JPH03297159A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JPH03297159A
JPH03297159A JP9927890A JP9927890A JPH03297159A JP H03297159 A JPH03297159 A JP H03297159A JP 9927890 A JP9927890 A JP 9927890A JP 9927890 A JP9927890 A JP 9927890A JP H03297159 A JPH03297159 A JP H03297159A
Authority
JP
Japan
Prior art keywords
insulating layer
thermal expansion
semiconductor device
layer
silicon chip
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9927890A
Other languages
Japanese (ja)
Other versions
JPH0760874B2 (en
Inventor
Koichi Tsuyama
津山 宏一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Hitachi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP9927890A priority Critical patent/JPH0760874B2/en
Publication of JPH03297159A publication Critical patent/JPH03297159A/en
Publication of JPH0760874B2 publication Critical patent/JPH0760874B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/05Insulated conductive substrates, e.g. insulated metal substrate

Abstract

PURPOSE:To improve reliability for thermal expansion by providing an organic resin insulating layer and an insulating layer made of a ceramic flame sprayed layer having a specific thickness on a metal plate having specific thermal expansion coefficient, and forming a metal wiring layer and a silicon chip thereon. CONSTITUTION:A first insulating layer 21 made of organic resin and a second insulating layer 22 made of a ceramic flame sprayed layer and having 20 to 250mum of thickness are formed on a low thermal expansion metal plate 1 having 7X10<-6>/ deg.C or less of thermal expansion coefficient. Then, the layer 22 is formed with a wiring layer 3 formed with a circuit by etching a copper foil and a silicon chip 4 connected thereto. Thus, low thermal expansion coefficient metal having near thermal expansion to that of the chip 4 is employed as the metal plate of the circuit board to suppress a stress due to a thermal expansion coefficient and to improve connecting reliability of the chip 4. Neither crack nor peeling occur in the insulting layers due to a heat cycle to obtain a semiconductor device having high reliability.

Description

【発明の詳細な説明】 (産業上の利用分野〕 本発明は、半導体装置に関する。[Detailed description of the invention] (Industrial application field) The present invention relates to a semiconductor device.

〔従来の技術〕[Conventional technology]

シリコンチップは熱膨張率が3〜4X10−6/℃と小
さい。そこで、従来の半導体装置では、シリコンチップ
は熱膨張率の小さいセラミックス配線板に搭載されてい
た。しかし、セラミックス配線板では、金や銀の厚膜に
よりセラミックス基板上に回路形成を行うため200μ
m以下の微細回路の形成が難しいこと、大きな基板を製
造することが困難なこと、製造した配線板が割れやすい
ことなどの問題点があった。
Silicon chips have a small thermal expansion coefficient of 3 to 4×10 −6 /°C. Therefore, in conventional semiconductor devices, silicon chips are mounted on ceramic wiring boards with a small coefficient of thermal expansion. However, in ceramic wiring boards, the circuit is formed on the ceramic substrate using a thick film of gold or silver, so the thickness of 200μ
There were problems such as difficulty in forming microcircuits with a size of less than m, difficulty in manufacturing large substrates, and the tendency for manufactured wiring boards to break.

また、温度が比較的一定の室内で使われる用途の半導体
装置では、シリコンチップは樹脂配線板に搭載されるこ
ともある。しかし、樹脂配線板の場合、樹脂とシリコン
チップとの熱膨張差が大きいため半導体装置の信頼性が
低下するという問題があった。特にフリップチップのよ
うに微細なはんだで接続するCCB (Control
 1edCollapse  Bonding)には樹
脂配線板の適用は困難であった。
Furthermore, in semiconductor devices used indoors where the temperature is relatively constant, silicon chips are sometimes mounted on resin wiring boards. However, in the case of a resin wiring board, there is a problem in that the reliability of the semiconductor device decreases due to a large difference in thermal expansion between the resin and the silicon chip. In particular, CCB (Control
It was difficult to apply resin wiring boards to 1ed Collapse Bonding.

