JPS598323A - Method of producing laminated ceramic condenser - Google Patents
Method of producing laminated ceramic condenserInfo
- Publication number
- JPS598323A JPS598323A JP11728982A JP11728982A JPS598323A JP S598323 A JPS598323 A JP S598323A JP 11728982 A JP11728982 A JP 11728982A JP 11728982 A JP11728982 A JP 11728982A JP S598323 A JPS598323 A JP S598323A
- Authority
- JP
- Japan
- Prior art keywords
- laminated ceramic
- laminate
- ceramic condenser
- manufacturing
- producing laminated
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Fixed Capacitors And Capacitor Manufacturing Machines (AREA)
- Ceramic Capacitors (AREA)
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.
Description
【発明の詳細な説明】
本発明はガラスフリットを積層体表面に付着し熱処理す
ることによりガラス層を形成させ、さらにガラス成分の
一部または全部を積層体内部に拡散させたことを特徴と
する積層セラミソクコンテンサの製造方法に関する。DETAILED DESCRIPTION OF THE INVENTION The present invention is characterized in that a glass layer is formed by adhering a glass frit to the surface of a laminate and heat-treating it, and further, a part or all of the glass component is diffused into the inside of the laminate. The present invention relates to a method for manufacturing a laminated ceramic container.
従来より小型大容量化を目的としてセラミック薄膜誘電
体の並列配線構造を有する積層セラミノ゛クコンテンサ
はよく知られている。この積層セラミノクコンテンサの
製造方法は一般的には次の通りである。まず、チタン酸
バリウム、チタン酸カルシウム、チタン酸マグネシウム
などの酸化物に数種の添加物を加え、混合した後、有機
バインダを加えて粘性の高いスラリーとし、これをドク
ターブレード法、パイプドクター法などの一般的なシー
ト成型方法により、30〜100μmのシートを作製す
る。この後、シート上にパラジウムまたは銀とパラジウ
ムの合金粉末を有機パイシダ中に分散させたペーストを
スクリーン印刷法により印[1し、その上にシートを積
み重ねて印刷をする。2. Description of the Related Art Laminated ceramic capacitors having a parallel wiring structure of ceramic thin film dielectrics have been well known for the purpose of achieving smaller size and larger capacity. The method for manufacturing this laminated ceramic condenser is generally as follows. First, several additives are added to oxides such as barium titanate, calcium titanate, and magnesium titanate, and after mixing, an organic binder is added to form a highly viscous slurry, which is processed using the doctor blade method and pipe doctor method. A sheet of 30 to 100 μm is produced by a general sheet molding method such as. Thereafter, a paste prepared by dispersing palladium or an alloy powder of silver and palladium in organic picids is printed on the sheet by screen printing, and the sheets are stacked on top of the paste for printing.
これをくり返しながら2〜40層の積層体を作製する。By repeating this process, a laminate of 2 to 40 layers is produced.
この積層体を適当な大きさに切断し、電気炉にて120
0〜1400°Gで焼成すると焼結体のチップが得られ
る。このチップの端面に端子電極として、銀とパラジウ
ム合金または銀の粉末よりなるペーストを付着し、70
0〜900°Cで焼付けることにより、積層セラミソク
コンテンサが得られる。This laminate was cut into an appropriate size and heated to 120 mm in an electric furnace.
Sintered chips are obtained by firing at 0 to 1400°G. A paste made of silver and palladium alloy or silver powder is attached to the end face of this chip as a terminal electrode, and
By baking at 0 to 900°C, a laminated ceramic condenser is obtained.
