5が塗布され、350℃でベークされ
る。この耐熱性絶縁膜5の材料はポリイミドと平均粒径
2μmの溶融石英粉末とから構成されている。 前記ポリイミドは、酸無水物としてBPDA(3,
3’,4,4’,−biphenyl tetraca
rboxylic dianhydride)を用い、
ジアミンとしてDDE(Diamino diphen
yl ether)とPDA(P−phenylene
diamine)から成り、DDE量が10wt%で
あり、これにシリコンの末端反応基を添加したものであ
る。ベーク後のポリイミド単独の線膨張係数は10pp
mである。さらに、ポリイミドには、溶融石英粉末が1
0Vol%混合されており、見かけの線膨張率は8.5
ppm/Kとなっている。導体配線3を形成した基板1
の線膨張率は7.5ppm/Kであった。また、基板で
あるアルミナとのピール強度は約400g/cmであ
る。
(4) Between the thin film wirings 6 and on the thin film wirings 6, the heat resistant insulating film 5 is applied and baked at 350 ° C. The material of the heat resistant insulating film 5 is composed of polyimide and fused silica powder having an average particle size of 2 μm. The polyimide is BPDA (3,
3 ', 4,4',-biphenyl tetraca
rboxylic dianhydride),
DDE (Diamino diphen) as a diamine
yl ether) and PDA (P-phenylene)
diamine), the amount of DDE is 10 wt%, and the terminal reactive group of silicon is added thereto. The linear expansion coefficient of polyimide alone after baking is 10 pp
m. In addition, 1 layer of fused silica powder is included in polyimide.
It is mixed with 0 Vol% and the apparent coefficient of linear expansion is 8.5.
It is ppm / K. Substrate 1 on which conductor wiring 3 is formed
The coefficient of linear expansion of was 7.5 ppm / K. Further, the peel strength with respect to the substrate, alumina, is about 400 g / cm.

【0029】(5)薄膜配線6上の耐熱性絶縁膜5は研
磨盤を用いて研磨,除去される。 (6)(2)から(5)の方法を繰返すことにより、薄
膜回路は全部で20層形成される。配線の幅および膜厚
は、両者ともに30μmである。 以上説明した材料を用い、また、製造方法により、多層
回路基板を形成した。その結果、基板全体の反りは約1
0μmであり、最後の露光、絶縁膜研磨の工程まで支障
なく製造できた。また、配線接続部の抵抗値は1mΩ以
下であり、ゴミの付着等による断線以外の配線接続部の
不良は観察されなかった。
(5) The heat resistant insulating film 5 on the thin film wiring 6 is polished and removed by using a polishing board. (6) By repeating the method of (2) to (5), a total of 20 thin film circuits are formed. The width and the film thickness of the wiring are both 30 μm. A multilayer circuit board was formed using the materials described above and by the manufacturing method. As a result, the warpage of the entire substrate is about 1
The thickness was 0 μm, and the final exposure and insulating film polishing steps could be manufactured without any problems. In addition, the resistance value of the wiring connection portion was 1 mΩ or less, and no defect in the wiring connection portion other than disconnection due to adhesion of dust was observed.

【0030】〔実施例 2〕次に、第一の発明の他の実
施例を説明する。本発明に係る他の実施例は、〔実施例
1〕と同様の構成により、基板材料、有機絶縁材料お
よび溶融石英混合量を変えて多層回路基板を作成した。
基板1はムライトを用い、導体配線3は〔実施例 1〕
と同様にタングステンを使用した。耐熱性絶縁膜5はポ
リイミドと溶融石英との混合系を使用した。ポリイミド
は、基本組成としては〔実施例 1〕と同様であるが、
ジアミン中のDDE量を25wt%とした。薄膜配線6
は〔実施例 1〕と同様に銅を用いた。
[Embodiment 2] Next, another embodiment of the first invention will be described. In another example according to the present invention, a multilayer circuit board having the same structure as in [Example 1] was prepared by changing the mixing amounts of the substrate material, the organic insulating material and the fused silica.
The substrate 1 is made of mullite, and the conductor wiring 3 is [Example 1].
Tungsten was used as in. As the heat resistant insulating film 5, a mixed system of polyimide and fused quartz was used. The polyimide has the same basic composition as in [Example 1],
The amount of DDE in the diamine was set to 25 wt%. Thin film wiring 6
Used copper in the same manner as in [Example 1].

【0031】ベーク処理後の耐熱絶縁膜の線膨張係数は
10.5ppm/Kとなった。配線を形成したムライト
の基板1の線膨張率は3.5ppm/Kであった。これ
は、ポリイミドのみの線膨張係数は17ppmである
が、ポリイミドに平均粒径1.5μmの溶融石英粉末を
40Vol%混合することにより低下させた。この耐熱
絶縁膜5と基板1とのピール強度は約550g/cmで
あった。以上の材料を使用し、また、製造方法により、
多層回路基板を形成した。基板全体の反りは約60μm
であり、最終工程の露光、絶縁膜研磨の迄、支障無く製
造することができた。配線接続部の抵抗値は1mΩ以下
であり、また、配線接続部の不良は、ゴミの付着等によ
る断線以外観察できなかった。
The coefficient of linear expansion of the heat-resistant insulating film after baking was 10.5 ppm / K. The linear expansion coefficient of the mullite substrate 1 on which the wiring was formed was 3.5 ppm / K. The coefficient of linear expansion of only polyimide was 17 ppm, but it was lowered by mixing 40 vol% of fused silica powder having an average particle diameter of 1.5 μm with polyimide. The peel strength between the heat resistant insulating film 5 and the substrate 1 was about 550 g / cm. Using the above materials, and by the manufacturing method,
A multilayer circuit board was formed. Warpage of the entire substrate is about 60 μm
Therefore, it was possible to manufacture without any problem until the final step of exposure and polishing of the insulating film. The resistance value of the wiring connection portion was 1 mΩ or less, and the defect of the wiring connection portion could not be observed except the disconnection due to the adhesion of dust or the like.