また、最近では金属板に絶縁層を設け、絶縁層の表面に
回路を形成した金属ベース配線板へのシリコンチップの
搭載が検討されている。金属ベース配線板の場合、金属
板としてアルミニウム、銅、鉄、42合金等を用いるこ
とができるが、シリコンチップ(熱膨張率 3〜4 X
 10−6/”C)に対して、熱膨張率が最も近い42
合金(熱膨張率4 X 10−6/℃)等の低熱膨張金
属が半導体装置の接続体転性の点で最も優れている。そ
こで、42合金を用いた金属ベース配線板も検討されて
いる。しかし、金属板上に設けられた絶縁層の樹脂と4
2合金等の金属板の低熱膨張金属との熱膨張係数が異な
るため熱サイクルにより絶縁層に大きな熱応力が発生し
、代表的な半導体装置の信頼性試験の一つである熱サイ
クル試験(−50℃30分、室温5分、150℃30分
のサイクル試験)によって、300〜400サイクル程
度から絶縁層に亀裂や亀裂を起点とした剥離が発生する
という問題のあることがわかった。
Furthermore, recently, consideration has been given to mounting a silicon chip on a metal base wiring board in which an insulating layer is provided on a metal plate and a circuit is formed on the surface of the insulating layer. In the case of a metal base wiring board, aluminum, copper, iron, 42 alloy, etc. can be used as the metal plate, but silicon chips (thermal expansion coefficient of 3 to 4
10-6/”C), the thermal expansion coefficient is closest to 42
Low thermal expansion metals such as alloys (coefficient of thermal expansion: 4 x 10-6/°C) are the most excellent in terms of connector stability for semiconductor devices. Therefore, metal-based wiring boards using 42 alloy are also being considered. However, the resin of the insulating layer provided on the metal plate and the
Since the coefficient of thermal expansion of metal plates such as two alloys is different from that of low thermal expansion metals, large thermal stress is generated in the insulating layer due to thermal cycling. A cycle test of 30 minutes at 50°C, 5 minutes at room temperature, and 30 minutes at 150°C revealed that there was a problem in which cracks or peeling starting from the cracks occurred in the insulating layer after about 300 to 400 cycles.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

本発明は、熱サイクル試験(−50℃30分、室温5分
、150℃30分のサイクル試験)で1000サイクル
以上においても絶縁層に亀裂や剥離が発生することがな
く、配線板と搭載したシリコンチップとの熱膨張の整合
性にも優れているため、高い接続体転性が保たれる半導
体装置を提供しようとするものである。
The present invention shows that the insulating layer does not crack or peel even after 1000 cycles or more in a thermal cycle test (-50°C 30 minutes, room temperature 5 minutes, 150°C 30 minutes), and the insulation layer can be easily bonded to the wiring board. The present invention aims to provide a semiconductor device that maintains high connection property because of its excellent thermal expansion matching with the silicon chip.

〔課題を解決するための手段〕[Means to solve the problem]

本発明者らは前記課題を解決するために鋭意研究を重ね
た結果、特定の熱膨張率を有する金属板上に特定の2層
の絶縁層を設けた半導体装置により、その目的が達成さ
れることを見出し、この知見に基づいて本発明を完成す
るに至った。
The inventors of the present invention have conducted intensive research to solve the above problem, and as a result, the object has been achieved by a semiconductor device in which two specific insulating layers are provided on a metal plate having a specific coefficient of thermal expansion. Based on this finding, we have completed the present invention.

すなわち本発明は、熱膨張率が7 X 10−b/’C
以下の低熱膨張金属からなる金属板、該金属板上に設け
られた有機樹脂又は有機樹脂と無機物の複合材料からな
る第1の絶縁層、第1の絶縁層上に設けられたセラミッ
クスの溶射層からなる第2の絶縁層、第2の絶縁層上に
設けられた金属導体からなる配線層及び配線層と接続さ
れたシリコンチップからなり、第2の絶縁層の厚さが2
0μm以上150μm以下であることを特徴とする半導
体装置を提供するものである。
That is, the present invention has a thermal expansion coefficient of 7 x 10-b/'C
A metal plate made of the following low thermal expansion metal, a first insulating layer made of an organic resin or a composite material of an organic resin and an inorganic substance provided on the metal plate, and a sprayed ceramic layer provided on the first insulating layer. a second insulating layer consisting of a wiring layer made of a metal conductor provided on the second insulating layer, and a silicon chip connected to the wiring layer, the thickness of the second insulating layer is 2.
The present invention provides a semiconductor device characterized in that the thickness is 0 μm or more and 150 μm or less.