このような積層セラミックコンデンサは、プリント配線
基板に直に半田付けされて用いられることがほとんどで
ある。プリント配線基板はエボキシ樹脂からなり、使用
中にたわみを生じることがどうしても起りがちであるた
め、半田付けされた積層セラミックコンデンサの端子に
は1c)kg以上の引張り応力が作用することがしばし
ばあり、との゛応力に耐えきれず、端子電極がはずれた
り、素体白身にクラックを生じ、特性上に支障をきたす
ことがあった。In most cases, such multilayer ceramic capacitors are used by being directly soldered to a printed wiring board. Printed wiring boards are made of epoxy resin and tend to bend during use, so tensile stress of 1 c) kg or more often acts on the soldered terminals of multilayer ceramic capacitors. In some cases, the terminal electrodes were not able to withstand the stress caused by the wires, causing the terminal electrodes to come off, and cracks to occur in the white of the element body, resulting in problems with properties.
本発明は上記のようなq工夫にかんがみ、実験を重ねた
結果、端子電極の接着強度及び素子強度の改善を同時に
はかり得たものである。以下、実施例に基づき詳細に本
発明の詳細な説明する。The present invention has been made in view of the above-mentioned Q-devices and as a result of repeated experiments, it has been possible to simultaneously improve the adhesive strength of terminal electrodes and the element strength. Hereinafter, the present invention will be explained in detail based on Examples.
(実施例)
チタン酸バリウム(BaTiO3)100重量部に対し
、チタン酸カルシウム(CaTi03)、酸化ニオブ(
Nb205)を共に3重量部、さらに二酸化マンガン(
MnO2)を0.2重量部添加して十分に混合する。(Example) To 100 parts by weight of barium titanate (BaTiO3), calcium titanate (CaTi03), niobium oxide (
3 parts by weight of both Nb205) and manganese dioxide (
Add 0.2 parts by weight of MnO2) and mix thoroughly.
この後、有機バインダーにてスラリー化し、プレード7
[法により8cμmの厚みのシートを作製する。このシ
ートにパラジウムペーストをスクリーン印111すし、
その−Lにシートを重ねて印1itlJをくり返し、積
層する。この積層体を切断し、1300〜1350cc
にて焼成した。この焼結伸子ノブの形状は、1.5mm
(幅) X 3 、Omm (長さ)×0.55mm(
厚さ)である。After that, it is slurried with an organic binder and plate 7
[Produce a sheet with a thickness of 8 cμm by the method. Apply palladium paste to this sheet with a screen mark of 111,
Stack the sheet on -L and repeat the mark 1itlJ to stack the sheets. This laminate was cut into 1,300 to 1,350 cc.
It was fired at. The shape of this sintered stretcher knob is 1.5mm.
(Width) x 3, Omm (Length) x 0.55mm (
thickness).
このような焼結体チップの表面に酸化ホウ素2重量部、
酸化ケイ素5重量部、酸化鉛1重量部よりなるガラスフ
リットを有機バインダーに分散させ、焼結体チップの重
量の0.1〜1重量%となるように付着させた。このも
のを白金線で作製した鋼の上にのせ、800〜850°
Cで熱処理した。2 parts by weight of boron oxide on the surface of such a sintered chip,
A glass frit consisting of 5 parts by weight of silicon oxide and 1 part by weight of lead oxide was dispersed in an organic binder and attached to the sintered chip in an amount of 0.1 to 1% by weight based on the weight of the sintered chip. Place this on a steel made of platinum wire and hold it at an angle of 800 to 850°.
It was heat-treated at C.
このようにして得られたチップの端子に銀電極を設けた
。ただし、銀電極用銀ペースト中に上記ガラスフリット
を2〜3%混合したものを用いた。Silver electrodes were provided on the terminals of the chip thus obtained. However, a mixture of 2 to 3% of the above glass frit in a silver paste for silver electrodes was used.