【0032】〔実施例 3〕次に、第一の発明のさらに
他の実施例を説明する。本発明に係るさらに他の実施例
の構成は、〔実施例 2〕と同様の基板材料、耐熱性絶
縁膜材料を用いて多層回路基板を作成した。薄膜配線6
は金を使用した。また、下地膜はCr/Cu/Auと
し、薄膜配線6の表面にニッケルめっきを被覆する工程
は省略した。耐熱性有機材料のポリイミドは、〔実施例
2〕と同様、ジアミン中のDDE量を25wt%と
し、このポリイミドに線膨張率3.5ppm/K、平均
粒径1μmのムライト粉末を70Vol%混合した。ポ
リイミドのみベークした後の線膨張係数は17ppmで
あり、前記混合物の耐熱性絶縁膜5の見かけの線膨張率
は、9.0ppm/Kであった。また、この耐熱性絶縁
膜5とムライトの基板1とのピール強度は約600g/
cmであった。以上の使用材料および製造方法により、
多層回路基板を形成した。基板全体の反りは約50μm
であり、露光、絶縁膜研磨の工程まで支障無く製造でき
た。配線接続部の抵抗値は1mΩ以下であり、配線接続
部の不良はゴミの付着等による断線以外観察できなかっ
た。
[Embodiment 3] Next, still another embodiment of the first invention will be described. In the structure of still another example according to the present invention, a multilayer circuit board was prepared using the same substrate material and heat resistant insulating film material as in [Example 2]. Thin film wiring 6
Used gold. The base film was Cr / Cu / Au, and the step of coating the surface of the thin film wiring 6 with nickel plating was omitted. As for the heat-resistant organic material polyimide, the DDE amount in the diamine was set to 25 wt% as in [Example 2], and 70 vol% of mullite powder having a linear expansion coefficient of 3.5 ppm / K and an average particle diameter of 1 μm was mixed with this polyimide. . The linear expansion coefficient after baking only polyimide was 17 ppm, and the apparent linear expansion coefficient of the heat-resistant insulating film 5 of the mixture was 9.0 ppm / K. The peel strength between the heat-resistant insulating film 5 and the mullite substrate 1 is about 600 g /
It was cm. With the above materials and manufacturing method,
A multilayer circuit board was formed. Warpage of the entire substrate is about 50 μm
Therefore, the process of exposure and polishing of the insulating film could be manufactured without any trouble. The resistance value of the wiring connection portion was 1 mΩ or less, and the defect of the wiring connection portion could not be observed except the disconnection due to the adhesion of dust or the like.

【0033】〔実施例 4〕次に、第一の発明のさらに
他の実施例を説明する。本発明に係るさらに他の実施例
の構成は〔実施例 1〕と同様の構成で、基板材料と耐
熱性絶縁膜材料を変えて多層回路基板を作成した。基板
1はガラスセラミックスを用い、導体配線3には〔実施
例 1〕と同様、銅を使用し、薄膜配線6は(実施例
1)と同様、銅を用いた。前記ガラスセラミックスはア
ルミナ粉末とホウ珪酸ガラスとの混合材料を使用した。
耐熱性絶縁膜5に使用されるポリイミドの基本組成は、
(実施例 1)と同様であるが、ジアミン中のDDE量
を30wt%とし、このポリイミドに溶融石英粉末を7
0Vol%添加した。
[Embodiment 4] Next, still another embodiment of the first invention will be described. The structure of still another embodiment according to the present invention is the same as that of [Example 1], and a multilayer circuit board is prepared by changing the substrate material and the heat-resistant insulating film material. The substrate 1 is made of glass ceramics, the conductor wiring 3 is made of copper as in [Example 1], and the thin film wiring 6 is
Copper was used as in 1). As the glass ceramics, a mixed material of alumina powder and borosilicate glass was used.
The basic composition of the polyimide used for the heat-resistant insulating film 5 is
Same as (Example 1), except that the DDE amount in the diamine was set to 30 wt%, and fused polyimide powder was added to this polyimide to 7 wt%.
0 Vol% was added.

【0034】ベーク後のポリイミド単独の線膨張係数は
20ppmであり、前記溶融石英粉末添加後の耐熱性絶
縁膜5の見かけの線膨張率は、6.5ppm/Kであっ
た。導体配線3を形成した基板1の線膨張率は4.0p
pm/Kであった。耐熱性絶縁膜5とガラスセラミック
ス製の基板1とのピール強度は約650g/cmであっ
た。製造工程は(実施例 1)とほぼ同様であるが、ガ
ラスセラミックスの積層体の焼結を水素雰囲気中で95
0℃で実施した。以上の使用材料および製造方法によ
り、多層回路基板を形成した。多層回路基板全体の反り
は約30μmであり、最終の露光、絶縁膜研磨の工程迄
支障無く製造できた。配線接続部における抵抗値は1m
Ω以下であり、配線接続部の不良はゴミの付着等による
断線以外観察できなかった。
The coefficient of linear expansion of the polyimide alone after baking was 20 ppm, and the apparent coefficient of linear expansion of the heat resistant insulating film 5 after the addition of the fused silica powder was 6.5 ppm / K. The linear expansion coefficient of the substrate 1 on which the conductor wiring 3 is formed is 4.0 p.
It was pm / K. The peel strength between the heat resistant insulating film 5 and the glass ceramic substrate 1 was about 650 g / cm. The manufacturing process is almost the same as in (Example 1), but the sintering of the glass ceramic laminate is performed in a hydrogen atmosphere at 95%.
Performed at 0 ° C. A multilayer circuit board was formed by using the above materials and manufacturing method. The warpage of the entire multilayer circuit board was about 30 μm, and the final exposure and polishing of the insulating film could be manufactured without any trouble. Resistance value at wiring connection is 1m
It was less than Ω, and no defect in the wiring connection part could be observed except for disconnection due to adhesion of dust or the like.