以下、本発明を図に基づいて詳細に説明する。Hereinafter, the present invention will be explained in detail based on the drawings.

第1図に本発明の一例を示す半導体装置の部分断面を表
す斜視図を示す。
FIG. 1 shows a perspective view showing a partial cross section of a semiconductor device showing an example of the present invention.

本発明の半導体装置は金属板1、第1の絶縁層21、第
2の絶縁層22及び配線層3からなる配線板と、配線板
に搭載されたシリコンチップ4からなる。第1の絶縁層
21は金属板1上に設けられており、その上に更に第2
の絶縁層22が設けられている。そして、第2の絶縁層
22上に配線層3が設けられており、シリコンチップ4
は配線層3に接続されている。
The semiconductor device of the present invention includes a wiring board including a metal plate 1, a first insulating layer 21, a second insulating layer 22, and a wiring layer 3, and a silicon chip 4 mounted on the wiring board. The first insulating layer 21 is provided on the metal plate 1, and the second insulating layer 21 is further provided on the metal plate 1.
An insulating layer 22 is provided. A wiring layer 3 is provided on the second insulating layer 22, and a silicon chip 4
is connected to the wiring layer 3.

金属板1としては、シリコンチップと配線板との接続体
φ■性の点から、第2の絶縁層として好適なアルミナセ
ラミックスの熱膨張率(7X10/℃)と同等かそれ以
下の熱膨張率を有する低熱膨張金属を用いる。すなわち
、熱膨張率が7×10−b/”C以下の低熱膨張金属を
用いる。熱膨張率が7 X 10−b/”にを超えると
、熱サイクルによりはんだ接続部に過大な熱応力が加わ
ってはんだの亀裂や剥離を起こし、シリコンチップと配
線板との接続信軌性が低下する。具体的な金属の選定は
、要求される半導体装置の信軒性の程度により決まる。
The metal plate 1 has a thermal expansion coefficient equal to or lower than that of alumina ceramics (7X10/°C), which is suitable for the second insulating layer, from the viewpoint of the connection body φ■ between the silicon chip and the wiring board. A metal with low thermal expansion is used. That is, a low thermal expansion metal with a coefficient of thermal expansion of 7 x 10-b/"C or less is used. If the coefficient of thermal expansion exceeds 7 x 10-b/", excessive thermal stress will be applied to the solder joint due to thermal cycling. This also causes cracks and peeling of the solder, which reduces the connection reliability between the silicon chip and the wiring board. The specific selection of metal is determined by the required degree of reliability of the semiconductor device.

このような低熱膨張金属としては、例えば、42合金、
インバーのようなニッケル合金、銅/インバー/銅のよ
うな複層金属等が挙げられる。
Examples of such low thermal expansion metals include 42 alloy,
Examples include nickel alloys such as Invar, multilayer metals such as copper/Invar/copper, and the like.

第1の絶縁層21は、有機樹脂又は有機樹脂と無機物の
複合材料からなる。有機樹脂としては、耐熱性の点から
、ガラス転移点が70℃以上、より好ましくは100℃
以上のものが好適に用いられる。ガラス転移点が70℃
未満であると耐熱性が不充分で、はんだ耐熱試験等によ
り金属板1と第1の絶縁層21が剥離しやすくなる。ガ
ラス転移点が70℃以上の有機樹脂としては、例えば、
電気特性に優れるエポキシ樹脂、ポリイミド樹脂及びポ
リアミド樹脂から選択された樹脂が好適に使用される。
The first insulating layer 21 is made of an organic resin or a composite material of an organic resin and an inorganic material. From the viewpoint of heat resistance, the organic resin has a glass transition point of 70°C or higher, preferably 100°C.
Those mentioned above are preferably used. Glass transition point is 70℃
If it is less than that, the heat resistance will be insufficient, and the metal plate 1 and the first insulating layer 21 will easily peel off during a soldering heat resistance test or the like. Examples of organic resins having a glass transition point of 70°C or higher include:
Resins selected from epoxy resins, polyimide resins, and polyamide resins that have excellent electrical properties are preferably used.