図は本発明の製造方法により得られた積層セラミックコ
ンデンサを示す図であり、1はセラミック誘電体、2は
パラジウム電極、3はガラス層、4は銅端子電極である
。また、下記の表は従来の製造方法、すなわちガラスフ
リットを焼結伸子ノブの表面に付着、拡散させない方法
で作製した場合と本発明の製造方法に基づく場合の積層
セラミックコンデンサの端子電極引張り強度及び抗折強
度及び電気特性の比較を示したものである。The figure shows a multilayer ceramic capacitor obtained by the manufacturing method of the present invention, in which 1 is a ceramic dielectric, 2 is a palladium electrode, 3 is a glass layer, and 4 is a copper terminal electrode. In addition, the table below shows the tensile strength of terminal electrodes of multilayer ceramic capacitors when fabricated using the conventional manufacturing method, that is, a method that does not allow glass frit to adhere or diffuse on the surface of the sintered stretcher knob, and when based on the manufacturing method of the present invention. A comparison of bending strength and electrical properties is shown.
(試料数;各30ケ)
この表カ・ら明らかなように本発明の製造方法により得
られる積層セラミノクコノテンサの強度が著しく向上す
pことが認められる。尚、コンデンサの電気的特性につ
いては静電容量が若干小さいこと以外は向ら異常は認め
られなかった。そして、このような効果が得られるのは
セラミック特有の ′気孔をガラスで満たすからであ
ると考えられる。(Number of samples: 30 each) As is clear from this table, it is recognized that the strength of the laminated ceraminokinotensa obtained by the manufacturing method of the present invention is significantly improved. Regarding the electrical characteristics of the capacitor, no abnormality was observed except for a slightly smaller capacitance. It is believed that this effect is achieved because glass fills the pores unique to ceramics.
以上述べたように、本発明の製造方法にががる積層セラ
ミックコンデンサの機械的強度は極めて優れており、ブ
リシト基板に直に21tトH付けされても占(板のたわ
みに対して端子電極がはずれたり、素子にクラックが入
ることを防止する上で極めて有効であり、その意義は大
きい。As mentioned above, the mechanical strength of the multilayer ceramic capacitor produced by the manufacturing method of the present invention is extremely excellent, and even when attached directly to a printed circuit board, the terminal electrode It is extremely effective in preventing the device from coming off or cracking, and its significance is great.
尚、実施例ではガラスフリットとしてホウ素。In the examples, boron was used as the glass frit.
ケイ素、鉛の酸化物を用いたが、これにさらに亜鉛やア
ルミニラ入の酸化物またはフッ化物を含むものでもよ<
、tたホウ素、ケイ素及びビスマスを主体とするガラス
フリットを用いることモETI’Eテアル。サラに、実
施例ではチタン酸バリウム。Although oxides of silicon and lead were used, oxides containing zinc or alumina or fluorides may also be used.
However, it is possible to use a glass frit containing mainly boron, silicon and bismuth. In the example, barium titanate.
チタン酸カルシウム、酸化ニオブ、二酸化マンガンヨリ
なるセラミック誘電体を用いたが、セラミック誘電体で
あるならばいかなる組成にも適用しうろことは言うまで
もない。Although ceramic dielectrics such as calcium titanate, niobium oxide, and manganese dioxide were used, it goes without saying that any ceramic dielectric composition can be used.
また、実施例では端子電極として銀を用いたが、銀とパ
ラジウムの合金でもよい。Further, although silver was used as the terminal electrode in the embodiment, an alloy of silver and palladium may be used.
図は本発明の製造方法に基づく積層セラミノクコンテン
サを示す図であΣ。
1・・・・・・セラミック誘電体、2・・・・・・パラ
ジウム電極、3・・・・・・ガラス層、4・・・・・・
銅端子電極。The figure is a diagram showing a laminated ceramic condenser based on the manufacturing method of the present invention. 1...Ceramic dielectric, 2...Palladium electrode, 3...Glass layer, 4...
Copper terminal electrode.