【0035】〔実施例 5〕次に、第一の本発明のさら
に他の実施例を説明する。本発明に係るさらに他の実施
例の構成は、〔実施例 1〕の製造工程(1)から
(3)までと全く同様にして、基板1を作成した。さら
に、薄膜配線6の銅表面のニッケルめっきには、さら
に、無電解金めっきにより二重に被覆を施した。また、
多層薄膜回路4は、Cr/Cuを成膜したガラス基板上
に〔実施例 1〕と同様に、図1の上層部から下層に向
かって19層形成される。そして、最後の層の配線表面
は金めっきが施された。次に、先に作製した基板1の表
面は、その配線導体3の表面を除いて、耐熱性絶縁膜5
が塗布され、さらに、前記基板1上にガラス板上に形成
した多層薄膜回路4を配線同士が接続するようにして圧
着し、その状態で350℃の温度下でベークする。
[Embodiment 5] Next, still another embodiment of the first invention will be described. Substrate 1 was produced in the same manner as in the manufacturing steps (1) to (3) of [Example 1] in the configuration of still another example according to the present invention. Further, the nickel plating on the copper surface of the thin film wiring 6 was further double-coated with electroless gold plating. Also,
The multilayer thin film circuit 4 is formed in 19 layers from the upper layer portion to the lower layer in FIG. 1 in the same manner as in [Example 1] on the glass substrate on which Cr / Cu is formed. Then, the wiring surface of the last layer was plated with gold. Next, except for the surface of the wiring conductor 3, the surface of the substrate 1 previously manufactured has a heat-resistant insulating film 5
Is further applied, and the multilayer thin film circuit 4 formed on the glass plate on the substrate 1 is pressure-bonded so that the wirings are connected to each other, and is baked at a temperature of 350 ° C. in that state.

【0036】耐熱性絶縁膜材料は、ポリイミドと平均粒
径2μmの溶融石英粉末の混合物から構成されている。
ポリイミドは、(実施例 1)と全く同様に酸無水物と
してBPDAを用い、ジアミンとしてDDEとPDAと
から構成し、DDE量が10wt%であり、これにシリ
コンの末端反応基が添加され、さらに、このポリイミド
は溶融石英粉末が10Vol%混合されている。ベーク
後のポリイミドのみの線膨張係数は10ppmである
が、混合物の見かけの線膨張率は8.5ppm/Kであ
る。そののち、ガラス板上の表面に成膜させたCr/C
u層をエッチングすることにより除去した。以上の使用
材料および製造方法により多層回路基板を形成した。基
板全体の反りは約5μmであった。配線接続部の抵抗値
は1mΩ以下であり、ゴミの付着等による断線以外の配
線接続部の不良は観察できなかった。
The heat-resistant insulating film material is composed of a mixture of polyimide and fused silica powder having an average particle size of 2 μm.
The polyimide was composed of BPDA as an acid anhydride and DDE and PDA as a diamine in exactly the same manner as in (Example 1), and had a DDE amount of 10 wt%, to which a silicon end reactive group was added. This polyimide is mixed with 10 vol% of fused quartz powder. The coefficient of linear expansion of only polyimide after baking is 10 ppm, but the apparent coefficient of linear expansion of the mixture is 8.5 ppm / K. After that, Cr / C formed on the surface of the glass plate
The u layer was removed by etching. A multilayer circuit board was formed by using the above materials and manufacturing method. The warpage of the entire substrate was about 5 μm. The resistance value of the wiring connection portion was 1 mΩ or less, and no defect in the wiring connection portion other than disconnection due to adhesion of dust or the like could not be observed.

【0037】〔実施例 6〕次に、第一の発明のさらに
他の実施例を説明する。図2は、本発明のさらに他の実
施例に係る多層回路基板の断面図である。図中、図1と
同一符号は同等部分であるので説明を省略し、新たな符
号のみ説明する。本発明のさらに他の実施例に係る構成
は、〔実施例 1〕の製造工程と同様であるが、ベ−ス
となる基板上に多層薄膜回路を形成すると共に、別途に
多層薄膜回路を形成する。そして、前記基板上の多層薄
膜回路上に、別途、形成した多層薄膜回路を接着して多
層回路基板を形成するものである。図2において、4′
は別途形成した多層薄膜回路、10,10′は多層薄膜
回路4,4′上に設けられたそれぞれの表面導体パッ
ド、20はポリイミド系の導電性樹脂、21はポリイミ
ド系の絶縁接着層である。
[Sixth Embodiment] Next, still another embodiment of the first invention will be described. FIG. 2 is a sectional view of a multi-layer circuit board according to another embodiment of the present invention. In the figure, the same symbols as those in FIG. The structure according to still another embodiment of the present invention is the same as that of the manufacturing process of [Embodiment 1], except that a multi-layer thin film circuit is formed on a base substrate and a multi-layer thin film circuit is separately formed. To do. Then, the separately formed multilayer thin film circuit is bonded onto the multilayer thin film circuit on the substrate to form a multilayer circuit substrate. In FIG. 2, 4 '
Is a separately formed multilayer thin film circuit, 10 and 10 'are surface conductor pads provided on the multilayer thin film circuits 4 and 4', 20 is a polyimide-based conductive resin, and 21 is a polyimide-based insulating adhesive layer. .

【0038】本実施例は、(実施例 2)と同様に、基
板材料、耐熱絶縁膜材料および溶融石英混合量を変えて
多層回路基板を作成した。基板1はムライトを使用し、
導体配線3はタングステンを使用し、薄膜配線6は銅を
用いた。耐熱絶縁膜材料はポリイミドと溶融石英の混合
系を用いた。ポリイミド基本組成は、(実施例 2)と
同様に、ジアミン中のDDE量を25wt%とし、次の
ように構成した。ムライトの基板1上には、多層薄膜回
路4が5層形成される。別途、同様の方法で5層の多層
薄膜回路4′が形成される。該多層薄膜回路4′はアル
ミナ基板上にAlを成膜し、その膜上に形成されたもの
である。
In this example, as in (Example 2), a multilayer circuit board was prepared by changing the amounts of the substrate material, the heat-resistant insulating film material and the fused silica mixed. Substrate 1 uses mullite,
The conductor wiring 3 was made of tungsten, and the thin film wiring 6 was made of copper. As the heat-resistant insulating film material, a mixed system of polyimide and fused silica was used. Similar to (Example 2), the basic polyimide composition was set as follows with the amount of DDE in the diamine being 25 wt%. Five layers of the multilayer thin film circuit 4 are formed on the mullite substrate 1. Separately, a five-layer multilayer thin film circuit 4'is formed by the same method. The multilayer thin film circuit 4'is formed by forming a film of Al on an alumina substrate and forming the film on the film.