第1の絶縁層21は、熱膨張を低減させるために、アル
ミナやシリカ等の無機物が充填されている有機樹脂と無
機物の複合材料であることが望ましい。
The first insulating layer 21 is preferably a composite material of an organic resin and an inorganic material filled with an inorganic material such as alumina or silica in order to reduce thermal expansion.

第2の絶縁N22は、セラミックスの溶射層からなる。The second insulation N22 is made of a sprayed ceramic layer.

セラミックスの材料としては、熱膨張率、電気特性の点
から、アルミナ、ムライト等の溶射層が好適である。溶
射層の厚さは、20μm以上150μm以下とする。2
0μm未満では連続的セラミックス層を得ることが困難
であり、150μmを超えると住産性が悪くなる。セラ
ミックスを溶射することにより、容易に前記したような
薄いセラミックス層を得ることができる。
As the ceramic material, thermally sprayed layers of alumina, mullite, etc. are suitable from the viewpoint of thermal expansion coefficient and electrical properties. The thickness of the sprayed layer is 20 μm or more and 150 μm or less. 2
If it is less than 0 μm, it is difficult to obtain a continuous ceramic layer, and if it exceeds 150 μm, the productivity will be poor. By thermal spraying ceramics, the above-mentioned thin ceramic layer can be easily obtained.

本発明の半導体装置では絶縁層が有機樹脂又は有機樹脂
と無機物の複合材料からなる第1の絶縁層21とセラミ
ックスの溶射層からなる第2の絶縁層の2N構造となっ
ているため、第1の絶縁層21が緩衝的作用をもち、セ
ラミックスを用いながらプレス切断等の加工が可能であ
る。このため、異形加工も容易にでき、半導体装置を安
価に製造することができる。
In the semiconductor device of the present invention, the insulating layer has a 2N structure consisting of the first insulating layer 21 made of an organic resin or a composite material of an organic resin and an inorganic material, and the second insulating layer 21 made of a sprayed ceramic layer. The insulating layer 21 has a buffering effect, and processing such as press cutting is possible while using ceramics. Therefore, irregular shape processing can be easily performed, and semiconductor devices can be manufactured at low cost.

金属導体からなる配線層3としては、一般の配線板と同
様に銅からなるものが適している。本発明では銅箔から
なる配線層を用いることもでき、銅箔をエツチングして
回路形成することにより精度の高い回路を得ることがで
きる。必要に応じ銅箔表面にニッケル、金、銀若しくは
アルミニウムのめっきを施しためっき物又は銅とニッケ
ル、金、銀若しくはアルミニウムをクラッドした複合箔
からなる配線層を用いることもできる。配線層はエンチ
ング法等により、所定の回路に形成されていることが好
ましい。
As the wiring layer 3 made of a metal conductor, one made of copper is suitable as in a general wiring board. In the present invention, a wiring layer made of copper foil can also be used, and a highly accurate circuit can be obtained by etching the copper foil to form the circuit. If necessary, a wiring layer consisting of a copper foil surface plated with nickel, gold, silver, or aluminum, or a composite foil of copper clad with nickel, gold, silver, or aluminum can also be used. Preferably, the wiring layer is formed into a predetermined circuit by an etching method or the like.

シリコンチップ4としては、任意のものを用いることが
できる。シリコンチップ4と配線層3との接続法として
は、微細はんだによる接続(ccB)やワイアポンディ
ング接続等が挙げられる。
Any silicon chip 4 can be used. Examples of the connection method between the silicon chip 4 and the wiring layer 3 include fine solder connection (ccB) and wire bonding connection.

第1図はCCBによる接続の一例を示している。FIG. 1 shows an example of connection by CCB.

CCB接続など微細なはんだ接続を伴う接続法は、従来
、微細なはんだ接続部がシリコンチップと配線板の熱膨
張差による応力を受けやすく適用が困難であった。しか
し、本発明の半導体装置ではシリコンチップと配線板と
の熱膨張差が小さいので、微細なはんだ接続を伴うCC
B接続等も好適に使用することができる。したがって、
本発明はシリコンチップ4として第1図に示したように
CCB接続を行うフリップチップを使用する半導体装置
で特に有効である。
Conventionally, connection methods involving minute solder connections such as CCB connections have been difficult to apply because the minute solder connections are susceptible to stress due to the difference in thermal expansion between the silicon chip and the wiring board. However, in the semiconductor device of the present invention, the difference in thermal expansion between the silicon chip and the wiring board is small, so CC
B connections etc. can also be suitably used. therefore,
The present invention is particularly effective in a semiconductor device that uses a flip chip that performs CCB connection as shown in FIG. 1 as the silicon chip 4.

