JPS59111319A - Method of producing laminated ceramic condenser - Google Patents

Method of producing laminated ceramic condenser

Info

Publication number
JPS59111319A
JPS59111319A JP22145082A JP22145082A JPS59111319A JP S59111319 A JPS59111319 A JP S59111319A JP 22145082 A JP22145082 A JP 22145082A JP 22145082 A JP22145082 A JP 22145082A JP S59111319 A JPS59111319 A JP S59111319A
Authority
JP
Japan
Prior art keywords
laminate
multilayer ceramic
manufacturing
laminated ceramic
silver
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP22145082A
Other languages
Japanese (ja)
Other versions
JPH0115126B2 (en
Inventor
板倉 鉉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP22145082A priority Critical patent/JPS59111319A/en
Publication of JPS59111319A publication Critical patent/JPS59111319A/en
Publication of JPH0115126B2 publication Critical patent/JPH0115126B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Ceramic Capacitors (AREA)
  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は特に自動装着用積層セラミックコンデンサとし
て機械的強度を要求される分野に適用可能な高強度の積
層セラミックコンデンサの製造方法に関するものである
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a method for manufacturing a high-strength multilayer ceramic capacitor that can be applied to fields where mechanical strength is required, particularly as a multilayer ceramic capacitor for automatic mounting.

従来例の構成とその問題点 従来より小型大容量化を目的としてセラミック薄膜誘電
体の並列配線構造を有する積層セラミックコンデンサは
よく知られている。この積層セラミンクコンデンサの製
造方法は一般的には次の通りである。まず、チタン酸バ
リウム、チタン酸マグネシウムなどの酸化物に数種の添
加物を加えて混合した後、有機バインダーを加えて粘性
の高いスラリーとし、これをドクターブレード法、ノく
イブドクターブレード法などの一般的なシート成型方法
により、30〜100μmのシートを作製する。この後
、シート上にパラジウムまたは白金とパラジウムの合金
粉末を有機バインダ中に分散させたペーストをスクリー
ン印刷する。これをくり返しなから2〜40層の積層体
を作製する。この積層体を適当な大きさに切断し、電気
炉にて1200〜140Q℃で焼成すると焼結体のチッ
プか得られる。このチップでの端面に端子電極として、
銀とパラジウム合金まだは銀の粉末よりなるペーストを
付着し、700〜900℃で焼付けることにより、積層
セラミックコンテンサか得られる。
Conventional Structure and Problems Multilayer ceramic capacitors having a parallel wiring structure of ceramic thin film dielectrics are well known for the purpose of achieving smaller size and larger capacity. The method for manufacturing this multilayer ceramic capacitor is generally as follows. First, several additives are added to oxides such as barium titanate and magnesium titanate and mixed, and then an organic binder is added to form a highly viscous slurry. A sheet with a thickness of 30 to 100 μm is produced by a general sheet molding method. Thereafter, a paste containing palladium or an alloy powder of platinum and palladium dispersed in an organic binder is screen printed onto the sheet. This process is repeated to produce a laminate of 2 to 40 layers. This laminate is cut into a suitable size and fired in an electric furnace at 1200 to 140Q°C to obtain sintered chips. As a terminal electrode on the end face of this chip,
A laminated ceramic capacitor is obtained by depositing a paste of silver and palladium alloy or silver powder and baking at 700 to 900°C.

このような積層セラミックコンデンサはプリント配置線
基板に直に自動装着し、用いられることがほとんどであ
る。そして、プリント配線基板は工ポキン樹脂からなり
、使用中にたわみを生じることが起りがちであるため、
半田付された積層セラミックコンデンサの端子には1.
oKy以上の引張り応力が作用することがしばしばあり
、この応力に耐えきれず端子電極がはずれたり、素子自
身にクラックを生じ、特性上に支障をきたすことがあっ
た。
In most cases, such multilayer ceramic capacitors are automatically mounted directly onto a printed circuit board. Printed wiring boards are made of engineered resin and tend to warp during use.
The soldered multilayer ceramic capacitor terminals have 1.
Tensile stress exceeding oKy is often applied, and the terminal electrodes cannot withstand this stress and may come off or cracks may occur in the element itself, causing problems in characteristics.