【0039】この5層の多層薄膜回路4′を形成した段
階で、Al膜をエッチング液で溶解して、前記アルミナ
基板から剥離する。多層薄膜回路4′上の表面導体パッ
ド10′は、その接続回路がポリイミドを主成分とする
導電性樹脂20を用い印刷される。該樹脂20には、銀
・パラジウム粉を混入されており、これにより導電性が
確保されている。また、多層薄膜回路4の表面上には、
互いに接続すべき導体パッド10の部分を除いて、上記
耐熱性絶縁膜材料により、耐熱性絶縁層が印刷される。
At the stage of forming the five-layer multilayer thin film circuit 4 ', the Al film is dissolved with an etching solution and peeled from the alumina substrate. The surface conductor pads 10 'on the multilayer thin film circuit 4'are printed by using a conductive resin 20 whose main component is polyimide. The resin 20 is mixed with silver / palladium powder to ensure conductivity. In addition, on the surface of the multilayer thin film circuit 4,
A heat resistant insulating layer is printed with the above heat resistant insulating film material except for the portions of the conductor pads 10 to be connected to each other.

【0040】そののち、これら多層薄膜回路4と多層薄
膜回路4′とを対向させ、接続すべき表面導体のパツド
同士10,10′をポリイミド系の導電性樹脂20で密
着させ、そのあいだの4,4′の両絶縁層は、上記耐熱
性絶縁膜材料により密着させ、ポリイミド系の絶縁接着
層21が形成される。この状態で徐々に加熱して350
℃まで上昇させ、両多層薄膜回路4,4′間を固定させ
る。この上記耐熱性ポリイミド系の絶縁接着層21は、
層間絶縁の作用の他に、両多層薄膜回路4,4′の接着
の作用をする。上記方法で製造した多層回路基板全体の
反りは約20μmであり、配線接続部の抵抗値は1mΩ
以下であり、ゴミの付着等による断線以外の配線部の不
良はなかった。
After that, the multi-layer thin film circuit 4 and the multi-layer thin film circuit 4'are made to face each other, and the pads 10 and 10 'of the surface conductors to be connected are adhered to each other with the polyimide conductive resin 20. , 4'are brought into close contact with each other by the heat-resistant insulating film material to form a polyimide-based insulating adhesive layer 21. Gradually heat in this state 350
The temperature is raised to 0 ° C. to fix between the multilayer thin film circuits 4 and 4 ′. The heat-resistant polyimide-based insulating adhesive layer 21 is
In addition to the function of interlayer insulation, it functions to bond both the multilayer thin film circuits 4 and 4 '. The warpage of the entire multilayer circuit board manufactured by the above method is about 20 μm, and the resistance value of the wiring connection portion is 1 mΩ.
The results were as follows, and there was no defect in the wiring part other than the disconnection due to adhesion of dust or the like.

【0041】以上の実施例は、一例を示したものであ
り、本発明はこれに限るものではなく、多くの態様が考
えられる。〔実施例 1〕から〔実施例 6〕の実施例
においては、基板としてセラミック等の厚膜基板を用い
たが、プリント基板や積層基板を使用できることは勿論
である。なお、プリント基板では、配線である銅と基板
の線膨張係数を合わせることが一般的に実施されている
が、その構成材料が有機絶縁材料と銅の2種類であり、
多層回路基板の場合では、これに対して材料系が3種類
であり、しかも、低線膨張係数を持つセラミック基板の
上に形成されるので異なる。
The above-described embodiment is merely an example, and the present invention is not limited to this, and many modes are conceivable. In the examples of [Example 1] to [Example 6], a thick film substrate made of ceramic or the like was used as the substrate, but it goes without saying that a printed circuit board or a laminated substrate can be used. In a printed circuit board, it is generally practiced to match the coefficient of linear expansion of copper, which is wiring, with two types of constituent materials: an organic insulating material and copper.
In the case of a multilayer circuit board, on the other hand, there are three types of material systems, and since they are formed on a ceramic board having a low linear expansion coefficient, they differ.

【0042】以上の各実施例における効果は、一般的に
いえば、多層薄膜回路の配線材料が銅または金である場
合には、各実施例における実数値が示すごとく、耐熱性
有機絶縁材料の線膨張率が10ppm/Kないし20p
pm/Kとし、これに無機材料粉末を混合した耐熱性絶
縁膜の線膨張率が、基板と同一ないしは大きくても基板
の線膨張率より7ppm/K大きい範囲にあることによ
り実現できる。このことは、多層薄膜回路内の配線とし
て、銅または金の配線表面の一部に別金属膜を形成した
多重配線とした場合においても、上記の条件を満たすな
らば、同様の効果が実現できる。また、多層薄膜回路の
配線材料6は、各実施例において用いられた金,銅に限
らず、アルミニウム,ニッケル等も適用できる。
In general, the effect of each of the above embodiments is that when the wiring material of the multilayer thin film circuit is copper or gold, as shown by the real value in each embodiment, the heat resistant organic insulating material is used. Linear expansion coefficient is 10ppm / K or 20p
pm / K, and the linear expansion coefficient of the heat-resistant insulating film obtained by mixing the inorganic material powder with pm / K is the same as or larger than that of the substrate, but is in the range of 7 ppm / K larger than the linear expansion coefficient of the substrate. This means that even when the wiring in the multilayer thin film circuit is a multiple wiring in which another metal film is formed on a part of the wiring surface of copper or gold, the same effect can be realized if the above conditions are satisfied. . Further, the wiring material 6 of the multi-layer thin film circuit is not limited to gold and copper used in each embodiment, but aluminum, nickel, etc. can be applied.