シリコンチップ4は保護のためゲル、ゴム又は樹脂等に
より封止されていることが好ましい。封止はシリコンチ
ップ4だけでなく、半導体装置全体になされていてもよ
く、少なくともシリコンチップ4が封止されていること
が好ましい。
The silicon chip 4 is preferably sealed with gel, rubber, resin, or the like for protection. The sealing may be performed not only on the silicon chip 4 but also on the entire semiconductor device, and it is preferable that at least the silicon chip 4 is sealed.

以上、第1図に基づいて1個のシリコンチップが搭載さ
れている半導体装置について説明したが、本発明の半導
体装置には複数のシリコンチップや他の素子等が搭載さ
れていてもよい。
Although the semiconductor device mounted with one silicon chip has been described above based on FIG. 1, the semiconductor device of the present invention may be mounted with a plurality of silicon chips or other elements.

〔作用〕[Effect]

本発明の半導体装置では、配線板の金属板として熱膨張
がシリコンチップと近い低熱膨張金属を用いることによ
り、配線板と搭載したシリコンチップとの熱膨張差によ
る応力が抑制され、シリコンチップの接続信転性の高い
半導体装置となっている。また、絶縁層の一部として設
けられたセラミックスの溶射層からなる第2の絶縁層の
熱膨張率は有機材料に比べて小さく金属板の熱膨張率に
近い。また、セラミックの溶射層であるため、破断強度
も大きい。これらのことから、熱サイクル試験時におい
て絶縁層に亀裂や亀裂を起点とする剥離が極めで起こり
にくい半導体装置となっている。
In the semiconductor device of the present invention, by using a low thermal expansion metal whose thermal expansion is close to that of the silicon chip as the metal plate of the wiring board, stress due to the difference in thermal expansion between the wiring board and the mounted silicon chip is suppressed, and the connection of the silicon chip is suppressed. It is a semiconductor device with high reliability. Further, the coefficient of thermal expansion of the second insulating layer made of a sprayed ceramic layer provided as a part of the insulating layer is smaller than that of an organic material and is close to that of the metal plate. Also, since it is a ceramic sprayed layer, it has high breaking strength. For these reasons, the semiconductor device is extremely unlikely to cause cracks in the insulating layer or peeling starting from the cracks during a thermal cycle test.

〔実施例] 以下、本発明を実施例に基づいて詳細に説明するが、本
発明はこれに限定されるものではない。
[Examples] Hereinafter, the present invention will be described in detail based on Examples, but the present invention is not limited thereto.

実施例1 銅箔の片面にアルミナを50μmの厚さで溶射により付
着させた。次いで、このもののアルミナ面に、アルミナ
フィラーを50体積%充填したガラス転移温度が140
℃のエポキシ樹脂のワニスを塗布し、乾燥させた。その
後、このものと表面を研磨後シランカップリング剤処理
した42合金板(縦200ffIITl、横200朧、
厚み1薗)とをエポキシ樹脂層と42合金板とが接する
ように積層し、加圧加熱して基板を作製した。
Example 1 Alumina was deposited on one side of copper foil to a thickness of 50 μm by thermal spraying. Next, the alumina surface of this product was filled with 50% by volume of alumina filler, and the glass transition temperature was 140.
Apply epoxy resin varnish at °C and let dry. After that, this and the 42 alloy plate (length 200ff IITl, width 200 opacity,
The epoxy resin layer and the 42 alloy plate were laminated so that they were in contact with each other and heated under pressure to produce a substrate.

次いで、銅箔のエツチングにより回路形成及びソルダー
レジスト(永久マスク)形成を行って配線板を作製した
。配線板の大きさが50an角になるように切断後、こ
の配線板に5鴫角のフリップチップを搭載し回路と接続
して半導体装置を作製した。
Next, a wiring board was produced by etching the copper foil to form a circuit and a solder resist (permanent mask). After cutting the wiring board to have a size of 50 an square, a 5 square square flip chip was mounted on the wiring board and connected to a circuit to fabricate a semiconductor device.