Claims (1)
なる積層体の表面全体にガラスフリットを何着させて後
、熱処理することにより、上記積層体内部に上記ガラス
成分を拡散させることを特徴とする積層セラミックコン
デンサの製造方法。The glass component is diffused into the interior of the laminate by applying a glass frit to the entire surface of the laminate, which is formed by alternately laminating ceramic dielectric layers and metal electrode layers, and then heat-treating the laminate. A manufacturing method for multilayer ceramic capacitors.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11728982A JPS598323A (en) | 1982-07-05 | 1982-07-05 | Method of producing laminated ceramic condenser |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11728982A JPS598323A (en) | 1982-07-05 | 1982-07-05 | Method of producing laminated ceramic condenser |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS598323A true JPS598323A (en) | 1984-01-17 |
JPH0135490B2 JPH0135490B2 (en) | 1989-07-25 |
Family
ID=14708057
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP11728982A Granted JPS598323A (en) | 1982-07-05 | 1982-07-05 | Method of producing laminated ceramic condenser |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS598323A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04267320A (en) * | 1991-02-21 | 1992-09-22 | Tokin Corp | Layered ceramic capacitor production method |
JPH1167574A (en) * | 1997-08-26 | 1999-03-09 | Taiyo Yuden Co Ltd | Ceramic electronic component and its manufacturing |
US6911893B2 (en) | 2001-01-18 | 2005-06-28 | Murata Manufacturing Co., Ltd. | Ceramic electronic component |
-
1982
- 1982-07-05 JP JP11728982A patent/JPS598323A/en active Granted
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04267320A (en) * | 1991-02-21 | 1992-09-22 | Tokin Corp | Layered ceramic capacitor production method |
JPH1167574A (en) * | 1997-08-26 | 1999-03-09 | Taiyo Yuden Co Ltd | Ceramic electronic component and its manufacturing |
US6911893B2 (en) | 2001-01-18 | 2005-06-28 | Murata Manufacturing Co., Ltd. | Ceramic electronic component |
Also Published As
Publication number | Publication date |
---|---|
JPH0135490B2 (en) | 1989-07-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR20180023832A (en) | Multilayer ceramic capacitor and manufacturing method of multilayer ceramic capacitor | |
JP3797281B2 (en) | Conductive paste for terminal electrode of multilayer ceramic electronic component, method for manufacturing multilayer ceramic electronic component, multilayer ceramic electronic component | |
JP3636123B2 (en) | Manufacturing method of multilayer ceramic electronic component and multilayer ceramic electronic component | |
JP7562249B2 (en) | Ceramic electronic components and their manufacturing method | |
JP7506467B2 (en) | Manufacturing method for ceramic electronic components | |
JP2943380B2 (en) | Multilayer ceramic capacitor and manufacturing method thereof | |
JP2970030B2 (en) | Multilayer ceramic capacitor, method of manufacturing the same, and external electrode paste used therein | |
JPS598323A (en) | Method of producing laminated ceramic condenser | |
JPS5917232A (en) | Composite laminated ceramic part and method of producing same | |
JPH03136308A (en) | Multilayer ceramic capacitor | |
JPH0817139B2 (en) | Laminated porcelain capacitors | |
JP2023102509A (en) | Multilayer ceramic electronic component and manufacturing method of them | |
JP2018182107A (en) | Multilayer ceramic capacitor and manufacturing method thereof | |
JPH05299288A (en) | Manufacture of laminated ceramic capacitor | |
JPH04260314A (en) | Ceramic laminate | |
JPH0115126B2 (en) | ||
JP2005268712A (en) | Laminated ceramic electronic component and manufacturing method for the same | |
JPH0115125B2 (en) | ||
JPH0420247B2 (en) | ||
JPS6094717A (en) | Method of producing laminated ceramic condenser | |
JP2784545B2 (en) | Dielectric ceramic composition for composite circuit board | |
JP7498912B2 (en) | Ceramic electronic component, mounting board, and method for manufacturing ceramic electronic component | |
JP3134430B2 (en) | Non-reducing dielectric ceramic composition | |
JPH07201637A (en) | Multilayer ceramic electronic device | |
JP2989945B2 (en) | Composite circuit board with built-in capacitor |