【0043】また、以上の実施例において、薄膜回路の
耐熱性有機絶縁材料は、この各実施例における構成のポ
リイミドに限らず、他のポリイミド系材料は勿論、エポ
キシ等の材料も適用できる。耐熱性有機絶縁材料として
ポリイミドを用い、基板としてセラミックスまたはガラ
スで絶縁した厚膜基板を用いる場合は、耐熱性絶縁膜と
して、ポリイミド30〜90VOL%と平均粒径2μm
以下の溶融石英ガラス粉70〜10Vol%とから成る
膜を用いることによって上記効果を実現できる。
Further, in the above embodiments, the heat-resistant organic insulating material of the thin film circuit is not limited to the polyimide having the constitution in each of the embodiments, but other polyimide materials as well as materials such as epoxy can be applied. When polyimide is used as the heat-resistant organic insulating material and a thick film substrate insulated with ceramics or glass is used as the substrate, the heat-resistant insulating film is polyimide 30 to 90 VOL% and the average particle diameter is 2 μm.
The above effect can be realized by using a film composed of the following fused silica glass powder 70 to 10 vol%.

【0044】ここで、ポリイミド膜中の溶融石英ガラス
粉の含有量を70〜10Vol%としたのは、通常用い
られるアルミナ基板(線膨張率:8ppm/K)、ガラスセ
ラミックス基板(線膨張率:3.5ppm/K)、ムライト
基板(線膨張率:3.5ppm/K)との線膨張率と同様に
するためおよび基板の反りを目標値以内に納めるためで
ある。また、以上の実施例では、ポリイミドとの混合物
には溶融石英ガラス粉が用いられたが、溶融石英ガラス
粉の代わりに石英を主成分とした線膨張率が3.5pp
m/K以下の無機材料粉末を用いることによっても上記
の効果を達成できる。また、上記のことは、全く同様
に、〔実施例 6〕において説明の如く、別途に多層薄
膜回路を作成し、セラミックの基板上の多層薄膜回路層
に接着する場合、この接着材についても同様のことがい
え、同様の効果を実現できる。
Here, the content of the fused silica glass powder in the polyimide film is set to 70 to 10 Vol% because the commonly used alumina substrate (coefficient of linear expansion: 8 ppm / K) and glass ceramic substrate (coefficient of linear expansion: (3.5 ppm / K) and the mullite substrate (coefficient of linear expansion: 3.5 ppm / K) to have the same linear expansion coefficient and to keep the warpage of the substrate within the target value. Further, in the above examples, the fused silica glass powder was used as the mixture with the polyimide, but instead of the fused silica glass powder, the coefficient of linear expansion containing quartz as the main component was 3.5 pp.
The above effect can also be achieved by using an inorganic material powder of m / K or less. Also, in the same manner as above, when a multilayer thin film circuit is separately prepared and bonded to a multilayer thin film circuit layer on a ceramic substrate as described in [Example 6], the same applies to this adhesive material. However, the same effect can be realized.

【0045】〔実施例 7〕次に、第二の発明の実施例
を説明する。図3は、本発明のさらに他の実施例に係る
電子モジュールの断面図である。図中、図1と同一符号
は同等部分であるので説明を省略し、新たな符号のみ説
明する。図3において、Mは電子モジュール、Bはセラ
ミックの基板1と多層薄膜回路4とからなる多層回路基
板、7はセラミックの基板1の裏面パッド、8は高温は
んだ、9は接続ピン、10は多層薄膜回路4の表面導体
パッド、11は中温はんだ、12はLSI素子、13は
耐熱性,良熱伝導性のゴム板、14はセラミックの基板
1の周辺の封止導体、15は低温はんだ、16は封止キ
ャップ、17は冷却フィンである。図3において、本発
明の実施例に係る電子モジュールMは、第一の発明の各
実施例で製造した多層回路基板Bと、LSI素子12
と、これらを封止する封止キャップ16とから構成され
ており、下記のプロセスにより製造する。
[Embodiment 7] Next, an embodiment of the second invention will be described. FIG. 3 is a sectional view of an electronic module according to another exemplary embodiment of the present invention. In the figure, the same symbols as those in FIG. In FIG. 3, M is an electronic module, B is a multilayer circuit board including a ceramic substrate 1 and a multilayer thin film circuit 4, 7 is a back surface pad of the ceramic substrate 1, 8 is high temperature solder, 9 is a connection pin, and 10 is a multilayer. Surface conductor pad of thin film circuit 4, 11 is medium temperature solder, 12 is LSI element, 13 is a rubber plate having heat resistance and good thermal conductivity, 14 is a sealing conductor around ceramic substrate 1, 15 is low temperature solder, 16 Is a sealing cap, and 17 is a cooling fin. In FIG. 3, an electronic module M according to an embodiment of the present invention includes an LSI element 12 and a multilayer circuit board B manufactured in each embodiment of the first invention.
And a sealing cap 16 that seals them, and is manufactured by the following process.

【0046】図3に示す本発明の実施例に係る電子モジ
ュールMは、セラミックの基板1の裏面にパッド7を設
け、このパッド7には、高温はんだ8を用いて約350
℃に加熱し、接続ピン9が接続され、かつ、固定されて
いる。多層薄膜回路4の表面導体パッド10の上には、
中温はんだ11が乗せられ、約250℃に加熱してLS
I素子12を電気的に接続して搭載した。最後にセラミ
ックの基板1の周辺の封止導体14は、低温はんだ15
が乗せられ、約200℃に加熱し、コバール封止キャッ
プ16が接続され、当該電子モジュールMが完成され
る。封止キャップ16には、前記LSI素子12を空冷
するための冷却フィン17が形成されており、また、前
記LSI素子12と前記封止キャップ16との間には、
耐熱性、かつ、良熱伝導性のゴム板13をその間に介在
させ、両者間の熱伝導を確保させている。
The electronic module M according to the embodiment of the present invention shown in FIG. 3 is provided with a pad 7 on the back surface of the ceramic substrate 1, and a high temperature solder 8 is used for the pad 7 to form about 350.
It is heated to ° C and the connecting pin 9 is connected and fixed. On the surface conductor pad 10 of the multilayer thin film circuit 4,
Medium temperature solder 11 is placed and heated to about 250 ° C and LS
The I element 12 was electrically connected and mounted. Finally, the sealing conductor 14 around the ceramic substrate 1 has a low temperature solder 15
, Is heated to about 200 ° C., the Kovar sealing cap 16 is connected, and the electronic module M is completed. Cooling fins 17 for air-cooling the LSI element 12 are formed in the sealing cap 16, and between the LSI element 12 and the sealing cap 16,
A rubber plate 13 having heat resistance and good heat conductivity is interposed between them to ensure heat conduction between them.