得られた半導体装置について熱サイクル試験を行ったと
ころ、−50℃30分、室温5分、150℃30分の条
件で、1500サイクル後も電気的接続が保たれており
、絶縁層部分にも何ら異常は認められなかった。第2図
に熱サイクル1500サイクル後の配線板表面の顕微鏡
写真を示す。
When the obtained semiconductor device was subjected to a thermal cycle test, electrical connection was maintained even after 1500 cycles under the conditions of -50°C for 30 minutes, room temperature for 5 minutes, and 150°C for 30 minutes. No abnormality was observed. FIG. 2 shows a microscopic photograph of the surface of the wiring board after 1500 thermal cycles.

ここで、5は銅配線、6は絶縁層表面、7はソルダーレ
ジストを表す。
Here, 5 represents copper wiring, 6 represents the surface of the insulating layer, and 7 represents the solder resist.

比較例1 ガラス転移温度が140℃のエポキシ樹脂ワニスを塗布
した銅箔と表面を研磨後シランカップリング剤処理した
42合金板とを実施例1と同様に積層し、加圧加熱して
基板を作製した。次いで回路形成して配線板を得た。更
に、この配線板にフリップチップを搭載、接続し、半導
体装置を作製した。
Comparative Example 1 A copper foil coated with an epoxy resin varnish having a glass transition temperature of 140°C and a 42 alloy plate whose surface was polished and treated with a silane coupling agent were laminated in the same manner as in Example 1, and heated under pressure to form a substrate. Created. Next, a circuit was formed to obtain a wiring board. Furthermore, a flip chip was mounted and connected to this wiring board to produce a semiconductor device.

得られた半導体装置について実施例1と同様に熱サイク
ル試験を行ったところ、約300〜400サイクルで絶
縁層表面に亀裂や部分的な剥離が発生した。第3図に熱
サイクル500サイクル後の配線板表面の顕微鏡写真を
示す。
When the obtained semiconductor device was subjected to a thermal cycle test in the same manner as in Example 1, cracks and partial peeling occurred on the surface of the insulating layer after about 300 to 400 cycles. FIG. 3 shows a microscopic photograph of the surface of the wiring board after 500 thermal cycles.

比較例2 エポキシ樹脂ワニスの代わりに比較例1と同じ組成のエ
ポキシ樹脂ワニスにアルミナフィラーを約50体積%添
加したものを用いて比較例1と同様の半導体装置を作製
した。
Comparative Example 2 A semiconductor device similar to Comparative Example 1 was manufactured using an epoxy resin varnish having the same composition as Comparative Example 1 to which about 50% by volume of alumina filler was added instead of the epoxy resin varnish.

得られた半導体装置について実施例1と同様に熱サイク
ル試験を行ったところ、約500サイクルで絶縁層表面
に亀裂や部分的な剥離が発生した。
When the obtained semiconductor device was subjected to a thermal cycle test in the same manner as in Example 1, cracks and partial peeling occurred on the surface of the insulating layer after about 500 cycles.

第4図に熱サイクル500サイクル後の配線板表面の顕
微鏡写真を示す。
FIG. 4 shows a microscopic photograph of the surface of the wiring board after 500 thermal cycles.

比較例3 比較例1と同様のエポキシ樹脂ワニスを含浸後乾燥させ
たガラス布を用いてその片面に銅箔を接着し、他面に研
磨後シランカップリング剤処理した42合金板を接着し
、比較例1と同様の半導体装置を作製した。
Comparative Example 3 Using a glass cloth impregnated with the same epoxy resin varnish as in Comparative Example 1 and then dried, copper foil was adhered to one side of the cloth, and a 42 alloy plate treated with a silane coupling agent after polishing was adhered to the other side. A semiconductor device similar to Comparative Example 1 was manufactured.

得られた半導体装置について実施例1と同様にサイクル
試験を行ったところ、約500サイクルで絶縁層にマイ
クロクラックが入り、約800サイクルで絶縁層の端部
から剥離が発生した。約1500サイクルでは、端部よ
り3〜10画幅にわたって絶縁層が剥離してしまった。
When the obtained semiconductor device was subjected to a cycle test in the same manner as in Example 1, microcracks appeared in the insulating layer after about 500 cycles, and peeling occurred from the ends of the insulating layer after about 800 cycles. After approximately 1500 cycles, the insulating layer peeled off over a width of 3 to 10 widths from the edge.