発明の目的 本発明は上記のような事実にかんがみ、実験を重ねた結
果、端子電極の接着強度及び素子強度の改善を同時には
かり得だものであり、プリント基板への直付は自動装着
による上記問題点を解決せんとする積層セラミックコン
デンサの製造方法を確立することができたものである。
Purpose of the Invention The present invention has been made in view of the above-mentioned facts and as a result of repeated experiments, it has been found that it is possible to simultaneously improve the adhesive strength of terminal electrodes and the element strength, and that direct attachment to a printed circuit board can be achieved by automatic attachment. We were able to establish a manufacturing method for multilayer ceramic capacitors that solves these problems.

発明の構成 すなわち、本発明の積層セラミックコンデンサの製造方
法は、セラミック誘電体層及び金属電極層が交互に積層
されてなる積層体をアルミナ及びガラスフリットの混合
粉末に埋込んだ後、熱処理することにより上記積層体内
部に上記ガラス成分を拡散させてなる工程を有すること
を特徴とするものである。本発明の製造方法により得ら
れる積層セラミックコンデンサはガラス成分が熱処理に
よりセラミック内部に拡散されているため、内部の気孔
かガラス質により強化されると考えられる。
In other words, the method for manufacturing a multilayer ceramic capacitor of the present invention includes embedding a laminate in which ceramic dielectric layers and metal electrode layers are alternately stacked in a mixed powder of alumina and glass frit, and then subjecting the laminate to heat treatment. The method is characterized by comprising a step of diffusing the glass component into the inside of the laminate. In the multilayer ceramic capacitor obtained by the manufacturing method of the present invention, the glass component is diffused into the ceramic by heat treatment, so it is thought that the internal pores are strengthened by the glassy substance.

壕だ、端子電極に使用する銀ペーストにはガラスフリン
トを含有させることは周知であるが、ガラス質が素体に
拡散されている本発明の方法に基づく素子とこの銀ペー
ストとは親和性が良いため、接着強度か高くなると考え
られるものである。
It is well known that silver paste used for terminal electrodes contains glass flint, but this silver paste has no affinity with elements based on the method of the present invention in which glass is diffused into the element body. It is thought that the adhesive strength will be high because of the good adhesive strength.

実施例の説明 以下、実施例に基づき本発明の詳細な説明する。Description of examples Hereinafter, the present invention will be described in detail based on Examples.

捷ず、チタン酸バリウム(BaTiO2)100重量部
に対し、チタン酸カルシウム(Ca T 10 a −
) +酸化ニオブ(Nb2o5)をそれぞれQ。2重量
部添加して十分に混合する。この後に有機バインダーに
てスラリー化し、ブレード工法にて80μmの厚みのシ
ートを作製する。このシートにパラジウムペーストをス
クリーン印刷し、その上にシートを重ねてくり返し積層
する。この積層体を切断し、1300〜1360℃にて
焼成した。この焼結体チップの形状は1.51+l+1
1(幅)xa、o胴(長さ)×0.65陥(厚さ)であ
る。
Calcium titanate (Ca T 10 a −
) + niobium oxide (Nb2o5) respectively Q. Add 2 parts by weight and mix thoroughly. Thereafter, it is made into a slurry using an organic binder, and a sheet with a thickness of 80 μm is produced using a blade construction method. Palladium paste is screen printed on this sheet, and the sheets are stacked on top of it repeatedly. This laminate was cut and fired at 1300 to 1360°C. The shape of this sintered chip is 1.51+l+1
1 (width) xa, o body (length) x 0.65 depth (thickness).

このような焼結体チップを酸化ホウ素2重量部。Such sintered chips were mixed with 2 parts by weight of boron oxide.