【0047】〔実施例 8〕次に、第三の発明の実施例
を説明する。図4は、本発明のさらに他の実施例に係る
論理パッケージの外観図である。図4において、本発明
の実施例に係る論理パッケージは第二の発明の(実施例
7)で製造したモジュールMを用いて製造した。図4に
おいて、Mは第二の発明の(実施例 7)で製造したモ
ジュール、19はプリント基板である。図4に示す本発
明の実施例に係る論理パッケージは、プリント基板19
上に電子モジュールMを16個搭載して、図4に示す論
理パッケージPを形成した。この論理パッケージPと記
憶パッケージ,入出力処理パッケージとを組み合わせて
計算機を構成することができる。
[Embodiment 8] Next, an embodiment of the third invention will be described. FIG. 4 is an external view of a logic package according to another embodiment of the present invention. In FIG. 4, the logic package according to the embodiment of the present invention was manufactured using the module M manufactured in (Embodiment 7) of the second invention. In FIG. 4, M is a module manufactured in (Embodiment 7) of the second invention, and 19 is a printed circuit board. The logic package according to the embodiment of the present invention shown in FIG.
16 electronic modules M were mounted on the top to form the logic package P shown in FIG. A computer can be configured by combining the logic package P, the storage package, and the input / output processing package.

【0048】[0048]

【発明の効果】以上詳細に説明したように、本発明によ
れば、第一に次世代の多層回路基板において、多層回路
基板の反りを低減し、かつ、高密度配線の多層薄膜回路
を形成が可能であり、接続の信頼性が確保された多層回
路基板を提供することができる。また、第二に、基板の
反りが低減され、かつ、高密度配線の多層薄膜回路が形
成され、かつ、接続の信頼性が確保された多層回路基板
を組み込んだ電子モジュールを提供することができる。
さらに、第三に、該電子モジュールを組み込んだ高速化
処理性能をもつ電子装置を提供することができる。
As described in detail above, according to the present invention, firstly, in the next-generation multilayer circuit board, the warp of the multilayer circuit board is reduced and a multilayer thin film circuit of high-density wiring is formed. It is possible to provide a multilayer circuit board in which the reliability of connection is ensured. Secondly, it is possible to provide an electronic module incorporating a multilayer circuit board in which warpage of the board is reduced, a multilayer thin film circuit of high-density wiring is formed, and connection reliability is ensured. .
Furthermore, thirdly, it is possible to provide an electronic device incorporating the electronic module and having high-speed processing performance.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例に係る多層回路基板の断面図
である。
FIG. 1 is a cross-sectional view of a multilayer circuit board according to an embodiment of the present invention.

【図2】本発明の他の実施例に係る多層回路基板の断面
図である。
FIG. 2 is a cross-sectional view of a multilayer circuit board according to another embodiment of the present invention.

【図3】本発明のさらに他の実施例に係る電子モジュー
ルの断面図である。
FIG. 3 is a cross-sectional view of an electronic module according to another embodiment of the present invention.

【図4】本発明のさらに他の実施例に係る論理パッケー
ジの外観図である。
FIG. 4 is an external view of a logic package according to another embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 基板 2 アルミナシ−ト 3 導体配線 4,4′ 多層薄膜回路 5 耐熱絶縁膜 6 薄膜配線 7 裏面導体パッド 8 高温はんだ 9 接続ピン 10,10′ 導体パッド 11 中温はんだ 12 LSI素子 13 良熱伝導性ゴム 14 封止導体 15 低温はんだ 16 封止キャップ 19 プリント基板 20 導電性樹脂 21 絶縁接着層 B 多層回路基板 M 電子モジュール P 論理パッケージ 1 substrate 2 alumina sheet 3 conductor wiring 4, 4'multilayer thin film circuit 5 heat resistant insulation film 6 thin film wiring 7 backside conductor pad 8 high temperature solder 9 connection pins 10, 10 'conductor pad 11 medium temperature solder 12 LSI element 13 good thermal conductivity Rubber 14 Sealing conductor 15 Low temperature solder 16 Sealing cap 19 Printed circuit board 20 Conductive resin 21 Insulating adhesive layer B Multi-layer circuit board M Electronic module P Logic package

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 G06J 1/00 7232−5B H01L 23/14 27/01 311 8418−4M ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 5 Identification code Office reference number FI Technical display location G06J 1/00 7232-5B H01L 23/14 27/01 311 8418-4M

Claims (13)