第5図に熱すビクル1000サイクル後の配線板表面の
顕微鏡写真を示す。
FIG. 5 shows a microscopic photograph of the surface of the wiring board after 1000 cycles of the heating vehicle.

比較例4 非晶質シリカを約50%添加したエポキシ樹脂ワニスを
用いて比較例1と同様の半導体装置を作製した。
Comparative Example 4 A semiconductor device similar to Comparative Example 1 was fabricated using an epoxy resin varnish containing approximately 50% amorphous silica.

得られた半導体装置について実施例1と同様に熱サイク
ル試験を行ったところ、約500サイクルで絶縁層表面
に亀裂や部分的な剥離が発生した。
When the obtained semiconductor device was subjected to a thermal cycle test in the same manner as in Example 1, cracks and partial peeling occurred on the surface of the insulating layer after about 500 cycles.

第6図に熱サイクル500サイクル後の配線板表面の顕
微鏡写真を示す。
FIG. 6 shows a microscopic photograph of the surface of the wiring board after 500 thermal cycles.

〔発明の効果〕〔Effect of the invention〕

本発明によると、熱サイクルにより絶縁層に亀裂や剥離
が発生せず、配線板と搭載したシリコンチップとの熱膨
張の整合性に優れているため、高い接続信頬性が保たれ
る半導体装置を提供することができる。
According to the present invention, the semiconductor device maintains high connection reliability because the insulating layer does not crack or peel due to thermal cycling and the thermal expansion matches well between the wiring board and the mounted silicon chip. can be provided.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示す半導体装置の部分断面
を表す斜視図である。 第2図は実施例1の熱サイクル試験後の配線板表面を示
す顕微鏡写真である。第3図〜第6図はそれぞれ比較例
1〜4までの熱サイクル試験後の配線板表面を示す顕微
鏡写真である。 符号の説明 1 金属板      21 22 第2の絶縁層  3 4 シリコンチップ  5 6 絶縁層表面    7 第1の絶縁層 配線層 銅配線 ソルダーレジスト
FIG. 1 is a perspective view showing a partial cross section of a semiconductor device showing an embodiment of the present invention. FIG. 2 is a micrograph showing the surface of the wiring board after the thermal cycle test of Example 1. FIGS. 3 to 6 are micrographs showing the surfaces of the wiring boards after the thermal cycle tests of Comparative Examples 1 to 4, respectively. Explanation of symbols 1 Metal plate 21 22 Second insulating layer 3 4 Silicon chip 5 6 Insulating layer surface 7 First insulating layer wiring layer copper wiring solder resist

Claims (1)