酸化ケイ素5重量部、酸化鉛1重量部よりなるガラスフ
リットをアルミナ粉末100重量部に対して、1〜5重
量部添加した混合物中に埋込んだ後、800〜850℃
で熱処理した。
After embedding a glass frit consisting of 5 parts by weight of silicon oxide and 1 part by weight of lead oxide in a mixture of 1 to 5 parts by weight added to 100 parts by weight of alumina powder, the mixture was heated to 800 to 850°C.
heat treated with

このようにして得られたチップに端子電極として銀電極
を設けた。ただし、銀電極用銀ペースト中に上記ガラス
フリットを2〜3t/6混合したものを用いた。
Silver electrodes were provided as terminal electrodes on the chip thus obtained. However, a mixture of 2 to 3 t/6 of the above glass frit in a silver paste for silver electrodes was used.

図は本発明の製造方法により得られた積層セラミックコ
ンデンサを示し、1はセラミック誘電体層、2はパラジ
ウム電極、3はガラス層、4は銀電極である。下記の表
は従来の製造方法、すなわちガラス拡散を行わない方法
と本発明の製造方法に基づく場合の積層セラミックコン
デンサの端子電極引張り強度及び抗折強度及び電気特性
の比較を示したものである。この表から明らかなように
、本発明の方法により得られる積層セラミックコンデン
サの機械的強度が著しく向上することが認められる。尚
、コンデンサの電気的特性については静電容量が若干/
J・さくなる以外は何ら異常は認められなかった。
The figure shows a multilayer ceramic capacitor obtained by the manufacturing method of the present invention, in which 1 is a ceramic dielectric layer, 2 is a palladium electrode, 3 is a glass layer, and 4 is a silver electrode. The table below shows a comparison of the terminal electrode tensile strength, bending strength, and electrical properties of multilayer ceramic capacitors based on the conventional manufacturing method, that is, the method without glass diffusion, and the manufacturing method of the present invention. As is clear from this table, it is recognized that the mechanical strength of the multilayer ceramic capacitor obtained by the method of the present invention is significantly improved. Regarding the electrical characteristics of the capacitor, the capacitance is slightly
No abnormalities were observed except for J.

発明の効果 以上述べたように、本発明の製造方法による積層セラミ
ノクコンテンサの機械的強度は極めて優れており、プリ
ント基板に直に半田付され、基板のたわみに対して端子
電極かはすれたり、素子にクラックが入ることを防止す
る上て極めて有効であり、その意義は大きい。
Effects of the Invention As mentioned above, the mechanical strength of the laminated ceramic condenser manufactured by the manufacturing method of the present invention is extremely excellent, and it can be soldered directly to a printed circuit board, and the terminal electrodes do not come off due to the deflection of the board. It is extremely effective in preventing cracks from occurring in the device and is of great significance.

尚、実施例ではガラスフリットとしてホウ素。In the examples, boron was used as the glass frit.

ケイ素、鉛の酸化物を用いたか、これにさらに亜鉛やア
ルミニウムの酸化物を含むものでもよく、まだホウ素、
ケイ素、ビスマスを主体とするガラスフリットを用いる
ことも可能である。そして、実施例ではチタン酸バリウ
ム、チタン酸カルシウム、酸化ニオブ、二酸化マンガン
よりなるセラミック誘電体を用いたが、これはセラミッ
ク誘電体であるならばいかなる組成にも適用しうるもの
である。また、実施例では端子電極として銀を用いたが
、銀とパラジウムの合金でもよいものである。
Silicon or lead oxides may be used, or oxides of zinc or aluminum may be used, and boron,
It is also possible to use a glass frit mainly composed of silicon or bismuth. In the examples, ceramic dielectrics made of barium titanate, calcium titanate, niobium oxide, and manganese dioxide were used, but any ceramic dielectric composition can be used. Furthermore, although silver was used as the terminal electrode in the embodiment, an alloy of silver and palladium may also be used.

【図面の簡単な説明】[Brief explanation of the drawing]

図は本発明の製造方法に基づく積層セラミックコンデン
サを示す図である。 1・・・・・・セラミック誘電体層、2・・・・・・金
属電極層(パラジウム電極)、3・・・・・・ガラス層
、4・・・・・・銀電極。
The figure shows a multilayer ceramic capacitor based on the manufacturing method of the present invention. 1... Ceramic dielectric layer, 2... Metal electrode layer (palladium electrode), 3... Glass layer, 4... Silver electrode.

Claims (1)

【特許請求の範囲】[Claims] セラミック誘電体層及び金属電極層が交互に積層されて
なる積層体をアルミナ及びガラスフリットの混合粉末に
埋込んだ後、熱処理することにより上記積層体内部に上
記ガラス成分を拡散させてなる工程を有することを特徴
とする積層セラミックコンデンサの製造方法。
A process of embedding a laminate in which ceramic dielectric layers and metal electrode layers are alternately laminated in a mixed powder of alumina and glass frit, and then heat-treating the laminate to diffuse the glass component into the laminate. A method for manufacturing a multilayer ceramic capacitor, comprising:
JP22145082A 1982-12-16 1982-12-16 Method of producing laminated ceramic condenser Granted JPS59111319A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22145082A JPS59111319A (en) 1982-12-16 1982-12-16 Method of producing laminated ceramic condenser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22145082A JPS59111319A (en) 1982-12-16 1982-12-16 Method of producing laminated ceramic condenser

Publications (2)

Publication Number Publication Date
JPS59111319A true JPS59111319A (en) 1984-06-27
JPH0115126B2 JPH0115126B2 (en) 1989-03-15

Family

ID=16766918

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22145082A Granted JPS59111319A (en) 1982-12-16 1982-12-16 Method of producing laminated ceramic condenser

Country Status (1)

Country Link
JP (1) JPS59111319A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0379008A (en) * 1989-08-22 1991-04-04 Matsushita Electric Ind Co Ltd Manufacture of laminated ceramic capacitor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0379008A (en) * 1989-08-22 1991-04-04 Matsushita Electric Ind Co Ltd Manufacture of laminated ceramic capacitor

Also Published As

Publication number Publication date
JPH0115126B2 (en) 1989-03-15

Similar Documents

Publication Publication Date Title
US4766027A (en) Method for making a ceramic multilayer structure having internal copper conductors
JP3797281B2 (en) Conductive paste for terminal electrode of multilayer ceramic electronic component, method for manufacturing multilayer ceramic electronic component, multilayer ceramic electronic component
JP3636123B2 (en) Manufacturing method of multilayer ceramic electronic component and multilayer ceramic electronic component
JPH0837127A (en) Monolithic ceramic capacitor and its production
JP2943380B2 (en) Multilayer ceramic capacitor and manufacturing method thereof
JPS6112016A (en) Method of producing base metal electrode laminated layer capacitor having strength increased terminal
JP2970030B2 (en) Multilayer ceramic capacitor, method of manufacturing the same, and external electrode paste used therein
DE102022134924A1 (en) ELECTRONIC MULTILAYER CERAMIC DEVICE AND METHOD OF PRODUCTION THEREOF
JPS5917232A (en) Composite laminated ceramic part and method of producing same
JPS59111319A (en) Method of producing laminated ceramic condenser
JPH11340090A (en) Manufacture of grain boundary insulated multilayer ceramic capacitor
JPH03136308A (en) Multilayer ceramic capacitor
JPH03296205A (en) Ceramic capacitor
JP2018182107A (en) Multilayer ceramic capacitor and manufacturing method thereof
JPS598323A (en) Method of producing laminated ceramic condenser
JPS59141215A (en) Method of producing laminated ceramic condenser
KR20200090617A (en) Ceramic electronic device and manufacturing method of the same
JPH0115125B2 (en)
JPS62122103A (en) Manufacture of laminated chip varistor
JPH0348415A (en) Paste composition and manufacture of laminated ceramic capacitor
JPS6094717A (en) Method of producing laminated ceramic condenser
JPH05299288A (en) Manufacture of laminated ceramic capacitor
JPH01166599A (en) Manufacture of laminated ceramic substrate
JP2853088B2 (en) Ceramic block with composite capacitance
JPH07201637A (en) Multilayer ceramic electronic device