【特許請求の範囲】[Claims] 【請求項1】 基板と、この基板上に耐熱性絶縁膜と配
線とを形成した多層薄膜回路とからなる多層回路基板に
おいて、 前記耐熱性絶縁膜が耐熱性有機材料と無機材料粉末との
混合物から成り、該耐熱性有機材料の線膨張率が前記多
層薄膜回路の配線材料の線膨張率と同等であり、耐熱性
有機材料に無機材料粉末を混合した前記耐熱性絶縁膜の
線膨張率が前記基板の線膨張率と同等であることを特徴
とする多層回路基板。
1. A multilayer circuit board comprising a substrate and a multilayer thin film circuit having a heat resistant insulating film and wiring formed on the substrate, wherein the heat resistant insulating film is a mixture of a heat resistant organic material and an inorganic material powder. The coefficient of linear expansion of the heat-resistant organic material is equal to the coefficient of linear expansion of the wiring material of the multilayer thin film circuit, and the coefficient of linear expansion of the heat-resistant insulating film obtained by mixing the heat-resistant organic material with an inorganic material powder is A multilayer circuit board having a coefficient of linear expansion equal to that of the board.
【請求項2】 基板上に形成した多層薄膜回路層上に、
別に作成された耐熱性絶縁膜またはこの膜の一部に配線
を形成した多層薄膜回路層を接着してなる多層回路基板
において、 この接着に使用される接着材が耐熱性有機材料と無機材
料粉末とから成り、該耐熱性有機材料の線膨張率が前記
多層薄膜回路の配線材料の線膨張率と同等であり、前記
接着材の線膨張率が前記基板の線膨張率と同等であるこ
とを特徴とする多層回路基板。
2. A multilayer thin film circuit layer formed on a substrate,
In a multilayer circuit board made by bonding a separately prepared heat resistant insulating film or a multilayer thin film circuit layer in which wiring is formed on a part of this film, the adhesive used for this bonding is a heat resistant organic material and an inorganic material powder. The linear expansion coefficient of the heat-resistant organic material is equivalent to the linear expansion coefficient of the wiring material of the multilayer thin film circuit, and the linear expansion coefficient of the adhesive is equivalent to the linear expansion coefficient of the substrate. Characteristic multi-layer circuit board.
【請求項3】 基板上に、別に作成された耐熱性絶縁膜
の一部に配線を形成した多層薄膜回路層を接着してなる
多層回路基板において、 この接着に使用される接着材が耐熱性有機材料と無機材
料粉末とから成り、該耐熱性有機材料の線膨張率が前記
多層薄膜回路の配線材料の線膨張率と同等であり、前記
接着材の線膨張率が前記基板の線膨張率と同等であるこ
とを特徴とする多層回路基板。
3. A multi-layer circuit board comprising a substrate and a multi-layer thin-film circuit layer having wiring formed on a part of a separately formed heat-resistant insulating film, wherein the adhesive used for this adhesion is heat-resistant. The thermal expansion coefficient of the heat-resistant organic material is equal to the linear expansion coefficient of the wiring material of the multilayer thin film circuit, and the linear expansion coefficient of the adhesive is the linear expansion coefficient of the substrate. A multilayer circuit board that is equivalent to
【請求項4】 多層薄膜回路の配線材料は銅または金が
使用され、耐熱性絶縁膜はその線膨張率が10ppm/
Kないし20ppm/Kの耐熱性有機絶縁材料に無機材
料粉末を混合し、この線膨張率が基板と同一ないし大き
くても基板の線膨張率より7ppm/K大きい範囲にあ
ることを特徴とする請求項1記載の多層回路基板。
4. The wiring material of the multilayer thin film circuit is copper or gold, and the heat-resistant insulating film has a linear expansion coefficient of 10 ppm /
An inorganic material powder is mixed with a heat-resistant organic insulating material of K to 20 ppm / K, and the linear expansion coefficient is in the range of 7 ppm / K larger than the linear expansion coefficient of the substrate even if the linear expansion coefficient is the same as or larger than that of the substrate. Item 1. The multilayer circuit board according to item 1.
【請求項5】 多層薄膜回路の配線材料は銅または金が
使用され、接着材はその線膨張率が10ppm/Kない
し20ppm/Kの耐熱性有機絶縁材料に無機材料粉末
を混合し、この線膨張率が基板と同一ないし大きくても
基板の線膨張率より7ppm/K大きい範囲にあること
を特徴とする請求項2または3記載のいずれかの多層回
路基板。
5. Copper or gold is used as the wiring material of the multi-layer thin film circuit, and the adhesive is made by mixing inorganic material powder with a heat resistant organic insulating material having a linear expansion coefficient of 10 ppm / K to 20 ppm / K. 4. The multilayer circuit board according to claim 2, wherein the expansion coefficient is in the range of 7 ppm / K larger than the linear expansion coefficient of the board even if the expansion coefficient is the same as or larger than that of the board.
【請求項6】 耐熱性有機絶縁材料はポリイミド樹脂を
用い、基板はセラミックスまたはガラスで絶縁した厚膜
基板を用い、耐熱性絶縁膜はポリイミド樹脂30〜90
Vol%と平均粒径2μm以下の溶融石英ガラス粉70
〜10Vol%とを混合して形成した膜を用いることを
特徴とする請求項4記載の多層回路基板。
6. The heat-resistant organic insulating material is polyimide resin, the substrate is a thick film substrate insulated with ceramics or glass, and the heat-resistant insulating film is polyimide resin 30 to 90.
Fused silica glass powder 70 with Vol% and average particle diameter of 2 μm or less
The multilayer circuit board according to claim 4, wherein a film formed by mixing 10 to 10 Vol% is used.
【請求項7】 耐熱性有機絶縁材料はポリイミド樹脂を
用い、基板はセラミックスまたはガラスで絶縁した厚膜
基板を用い、接着材はポリイミド樹脂30〜90Vol
%と平均粒径2μm以下の溶融石英ガラス粉70〜10
Vol%とを混合して形成した膜を用いることを特徴と
する請求項5記載の多層回路基板。
7. A polyimide resin is used as the heat-resistant organic insulating material, a thick film substrate insulated with ceramics or glass is used as the substrate, and a polyimide resin 30 to 90 Vol is used as the adhesive material.
% And fused silica glass powder having an average particle size of 2 μm or less 70 to 10
The multilayer circuit board according to claim 5, wherein a film formed by mixing with Vol% is used.
【請求項8】 耐熱性絶縁膜は、ポリイミド樹脂30〜
90Vol%と、石英を主成分とした線膨張率が3.5
ppm/K以下の無機材料粉末とを混合したものを用い
ることを特徴とする請求項6記載の多層回路基板。
8. The heat-resistant insulating film is made of polyimide resin 30 to 30.
90% by volume and a coefficient of linear expansion of 3.5 as the main component of quartz
7. The multilayer circuit board according to claim 6, wherein a mixture with an inorganic material powder of ppm / K or less is used.
【請求項9】 接着材は、ポリイミド樹脂30〜90V
ol%と、石英を主成分とした線膨張率が3.5ppm
/K以下の無機材料粉末とを混合したものを用いること
を特徴とする請求項7記載の多層回路基板。
9. The adhesive is a polyimide resin 30 to 90V.
ol% and the coefficient of linear expansion of quartz as the main component is 3.5 ppm
8. A multi-layer circuit board according to claim 7, wherein a mixture with an inorganic material powder of / K or less is used.
【請求項10】 多層薄膜回路内の配線は、銅の配線表
面の一部に別の金属膜を形成した多重配線としたことを
特徴とする請求項4ないし9記載のいずれかの多層回路
基板。
10. The multilayer circuit board according to claim 4, wherein the wiring in the multilayer thin film circuit is a multiple wiring in which another metal film is formed on a part of a copper wiring surface. .
【請求項11】 多層薄膜回路内の配線は、金の配線の
表面の一部に別の金属膜を形成した多重配線としたこと
を特徴とする請求項4ないし9記載のいずれかの多層回
路基板。
11. The multilayer circuit according to claim 4, wherein the wiring in the multilayer thin film circuit is a multiple wiring in which another metal film is formed on a part of the surface of the gold wiring. substrate.
【請求項12】 多層回路基板と、該多層回路基板に搭
載されたLSI素子と、これらを封止する封止キヤップ
とを有する電子モジュールにおいて、前記多層回路基板
に少なくとも請求項1ないし11記載のいずれかの多層
回路基板を用いたことを特徴とする電子モジュール。
12. An electronic module having a multi-layer circuit board, an LSI device mounted on the multi-layer circuit board, and a sealing cap for sealing these elements, at least the multi-layer circuit board according to claim 1. An electronic module using one of the multilayer circuit boards.
【請求項13】 多数の電子素子が組み込まれた電子装
置において、この電子素子に請求項12記載の電子モジ
ュールを使用し組み込んだことを特徴とする電子装置。
13. An electronic device in which a large number of electronic elements are incorporated, wherein the electronic module is incorporated by using the electronic module according to claim 12.
JP22953392A 1992-08-28 1992-08-28 Multilayer circuit board, electronic module and electronic device Expired - Fee Related JP3210740B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22953392A JP3210740B2 (en) 1992-08-28 1992-08-28 Multilayer circuit board, electronic module and electronic device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22953392A JP3210740B2 (en) 1992-08-28 1992-08-28 Multilayer circuit board, electronic module and electronic device