【特許請求の範囲】 1、熱膨張率が7×10^−^6/℃以下の低熱膨張金
属からなる金属板、該金属板上に設けられた有機樹脂又
は有機樹脂と無機物の複合材料からなる第1の絶縁層、
第1の絶縁層上に設けられたセラミックスの溶射層から
なる第2の絶縁層、第2の絶縁層上に設けられた金属導
体からなる配線層及び配線層と接続されたシリコンチッ
プからなり、第2の絶縁層の厚さが20μm以上150
μm以下であることを特徴とする半導体装置。 2、第1の絶縁層の有機樹脂が、ガラス転移点が70℃
以上の有機樹脂である請求項1記載の半導体装置。 3、第1の絶縁層のガラス転移点が70℃以上である有
機樹脂が、エポキシ樹脂、ポリイミド樹脂及びポリアミ
ド樹脂から選択された樹脂である請求項2記載の半導体
装置。 4、金属導体からなる配線層が、銅箔、銅箔表面にニッ
ケル、金、銀若しくはアルミニウムのめっきを施しため
っき物又は銅とニッケル、金、銀若しくはアルミニウム
をクラッドした複合箔からなる請求項1〜3いずれか記
載の半導体装置。 5、シリコンチップがフリップチップである請求項1〜
4いずれか記載の半導体装置。 6、少なくともシリコンチップがゲル、ゴム又は樹脂に
より封止されている請求項1〜5いずれか記載の半導体
装置。
[Scope of Claims] 1. A metal plate made of a low thermal expansion metal with a coefficient of thermal expansion of 7×10^-^6/°C or less, an organic resin provided on the metal plate, or a composite material of an organic resin and an inorganic material. a first insulating layer,
A second insulating layer made of a sprayed ceramic layer provided on the first insulating layer, a wiring layer made of a metal conductor provided on the second insulating layer, and a silicon chip connected to the wiring layer, The thickness of the second insulating layer is 20 μm or more 150
A semiconductor device characterized by having a diameter of μm or less. 2. The organic resin of the first insulating layer has a glass transition point of 70°C.
2. The semiconductor device according to claim 1, which is an organic resin as described above. 3. The semiconductor device according to claim 2, wherein the organic resin of the first insulating layer having a glass transition point of 70° C. or higher is a resin selected from epoxy resin, polyimide resin, and polyamide resin. 4. A claim in which the wiring layer made of a metal conductor is made of copper foil, a plated product in which the surface of the copper foil is plated with nickel, gold, silver, or aluminum, or a composite foil in which copper is clad with nickel, gold, silver, or aluminum. 4. The semiconductor device according to any one of 1 to 3. 5. Claims 1 to 5, wherein the silicon chip is a flip chip.
4. The semiconductor device according to any one of 4. 6. The semiconductor device according to claim 1, wherein at least the silicon chip is sealed with gel, rubber, or resin.
JP9927890A 1990-04-17 1990-04-17 Semiconductor device Expired - Lifetime JPH0760874B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9927890A JPH0760874B2 (en) 1990-04-17 1990-04-17 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9927890A JPH0760874B2 (en) 1990-04-17 1990-04-17 Semiconductor device

Publications (2)

Publication Number Publication Date
JPH03297159A true JPH03297159A (en) 1991-12-27
JPH0760874B2 JPH0760874B2 (en) 1995-06-28

Family

ID=14243200

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9927890A Expired - Lifetime JPH0760874B2 (en) 1990-04-17 1990-04-17 Semiconductor device

Country Status (1)

Country Link
JP (1) JPH0760874B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0592165A (en) * 1991-05-16 1993-04-16 Sansha Electric Mfg Co Ltd Method for applying metal to ceramics substrate by plasma spray

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FI20085053A0 (en) * 2008-01-22 2008-01-22 Valtion Teknillinen Method of performing thermal spraying and applications according to the procedure

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0592165A (en) * 1991-05-16 1993-04-16 Sansha Electric Mfg Co Ltd Method for applying metal to ceramics substrate by plasma spray

Also Published As

Publication number Publication date
JPH0760874B2 (en) 1995-06-28

Similar Documents

Publication Publication Date Title
US6159586A (en) Multilayer wiring substrate and method for producing the same
JPH1050886A (en) Conductive polymer ball bonding to grid array semiconductor package
JPH1056101A (en) Ball grid array package without mutual connection among through holes and vias
JPH0955444A (en) Semiconductor package
JPH03297159A (en) Semiconductor device
JP3210740B2 (en) Multilayer circuit board, electronic module and electronic device
US5040292A (en) Method of forming dielectric layer on a metal substrate having improved adhesion
US4936010A (en) Method of forming dielectric layer on a metal substrate having improved adhesion
JPH05259223A (en) Film carrier tape
JPH11204941A (en) Manufacture of circuit board
JP3167360B2 (en) Manufacturing method of substrate for hybrid integrated circuit
JPS60120588A (en) Printed circuit board
JPH10163594A (en) Electronic circuit board and its manufacture
JPS62271442A (en) Hybrid integrated circuit
JPH05121587A (en) Semiconductor device
JP3215851B2 (en) Resin-sealed semiconductor device and method of manufacturing the same
JPH02125728A (en) Composite base and its manufacture
JPS62114245A (en) Manufacture of substrate for hybrid integrated circuit
JPH01157589A (en) Manufacture of metal base substrate
JP2576138B2 (en) Wiring board
JP2774180B2 (en) Mounting board
JPS6346592B2 (en)
JP2869565B2 (en) Semiconductor package and manufacturing method thereof
JP3215006B2 (en) Semiconductor device
JP2675077B2 (en) Lead frame for semiconductor device