Publications (2)

Publication Number Publication Date
JPH0677649A true JPH0677649A (en) 1994-03-18
JP3210740B2 JP3210740B2 (en) 2001-09-17

Family

ID=16893663

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22953392A Expired - Fee Related JP3210740B2 (en) 1992-08-28 1992-08-28 Multilayer circuit board, electronic module and electronic device

Country Status (1)

Country Link
JP (1) JP3210740B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6749928B2 (en) 2001-02-22 2004-06-15 Tdk Corporation Electronic parts and method producing the same
US6984792B2 (en) * 1999-01-19 2006-01-10 International Business Machines Corporation Dielectric interposer for chip to substrate soldering
JP2015118194A (en) * 2013-12-18 2015-06-25 東レ株式会社 Photosensitive resin composition, photosensitive resin film comprising the same, insulating film formed from the photosensitive resin film, and multilayer wiring board including the insulating film
JPWO2013168223A1 (en) * 2012-05-08 2015-12-24 富士機械製造株式会社 Semiconductor package and manufacturing method thereof
US9895735B2 (en) 2012-01-25 2018-02-20 Otto Junker Gmbh Method for joining two metal strip ends

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6984792B2 (en) * 1999-01-19 2006-01-10 International Business Machines Corporation Dielectric interposer for chip to substrate soldering
US6749928B2 (en) 2001-02-22 2004-06-15 Tdk Corporation Electronic parts and method producing the same
US9895735B2 (en) 2012-01-25 2018-02-20 Otto Junker Gmbh Method for joining two metal strip ends
JPWO2013168223A1 (en) * 2012-05-08 2015-12-24 富士機械製造株式会社 Semiconductor package and manufacturing method thereof
JP2015118194A (en) * 2013-12-18 2015-06-25 東レ株式会社 Photosensitive resin composition, photosensitive resin film comprising the same, insulating film formed from the photosensitive resin film, and multilayer wiring board including the insulating film

Also Published As

Publication number Publication date
JP3210740B2 (en) 2001-09-17

Similar Documents

Publication Publication Date Title
JP2996510B2 (en) Electronic circuit board
CN100487888C (en) Semiconductor device, semiconductor crystal wafer, semiconductor assembly and manufacturing method for semiconductor device
TW200522228A (en) Semiconductor device containing stacked semiconductor chips and manufacturing method thereof
JPH01307236A (en) Electronic device assembly and its manufacture
US6331447B1 (en) High density flip chip BGA
US4546406A (en) Electronic circuit interconnection system
Takasago et al. A copper/polyimide metal-base packaging technology
US20220051963A1 (en) Packaging stacked substrates and an integrated circuit die using a lid and a stiffening structure
WO2007066563A1 (en) Printed wiring board with component-mounting pins and electronic equipment using the same
JP3210740B2 (en) Multilayer circuit board, electronic module and electronic device
Lall et al. An overview of multichip modules
JP2000165052A (en) Multilayer wiring board
JP2749472B2 (en) Multilayer thin-film wiring board, module using the board
JPS61212096A (en) Multilayer interconnection board
JP3016292B2 (en) Polyimide multilayer wiring board and method of manufacturing the same
WO2018098648A1 (en) Integrated circuit packaging method and integrated packaging circuit
JPH11163522A (en) Multilayer wiring boar and its manufacture
JP2000138457A (en) Multilayer interconnection board and its manufacture
JPH063821B2 (en) Double-sided protective coat type TAB tape carrier
JPH1154646A (en) Package for semiconductor element and production thereof
JP3432330B2 (en) Joint structure
JPH07307434A (en) Packagning substrate
JP2001015930A (en) Multilayer printed wiring board and manufacture thereof
JPH04291993A (en) Method of joining thin film unit
JPS6346592B2 (en)

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080713

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080713

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090713

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees