JPH05299288A - Manufacture of laminated ceramic capacitor - Google Patents

Manufacture of laminated ceramic capacitor

Info

Publication number
JPH05299288A
JPH05299288A JP4125753A JP12575392A JPH05299288A JP H05299288 A JPH05299288 A JP H05299288A JP 4125753 A JP4125753 A JP 4125753A JP 12575392 A JP12575392 A JP 12575392A JP H05299288 A JPH05299288 A JP H05299288A
Authority
JP
Japan
Prior art keywords
ceramic capacitor
ferroelectric
organic binder
polyurethane resin
conductive paste
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4125753A
Other languages
Japanese (ja)
Inventor
Hiroshi Ishikawa
石川  浩
Shinichi Iwata
伸一 岩田
Eikichi Yoshida
栄吉 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokin Corp
Original Assignee
Tokin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokin Corp filed Critical Tokin Corp
Priority to JP4125753A priority Critical patent/JPH05299288A/en
Publication of JPH05299288A publication Critical patent/JPH05299288A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To provide a method of manufacturing a laminated ceramic capacitor small in size and high in quality, where organic binder removable at a low temperature and high in flexibility is used as organic binder which forms conductive paste used for forming ceramic green sheets and inner electrodes in place of plastic organic binder. CONSTITUTION:Ceramic laminates 1 and inner electrodes 2 are laminated to form a laminated ceramic capacitor, where polyether polyurethane resin where -COOM [C: carbon, O: oxygen, M: hydrogen(H), potassium(K), or sodium(Na)] group as a side-chain is contained as high in concentration as 0.01 to 0.95mmmol/gram and whose glass transition temperature (Tg) is lower than 60 deg.C is used as organic bonder of ferroelectric ceramic slurry and conductive paste.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、誘電体セラミック層と
低抵抗金属の導電体層とをグリーンシート法により積
層、成形、焼結することにより得られる積層セラミック
コンデンサの製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a monolithic ceramic capacitor obtained by laminating, molding and sintering a dielectric ceramic layer and a low resistance metal conductor layer by a green sheet method.

【0002】[0002]

【従来の技術】近年、電子機器類の急速な小形化、軽量
化に伴い、それを構成する電子回路部品の小形化の要求
から、電子部品類も一層小形化されつつあり、電子回路
を構成するコンデンサ素子においても表面実装の可能な
チップタイプが主流になりつつある。プリント配線基板
などに実装されるチップコンデンサは、通常、強誘電体
セラミック粉末と有機結合剤からなる強誘電体層と、導
電性微粉末と有機結合剤からなる導電体の内部電極層と
を交互に積層した後、焼結して作られている。従って、
このような積層セラミックコンデンサの性能を左右する
要因としては、主原料である強誘電体セラミック粉末、
あるいは導電性微粉末自体の特性は無論のこと、チップ
タイプの積層セラミックコンデンサを製造する際に、こ
れら微粉末の塗膜形成に不可欠である有機結合剤の特性
もきわめて重要なものとなる。
2. Description of the Related Art In recent years, with the rapid miniaturization and weight reduction of electronic devices, electronic components are being further miniaturized to meet the demand for miniaturization of electronic circuit components constituting the electronic devices. The capacitor type that can be surface-mounted is becoming the mainstream for the capacitor element. A chip capacitor mounted on a printed wiring board or the like usually has a ferroelectric layer composed of a ferroelectric ceramic powder and an organic binder and an internal electrode layer composed of a conductive fine powder and an organic binder, which are alternately arranged. It is made by stacking and then sintering. Therefore,
Factors that affect the performance of such a monolithic ceramic capacitor are ferroelectric ceramic powder, which is the main raw material,
Alternatively, the characteristics of the conductive fine powder itself are, of course, important, and the characteristics of the organic binder, which is indispensable for forming a coating film of these fine powders, are also very important when manufacturing a chip type multilayer ceramic capacitor.

【0003】即ち、有機結合剤に要求される主な特性と
しては、グリーンシート法による積層プロセスに充分対
応できる機械的強度と可とう性を付与できるものである
こと、積層、プレス成形時の圧着性を充分に付与できる
ものであること、更には、焼結前処理として行われる脱
有機結合剤処理、即ち脱バインダが低温で処理でき、か
つ有機結合剤が強誘電体セラミック粉末、及び導電性微
粉末から完全に除去されなければならない等の条件が満
たされなければならない。これらの要求を満たす有機結
合剤として非水系、即ち有機溶剤を分散媒とする系にお
いては、従来はニトロセルロース、エチルセルローズ、
ポリビニルブチラール等があり、これらの有機結合剤に
可とう性を付与するため各種可塑剤を併用添加して、広
く一般的に用いられてきた。
That is, the main properties required of the organic binder are that it can impart mechanical strength and flexibility sufficient for the lamination process by the green sheet method, and pressure bonding during lamination and press molding. That the binder can be sufficiently imparted, and further that the organic binder is treated as a pre-sintering treatment, that is, the binder can be treated at a low temperature, and the organic binder is a ferroelectric ceramic powder and a conductive material. Conditions such as being completely removed from the fine powder must be met. As a non-aqueous organic binder satisfying these requirements, that is, in a system using an organic solvent as a dispersion medium, conventionally, nitrocellulose, ethyl cellulose,
There are polyvinyl butyral and the like, which have been widely and commonly used by adding various plasticizers together in order to impart flexibility to these organic binders.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、積層セ
ラミックコンデンサのより小形化、高性能化を押し進め
るにあたって、これら従来の有機結合剤が種々の欠点を
有していることが判明してきている。即ち、第一にコン
デンサとしての同一性能を確保しつつ、一層の小形化を
はかるためには、誘電体層、及び導電体層の粉末充填率
を向上させる必要があるが、ニトロセルロース、エチル
セルローズ、ポリビニルブチラール等の従来の有機結合
剤は、セラミック粉末、及び銀(Ag)−パラジウム
(Pd)混合粉末に代表される内部電極を形成する導電
性粉末に対する分散特性が弱く、そのために高い粉末充
填率が望めないこと。第二に、従来の有機結合剤は一般
にガラス転移温度(軟化温度)が高いために可とう性に
乏しく、脱バインダ処理温度が高く、又扱いやすくやわ
らかにするためには可塑剤の添加の増量が不可欠であ
り、誘電体層や導電体層の充填率を劣化させる原因とな
っていた。従って、塗膜の充填率の向上を指向するにあ
たっては、有機結合剤、及び可塑剤の添加量をいかに減
少させることができるかが課題となっていた。
However, it has been found that these conventional organic binders have various drawbacks in order to further miniaturize and improve the performance of the monolithic ceramic capacitor. That is, first, in order to further reduce the size while ensuring the same performance as a capacitor, it is necessary to improve the powder filling rate of the dielectric layer and the conductor layer. Conventional organic binders such as polyvinyl butyral and the like have weak dispersion characteristics for the ceramic powder and the conductive powder forming the internal electrodes represented by the silver (Ag) -palladium (Pd) mixed powder, and therefore high powder packing is achieved. The rate cannot be expected. Second, conventional organic binders generally have a low glass transition temperature (softening temperature) and are therefore less flexible, and have a high binder removal temperature. Also, in order to make them easy to handle and soft, the amount of plasticizer added must be increased. Is indispensable and has been a cause of deteriorating the filling rate of the dielectric layer and the conductor layer. Therefore, in order to improve the filling rate of the coating film, how to reduce the addition amounts of the organic binder and the plasticizer has been a problem.

【0005】[0005]

【課題を解決するための手段】本発明は、懸かる従来の
有機結合剤の欠点を解消し、小形で高性能なグリーンシ
ート法により積層し形成した積層セラミックコンデンサ
を提供するものである。本発明は、強誘電体セラミック
粉末と有機結合剤を主原料とし、有機溶剤を分散媒とす
る強誘電体スラリーを成膜、乾燥することにより得られ
たグリーンシート上に、金属微粉末と有機結合剤を主原
料とし、有機溶剤を分散媒とする導電性ペーストを印刷
後、積層、プレス成形し、焼結することにより得られる
積層セラミックコンデンサにおいて、前記強誘電体スラ
リーの有機結合剤はポリウレタン樹脂からなる有機結合
剤の側鎖に、−COOM[C:炭素、O:酸素、M:水
素(H)、カリウム(K)またはナトリウム(Na)]
基を有し、かつガラス転移温度(Tg)が60℃以下の
ポリエーテルポリウレタン樹脂を用い形成したことを特
徴とする積層セラミックコンデンサの製造方法であり、
又前記内部電極を形成する導電性ペーストの有機結合剤
も強誘電体スラリを形成する際と同様ポリウレタン樹脂
からなる有機結合剤の側鎖に、−COOM[C:炭素、
O:酸素、M:水素(H)、カリウム(K)またはナト
リウム(Na)]基を有し、かつガラス転移温度(T
g)が60℃以下のポリエーテルポリウレタン樹脂を用
い形成したことを特徴とする積層セラミックコンデンサ
の製造方法である。
SUMMARY OF THE INVENTION The present invention overcomes the deficiencies of conventional organic binders and provides a small, high performance laminated ceramic capacitor formed by the green sheet method. The present invention comprises a ferroelectric ceramic powder and an organic binder as main raw materials, a ferroelectric slurry having an organic solvent as a dispersion medium, formed into a film, and dried on a green sheet obtained by drying the metal fine powder and the organic binder. In a multilayer ceramic capacitor obtained by printing a conductive paste containing a binder as a main raw material and an organic solvent as a dispersion medium, laminating, press molding and sintering, the organic binder of the ferroelectric slurry is polyurethane. -COOM [C: carbon, O: oxygen, M: hydrogen (H), potassium (K) or sodium (Na)] on the side chain of the organic binder made of resin.
A method for producing a monolithic ceramic capacitor, which comprises a polyether polyurethane resin having a group and a glass transition temperature (Tg) of 60 ° C. or lower,
Further, the organic binder of the conductive paste forming the internal electrodes also has -COOM [C: carbon, on the side chain of the organic binder made of polyurethane resin as in the case of forming the ferroelectric slurry.
O: oxygen, M: hydrogen (H), potassium (K) or sodium (Na)] group, and has a glass transition temperature (T
g) is formed by using a polyether polyurethane resin having a temperature of 60 ° C. or lower.

【0006】本発明において、誘電体層を形成する誘電
体微粉末、及び内部電極を形成する導電体微粉末を分散
するのに用いるポリエーテルポリウレタン樹脂は、主鎖
中にエーテル結合部位を有するポリエーテルポリウレタ
ンであって、側鎖として、−COOM[C:炭素、O:
酸素、M:水素(H)、カリウム(K)またはナトリウ
ム(Na)]基を有し、かつガラス転移温度(Tg)が
60℃以下のポリエーテルポリウレタン樹脂を用いて誘
電体層のグリーンシート、及び導電ペーストを形成し、
積層セラミックコンデンサとしたものである。
In the present invention, the polyether polyurethane resin used to disperse the dielectric fine powder forming the dielectric layer and the conductive fine powder forming the internal electrode is a polyether polyurethane having an ether bond site in the main chain. An ether polyurethane having side chains of -COOM [C: carbon, O:
Oxygen, M: hydrogen (H), potassium (K) or sodium (Na)] group, and a green sheet of a dielectric layer using a polyether polyurethane resin having a glass transition temperature (Tg) of 60 ° C. or less, And forming a conductive paste,
It is a monolithic ceramic capacitor.

【0007】即ち本発明は、1.強誘電体セラミック粉
末と有機結合剤を主原料とし、有機溶剤を分散媒とする
強誘電体スラリーを成膜、乾燥して得られたグリーンシ
ート上に、金属微粉末と有機結合剤を主原料とし、有機
溶剤を分散媒とする導電性ペーストを印刷後、積層、プ
レス成形し、焼結することにより得られる積層セラミッ
クコンデンサにおいて、強誘電体スラリー、及び導電ペ
ーストの有機結合剤が、側鎖として−COOM[C:炭
素、O:酸素、M:水素(H)、カリウム(K)または
ナトリウム(Na)]基を有し、かつガラス転移温度
(Tグラム)が60℃以下のポリエーテルポリウレタン
樹脂からなることを特徴とする積層セラミックコンデン
サの製造方法である。2.強誘電体スラリー、及び導電
ペーストの有機結合剤のポリエーテルポリウレタン樹脂
に含まれる側鎖としての−COOM[C:炭素、O:酸
素、M:水素(H)、カリウム(K)またはナトリウム
(Na)]基のポリエーテルポリウレタン樹脂の重量1
グラム当りの濃度は、0.01ミリモル/グラムないし
0.95ミリモル/グラムの範囲であることを特徴とす
る請求項1記載の積層セラミックコンデンサの製造方法
である。
That is, the present invention is as follows. Ferroelectric ceramic powder and organic binder as the main raw materials, a ferroelectric slurry with organic solvent as the dispersion medium is formed into a film, and dried to obtain a green sheet on which the fine metal powder and organic binder are the main raw materials. In a multilayer ceramic capacitor obtained by printing a conductive paste having an organic solvent as a dispersion medium, laminating, press molding, and sintering, the ferroelectric slurry and the organic binder of the conductive paste have side chains. -COOM [C: carbon, O: oxygen, M: hydrogen (H), potassium (K) or sodium (Na)] as a group, and the glass transition temperature (T gram) is 60 ° C. or less. It is a method for manufacturing a monolithic ceramic capacitor, which is made of resin. 2. -COOM [C: carbon, O: oxygen, M: hydrogen (H), potassium (K) or sodium (Na) as a side chain contained in the polyether polyurethane resin as the organic binder of the ferroelectric paste and the conductive paste. )] Weight of the base polyether polyurethane resin 1
The method according to claim 1, wherein the concentration per gram is in the range of 0.01 mmol / gram to 0.95 mmol / gram.

【0008】[0008]

【作用】本発明おける−COOM[C:炭素、O:酸
素、M:水素(H)、カリウム(K)またはナトリウム
(Na)]基含有ポリエーテルポリウレタン樹脂の作用
について、発明者らは次のように考えている。即ち、第
一に、ポリウレタン樹脂の側鎖を形成する−COOM
[C:炭素、O:酸素、M:水素(H)、カリウム
(K)またはナトリウム(Na)]基は、親水性表面を
有し、強誘電体セラミック粉末、及び銀(Ag)−パラ
ジウム(Pd)に代表される導電性微粉末表面を指向す
るために優れた粉体分散特性が得られ、その結果とし
て、グリーンシートの充填密度が向上する。
The action of the -COOM [C: carbon, O: oxygen, M: hydrogen (H), potassium (K) or sodium (Na)] group-containing polyether polyurethane resin in the present invention is as follows. I think so. That is, first, -COOM which forms the side chain of the polyurethane resin.
The [C: carbon, O: oxygen, M: hydrogen (H), potassium (K) or sodium (Na)] group has a hydrophilic surface, and has a ferroelectric ceramic powder and silver (Ag) -palladium ( Since it is directed to the surface of the conductive fine powder represented by Pd), excellent powder dispersion characteristics are obtained, and as a result, the packing density of the green sheet is improved.

【0009】第二に、ガラス転移温度(Tg)が60℃
以下であるために、樹脂自体室温において、実用上充分
な程度の可とう性を有することになる。従って、可塑剤
の添加なしに適度な可とう性と積層時の圧着性が得ら
れ、塗膜密度を低下させる要因である可塑剤を除外する
ことができ、その結果として塗膜の充填密度が向上す
る。
Second, the glass transition temperature (Tg) is 60 ° C.
Because of the following, the resin itself has a practically sufficient flexibility at room temperature. Therefore, it is possible to obtain appropriate flexibility and pressure-bonding property during lamination without adding a plasticizer, and it is possible to exclude a plasticizer that is a factor that lowers the coating density, and as a result, the filling density of the coating film improves.

【0010】第三に、主鎖にエーテル結合部位を有して
いるために、比較的低い温度においてこの部位が容易に
酸化分解を受け、その結果として脱有機結合剤処理、即
ち脱バインダが速やかに進行する。
Thirdly, since the main chain has an ether bond site, this site is easily oxidatively decomposed at a relatively low temperature, and as a result, the organic binder removal treatment, that is, the binder removal is promptly performed. Proceed to.

【0011】前記ポリエーテルポリウレタン樹脂のガラ
ス転移温度(Tg)が60℃を超えると、本発明の一効
果である可とう性の付与が可塑剤の添加なくしては望め
なくなるので好ましくなく、又前記ポリエーテルポリウ
レタン樹脂の−COOM[C:炭素、O:酸素、M:水
素(H)、カリウム(K)またはナトリウム(Na)]
基の濃度は、ポリエーテルポリウレタン樹脂の単位重量
1グラム当り0.01ミリモル/グラムないし0.95ミ
リモル/グラムの範囲にあることが望ましい。この濃度
が0.01ミリモル/グラム以下である場合には、本発
明の一効果である粉体の充填密度の向上が望めず、又こ
の濃度が0.95ミリモル/グラム以上では、誘電体微
粉末のスラリー、又は導電ペーストのゲル化を引き起こ
し望ましくない。又、側鎖を構成するMの元素として、
本発明の実施例では水素(H)を有するものを用いた
が、水素(H)の代わりにカリウム(K)、ナトリウム
(Na)が結合したものであっても、有機溶剤の効果に
ついては実用面で何等変わることはない。これらの作用
により、本発明によるポリエーテルポリウレタン樹脂
は、積層セラミックコンデンサの小形化に不可欠である
グリーンシート、及び印刷密度の向上と優れた加工取扱
性が得られるものである。
When the glass transition temperature (Tg) of the above-mentioned polyether polyurethane resin exceeds 60 ° C., it is not preferable because imparting flexibility, which is one of the effects of the present invention, cannot be expected without the addition of a plasticizer. -COOM [C: carbon, O: oxygen, M: hydrogen (H), potassium (K) or sodium (Na)] of a polyether polyurethane resin
The concentration of groups is preferably in the range of 0.01 mmol / gram to 0.95 mmol / gram per gram of polyether polyurethane resin. When the concentration is 0.01 mmol / g or less, the improvement of the packing density of the powder, which is one of the effects of the present invention, cannot be expected. On the other hand, when the concentration is 0.95 mmol / g or more, the dielectric fineness is increased. This is not desirable because it causes the slurry of powder or gelation of the conductive paste. In addition, as the element of M constituting the side chain,
In the examples of the present invention, those having hydrogen (H) were used. However, even if potassium (K) or sodium (Na) is bonded instead of hydrogen (H), the effect of the organic solvent is practical. There is no change in terms of aspect. Due to these actions, the polyether polyurethane resin according to the present invention can obtain a green sheet, which is indispensable for downsizing of a monolithic ceramic capacitor, and an improvement in printing density and excellent processability.

【0012】[0012]

【実施例】本発明による積層セラミックコンデンサの製
造方法の一実施例を説明する。図1は、積層セラミック
コンデンサの基本構造を示したものである。誘電体材料
からなるセラミック積層体1と、セラミック積層体の間
に積層された導電体からなる内部電極2が両端面の端子
電極に交互に接続引き出され、コンデンサが形成され
る。前述の通り、強誘電体セラミック粉末、及び有機結
合剤を主成分とするスラリーをドクターブレード等にて
成膜乾燥し、その上に低抵抗金属微粉末と有機結合剤を
主成分とする導電体ペーストを印刷、乾燥し、積層、熱
プレス成形を行い、焼結して図2に示すコンデンサ素子
3を得る。更に、図3に示す通り、誘電体の積層体の間
の内部電極に交互に接続する端子電極4を形成すること
により、本発明の積層セラミックコンデンサを得る。こ
こで、本発明の効果を明確にするために、予め組成の異
なるセラミックスラリー、及び導電体ペーストを作成
し、それぞれの諸特性を評価すると共に、その後に本発
明の積層セラミックコンデンサを作成し評価した。
EXAMPLE An example of a method for manufacturing a monolithic ceramic capacitor according to the present invention will be described. FIG. 1 shows the basic structure of a monolithic ceramic capacitor. A ceramic laminated body 1 made of a dielectric material and an internal electrode 2 made of a conductor laminated between the ceramic laminated bodies are alternately connected and drawn out to the terminal electrodes on both end faces to form a capacitor. As described above, the ferroelectric ceramic powder and the slurry containing the organic binder as the main component are film-dried with a doctor blade or the like, and the low resistance metal fine powder and the conductor containing the organic binder as the main components are formed on the film. The paste is printed, dried, laminated, hot pressed, and sintered to obtain the capacitor element 3 shown in FIG. Further, as shown in FIG. 3, by forming terminal electrodes 4 which are alternately connected to the internal electrodes between the laminated bodies of the dielectrics, the laminated ceramic capacitor of the present invention is obtained. Here, in order to clarify the effect of the present invention, ceramic slurries having different compositions and conductor pastes are prepared in advance, and various characteristics of each are evaluated, and thereafter, the laminated ceramic capacitor of the present invention is prepared and evaluated. did.

【0013】[0013]

【実施例1】本発明によるポリエーテルポリウレタン樹
脂を用いた積層セラミックコンデンサを形成するセラミ
ックグリーンシートの特性を評価するため、表1に示さ
れるセラミックスラリー組成の原料を、加圧ニーダ、及
びサンドグラインダによりセラミックスラリーにし、ド
クターブレード法にて乾燥後の厚さが20μmとなるよ
う成膜し、グロスメーターによる光沢度測定と、折曲げ
試験による可とう性試験を行った後、熱天秤法にて脱バ
インダ完了温度を求めた。得られた結果を表7に示す。
Example 1 In order to evaluate the characteristics of a ceramic green sheet forming a monolithic ceramic capacitor using a polyether polyurethane resin according to the present invention, the raw materials of the ceramic slurry composition shown in Table 1 were used as a pressure kneader and a sand grinder. To a ceramic slurry with a doctor blade method to form a film with a thickness of 20 μm after drying, and after performing gloss measurement with a gloss meter and flexibility test with a bending test, use a thermobalance method. The binder removal completion temperature was determined. The results obtained are shown in Table 7.

【表1】 [Table 1]

【0014】[0014]

【実施例2】本発明によるポリエーテルポリウレタン樹
脂を用いた積層セラミックコンデンサを形成する内部電
極導体の特性を評価するため、表2に示される導電体塗
料組成の原料を、加圧ニーダ、及びサンドグラインダに
より導電ペーストにし、スクリーン印刷法にて5.5m
m×4.5mmの電極パターンを乾燥後の厚みで3μm
ないし4μmとなるように印刷し、パターン精度を顕微
鏡を用い観察した。更に、同ペーストをドクターブレー
ド法にて、乾燥後の厚みが20μmとなるように成膜
し、グロスメーターによる光沢度測定と折曲げ試験によ
る可とう性試験を行った後、熱天秤法にて脱バインダ完
了温度を求めた。得られた結果を表7に示す。
Example 2 In order to evaluate the characteristics of the internal electrode conductors forming the laminated ceramic capacitor using the polyether polyurethane resin according to the present invention, the raw materials of the conductor coating composition shown in Table 2 were used with a pressure kneader and a sand. Conductive paste with a grinder and 5.5m by screen printing
3m in thickness after drying the electrode pattern of mx 4.5mm
It was printed so as to have a thickness of 4 to 4 μm, and the pattern accuracy was observed with a microscope. Further, the same paste was formed by a doctor blade method so that the thickness after drying was 20 μm, glossiness was measured by a gloss meter and flexibility test by a bending test, and then by a thermobalance method. The binder removal completion temperature was determined. The results obtained are shown in Table 7.

【表2】 [Table 2]

【0015】[0015]

【比較例1】表3は従来法によるセラミックグリーンシ
ートの特性を本発明と比較、評価したものである。表3
に示す組成にてセラミックスラリーを得、実施例1と同
様にドクターブレード法にて乾燥後の厚さが20μmと
なるよう成膜し、グロスメーターによる光沢度測定と折
曲げ試験による可とう性試験を行った後、熱天秤法にて
脱バインダ完了温度を求めた。得られた結果を表7に示
す。
COMPARATIVE EXAMPLE 1 Table 3 shows the characteristics of the conventional ceramic green sheet compared with the present invention and evaluated. Table 3
A ceramic slurry having the composition shown in (1) was obtained, and a film was formed by the doctor blade method so that the thickness after drying was 20 μm as in Example 1, and the flexibility test was performed by measuring the glossiness with a gloss meter and the bending test. After that, the binder removal completion temperature was determined by the thermobalance method. The results obtained are shown in Table 7.

【表3】 [Table 3]

【0016】[0016]

【比較例2】表4に示す従来の組成にてセラミックスラ
リーを得、ドクターブレード法により乾燥後の厚さが2
0μmとなるよう成膜し、グロスメーターによる光沢度
測定と折曲げ試験による可とう性試験を行った後、熱天
秤法にて脱バインダの完了温度を求めた。得られた結果
を表7に示す。
Comparative Example 2 A ceramic slurry having a conventional composition shown in Table 4 was obtained, and the thickness after drying was 2 by the doctor blade method.
A film was formed to a thickness of 0 μm, glossiness was measured by a gloss meter, and a flexibility test was performed by a bending test, and then the completion temperature of the binder removal was determined by a thermobalance method. The results obtained are shown in Table 7.

【表4】 [Table 4]

【0017】[0017]

【比較例3】表5に示す組成にて実施例2と同じ条件に
より導電体ペーストを得た。得られた結果は表7に示
す。
[Comparative Example 3] A conductor paste having the composition shown in Table 5 was obtained under the same conditions as in Example 2. The results obtained are shown in Table 7.

【表5】 [Table 5]

【0018】[0018]

【比較例4】表6に示す組成にて実施例2と同じ条件に
より導電体ペーストを得た。得られた結果を表7に示
す。
[Comparative Example 4] A conductive paste having the composition shown in Table 6 was obtained under the same conditions as in Example 2. The results obtained are shown in Table 7.

【表6】 [Table 6]

【0019】得られた各グリーンシートの評価結果を表
7に示した。
Table 7 shows the evaluation results of the obtained green sheets.

【表7】 表中において、光沢度は強誘電体セラミック粉末、導電
体粉末の分散性の程度の指標であり、その値が大きい
程、優れた分散状態にあるといえる。積層セラミックコ
ンデンサにおいて、強誘電体セラミック粉末、導電体粉
末の分散性を向上させることはきわめて重要である。即
ち優れた分散状態にあることは強誘電体セラミック粉末
の充填率と内部電極の充填率の向上化が可能となり、混
合粉末の均一化が促進されることで、絶縁抵抗、破壊電
圧が向上し、その結果として高温高湿下での信頼性が向
上できる。
[Table 7] In the table, the glossiness is an index of the dispersibility of the ferroelectric ceramic powder and the conductor powder, and it can be said that the larger the value, the better the dispersion state. In a laminated ceramic capacitor, it is extremely important to improve the dispersibility of the ferroelectric ceramic powder and the conductor powder. That is, being in an excellent dispersed state makes it possible to improve the filling rate of the ferroelectric ceramic powder and the filling rate of the internal electrodes, and promotes the homogenization of the mixed powder, thereby improving the insulation resistance and the breakdown voltage. As a result, the reliability under high temperature and high humidity can be improved.

【0020】表中において、可とう性は、各グリーンシ
ートのしなやかさの尺度である。可とう性が不十分であ
ると、グリーンシート形成時にクラックが発生したり、
グリーンシートの多層化に際し圧着不良を生じ、その結
果として作業性の低下、並びに不良発生を起こすので好
ましくない。
In the table, the flexibility is a measure of the flexibility of each green sheet. If the flexibility is insufficient, cracks may occur during the formation of the green sheet,
When multilayering the green sheet, a crimping failure occurs, resulting in a decrease in workability and a failure, which is not preferable.

【0021】表中におけるパターン精度は、導電体層の
形状自在性、及び薄膜化、微細化の尺度となるものであ
り、積層セラミックコンデンサの小型、高性能化に不可
欠な要素であり、導電体ペーストの分散状態に強く依存
する。このように表7に示す諸特性からわかるように、
本発明による積層セラミックコンデンサの製造方法は、
積層セラミックコンデンサの製法及び品質について極め
て有効である。次に、上記実施例、及び比較例の各組成
にて積層セラミックコンデンサを作成し、従来例により
作られたコンデンサとその特性の比較を行った。
The pattern accuracy in the table is a measure of the flexibility of the shape of the conductor layer and the thinning and miniaturization of the conductor layer, and is an essential element for downsizing and high performance of the laminated ceramic capacitor. It strongly depends on the dispersion state of the paste. Thus, as can be seen from the characteristics shown in Table 7,
A method for manufacturing a monolithic ceramic capacitor according to the present invention,
It is extremely effective for manufacturing method and quality of laminated ceramic capacitors. Next, a laminated ceramic capacitor was prepared with each composition of the above-mentioned Examples and Comparative Examples, and the characteristics of the laminated ceramic capacitors were compared with those of the capacitors manufactured by the conventional example.

【0022】[0022]

【実施例3】表1に示す複合ペロブスカイト構造を持つ
鉛(Pb)系強誘電体セラミック粉末と、ポリエーテル
ポリウレタン樹脂、有機溶剤とを加圧ニーダで5時間混
合後、サンドグライダへ投入し強誘電体スラリーを得
た。その強誘電体スラリーをドクターブレード法にて、
乾燥後の厚みが20μmとなるよう120mm×160
mmの大きさに成膜しグリーンシートを成形した後、表
2に示す銀(Ag)、パラジウム(Pd)粉末と、ポリ
エーテルポリウレタン樹脂、及び溶剤とを加圧ニーダで
混合後、サンドグラインダへ投入してペースト化した内
部電極ペーストを、スクリーン印刷にて先のグリーンシ
ート上へ印刷した。印刷は乾燥後の厚みで3μmないし
4μmとなるよう印刷し、製品時に正電位と負電位が印
加されるため、対向して積層された電極の重なる電極面
積が6.0mm×4.3mmとなるように二種の電極を印
刷し、又一回の印刷で複数個分の内部電極を120mm
×160mmの面積内に印刷した。そのグリーンシート
を打ち抜き、金型内へグリーンシートを14枚、内部電
極を印刷したグリーンシートを28枚、更にグリーンシ
ートを15枚積層し、熱圧着を行って120mm×16
0mm×0.85mmの積層体を得た。その積層体を夫
々1個ずつのコンデンサ素子状に切り出し、450℃×
5時間で脱バインダを行い、950℃×10時間大気中
で焼成を行った後、内部に積層された電極に接続する銀
ペーストに両端面をディップ塗布し、700℃×1時間
焼付後、表8に示す本発明による積層セラミックコンデ
ンサを得た。その積層セラミックコンデンサについて、
絶縁抵抗、及び良品率の調査、更に高温負荷試験を行
い、その結果を表9に示す。
Example 3 A lead (Pb) -based ferroelectric ceramic powder having a composite perovskite structure shown in Table 1, a polyether polyurethane resin, and an organic solvent were mixed with a pressure kneader for 5 hours, and then charged into a sand glider. A dielectric slurry was obtained. With the doctor blade method, the ferroelectric slurry
120mm × 160 so that the thickness after drying is 20μm
After forming a film with a size of mm to form a green sheet, the silver (Ag) and palladium (Pd) powders shown in Table 2 are mixed with a polyether polyurethane resin and a solvent by a pressure kneader, and then the mixture is transferred to a sand grinder. The internal electrode paste, which was charged and made into a paste, was printed on the above green sheet by screen printing. Printing is performed so that the thickness after drying is 3 μm to 4 μm, and since positive and negative potentials are applied at the time of production, the overlapping electrode area of the electrodes laminated facing each other is 6.0 mm × 4.3 mm. 2 kinds of electrodes are printed, and a plurality of internal electrodes for 120 mm can be printed by one printing.
Printed within an area of x160 mm. The green sheets were punched out, 14 green sheets were laminated in the mold, 28 green sheets with internal electrodes were printed, and 15 green sheets were further laminated.
A 0 mm × 0.85 mm laminate was obtained. Cut the laminated body into capacitor elements one by one, 450 ℃ ×
After removing the binder for 5 hours and firing in the air at 950 ° C. for 10 hours, both ends of the silver paste connected to the electrodes laminated inside are dip-coated and baked at 700 ° C. for 1 hour. A multilayer ceramic capacitor according to the present invention shown in 8 was obtained. About the multilayer ceramic capacitor,
The insulation resistance and the non-defective rate were investigated, and a high temperature load test was conducted. The results are shown in Table 9.

【表8】 [Table 8]

【表9】 [Table 9]

【0023】[0023]

【比較例5】表4に示すように、比較例2に示す強誘電
体セラミックスラリー、及び表6に示すように、比較例
4に示す導電体ペーストを用いて、実施例3と同一条件
にて積層セラミックコンデンサを作成し、その結果を表
9に示す。表9より本発明の積層セラミックコンデンサ
の製造方法により、従来法で製造した素子よりも歩留り
でほぼ8%向上し、又50個の試料による高温負荷試験
においても不良率が0%となり、本発明の積層セラミッ
クコンデンサの製造方法とすることにより、歩留り、及
び高温負荷試験特性が大いに向上していることがわか
る。
COMPARATIVE EXAMPLE 5 As shown in Table 4, the ferroelectric ceramic slurry shown in Comparative Example 2 and the conductive paste shown in Comparative Example 4 were used under the same conditions as in Example 3. A monolithic ceramic capacitor was prepared by using the above, and the results are shown in Table 9. From Table 9, the method for manufacturing a monolithic ceramic capacitor of the present invention improves the yield by almost 8% as compared with the element manufactured by the conventional method, and the failure rate becomes 0% in the high temperature load test using 50 samples. It is understood that the yield and the high temperature load test characteristics are greatly improved by adopting the manufacturing method of the monolithic ceramic capacitor described in 1.

【0024】[0024]

【発明の効果】以上、本発明における有機結合剤に、側
鎖として−COOM[C:炭素、O:酸素、M:水素
(H)、カリウム(K)またはナトリウム(Na)]基
を有し、かつガラス転移温度が60℃以下のポリエーテ
ルポリウレタン樹脂を用いることにより、従来技術の欠
点を解消し、焼成後の充填密度を向上した小形、高性
能、高信頼性を保証できる積層セラミックコンデンサの
提供が可能となった。なお、本発明の構成において、前
記強誘電体セラミックスラリーと導電体ペーストの形成
方法は、グラビア印刷法、ドクターブレード法、押し出
し形成法、射出形成法等のどのような形成法を用いて
も、本発明の効果については何等変わることがない。
As described above, the organic binder in the present invention has a —COOM [C: carbon, O: oxygen, M: hydrogen (H), potassium (K) or sodium (Na)] group as a side chain. In addition, by using a polyether polyurethane resin having a glass transition temperature of 60 ° C. or less, the drawbacks of the prior art can be solved, and a compact, high-performance and highly reliable monolithic ceramic capacitor with improved packing density after firing can be obtained. Offering is now possible. In the configuration of the present invention, the method for forming the ferroelectric ceramic slurry and the conductor paste may be any forming method such as a gravure printing method, a doctor blade method, an extrusion forming method, and an injection forming method. The effect of the present invention does not change at all.

【図面の簡単な説明】[Brief description of drawings]

【図1】積層セラミックコンデンサのセラミック積層体
と内部電極の積層した縦切断断面図。
FIG. 1 is a vertical cross-sectional view in which a ceramic laminated body of a laminated ceramic capacitor and internal electrodes are laminated.

【図2】積層セラミックコンデンサの端面の切断断面
図。
FIG. 2 is a cross-sectional view of an end face of a monolithic ceramic capacitor.

【図3】積層セラミックコンデンサの外観斜視図。FIG. 3 is an external perspective view of a monolithic ceramic capacitor.

【符号の説明】[Explanation of symbols]

1 セラミック積層体 2 内部電極 3 コンデンサ素子 4 端子電極 1 Ceramic Laminate 2 Internal Electrode 3 Capacitor Element 4 Terminal Electrode

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 強誘電体セラミック粉末と有機結合剤を
主原料とし、有機溶剤を分散媒とする強誘電体スラリー
を成膜、乾燥して得られたグリーンシート上に、金属微
粉末と有機結合剤を主原料とし、有機溶剤を分散媒とす
る導電性ペーストを印刷後、積層、プレス成形し、焼結
することにより得られる積層セラミックコンデンサにお
いて、強誘電体スラリー、及び導電ペーストの有機結合
剤が、側鎖として−COOM[C:炭素、O:酸素、
M:水素(H)、カリウム(K)またはナトリウム(N
a)]基を有し、かつガラス転移温度(Tg)が60℃
以下のポリエーテルポリウレタン樹脂からなることを特
徴とする積層セラミックコンデンサの製造方法。
1. A green sheet obtained by film-forming and drying a ferroelectric slurry containing a ferroelectric ceramic powder and an organic binder as main raw materials and an organic solvent as a dispersion medium. A multilayer ceramic capacitor obtained by printing, laminating, press-molding, and sintering a conductive paste containing a binder as a main raw material and an organic solvent as a dispersion medium, in which a ferroelectric slurry and an organic bond of the conductive paste are formed. The agent has a side chain of -COOM [C: carbon, O: oxygen,
M: hydrogen (H), potassium (K) or sodium (N
a)] group and having a glass transition temperature (Tg) of 60 ° C.
A method for manufacturing a monolithic ceramic capacitor comprising the following polyether polyurethane resin.
【請求項2】 強誘電体スラリー、及び導電ペーストの
有機結合剤のポリエーテルポリウレタン樹脂に含まれる
側鎖としての−COOM[C:炭素、O:酸素、M:水
素(H)、カリウム(K)またはナトリウム(Na)]
基のポリエーテルポリウレタン樹脂の重量1グラム当り
の濃度は、0.01ミリモル/グラムないし0.95ミリ
モル/グラムの範囲であることを特徴とする請求項1記
載の積層セラミックコンデンサの製造方法。
2. A ferroelectric slurry, and -COOM [C: carbon, O: oxygen, M: hydrogen (H), potassium (K) as a side chain contained in a polyether polyurethane resin as an organic binder of a conductive paste. ) Or sodium (Na)]
The method for producing a monolithic ceramic capacitor according to claim 1, wherein the concentration of the base polyether polyurethane resin per gram by weight is in the range of 0.01 mmol / gram to 0.95 mmol / gram.
JP4125753A 1992-04-17 1992-04-17 Manufacture of laminated ceramic capacitor Pending JPH05299288A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4125753A JPH05299288A (en) 1992-04-17 1992-04-17 Manufacture of laminated ceramic capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4125753A JPH05299288A (en) 1992-04-17 1992-04-17 Manufacture of laminated ceramic capacitor

Publications (1)

Publication Number Publication Date
JPH05299288A true JPH05299288A (en) 1993-11-12

Family

ID=14917964

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4125753A Pending JPH05299288A (en) 1992-04-17 1992-04-17 Manufacture of laminated ceramic capacitor

Country Status (1)

Country Link
JP (1) JPH05299288A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002110452A (en) * 2000-10-02 2002-04-12 Murata Mfg Co Ltd Manufacturing method of laminated ceramic electronic part and conductive paste
US6487774B1 (en) 1998-01-22 2002-12-03 Matsushita Electric Industrial Co., Ltd. Method of forming an electronic component using ink
KR100481452B1 (en) * 2002-04-02 2005-04-07 이학철 Conductive sheet and method for manufacturing the same
US7468112B2 (en) * 2001-04-18 2008-12-23 Denso Corporation Method of producing a ceramic laminate
WO2011046076A1 (en) * 2009-10-15 2011-04-21 東洋紡績株式会社 Electrically conductive paste, electrically conductive film, touch panel, and process for production of electrically conductive thin film
JP2019007032A (en) * 2017-06-20 2019-01-17 住友金属鉱山株式会社 Nickel paste, method for producing the same, and method for producing nickel organic slurry

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6487774B1 (en) 1998-01-22 2002-12-03 Matsushita Electric Industrial Co., Ltd. Method of forming an electronic component using ink
US6979416B2 (en) 1998-01-22 2005-12-27 Matsushita Electric Industrial Co., Ltd. Method of forming an electronic component using ink
JP2002110452A (en) * 2000-10-02 2002-04-12 Murata Mfg Co Ltd Manufacturing method of laminated ceramic electronic part and conductive paste
JP4507378B2 (en) * 2000-10-02 2010-07-21 株式会社村田製作所 Method for producing multilayer ceramic electronic component and conductive paste
US7468112B2 (en) * 2001-04-18 2008-12-23 Denso Corporation Method of producing a ceramic laminate
KR100481452B1 (en) * 2002-04-02 2005-04-07 이학철 Conductive sheet and method for manufacturing the same
WO2011046076A1 (en) * 2009-10-15 2011-04-21 東洋紡績株式会社 Electrically conductive paste, electrically conductive film, touch panel, and process for production of electrically conductive thin film
JP4968410B2 (en) * 2009-10-15 2012-07-04 東洋紡績株式会社 Conductive paste, conductive film, touch panel, and method of manufacturing conductive thin film
CN102576581A (en) * 2009-10-15 2012-07-11 东洋纺织株式会社 Electrically conductive paste, electrically conductive film, touch panel, and process for production of electrically conductive thin film
JP2019007032A (en) * 2017-06-20 2019-01-17 住友金属鉱山株式会社 Nickel paste, method for producing the same, and method for producing nickel organic slurry

Similar Documents

Publication Publication Date Title
KR100464219B1 (en) Method for manufacturing laminated ceramic electronic component, and laminated ceramic electronic component
JP2003178623A (en) Conductive paste, manufacturing method of laminated ceramic electronic component, and laminated ceramic electronic component
KR100344923B1 (en) Hybrid Laminate and Manufacturing Method Thereof
JP2003168619A (en) Conductive paste for terminal electrode of laminated ceramic electronic part, method for manufacturing the laminated ceramic electronic part, and the laminated ceramic electronic part
JP5452244B2 (en) Multilayer ceramic electronic component and manufacturing method thereof
JPH05299288A (en) Manufacture of laminated ceramic capacitor
JP2012004189A (en) Multilayer ceramic capacitor
JP2007234330A (en) Conductor paste and electronic part
JP2019206623A (en) Manufacturing method of organic vehicle, manufacturing method of conductive paste, and manufacturing method of laminate ceramic capacitor
JPH0721832A (en) Conductive paste and manufacture of multilayer ceramic electronic parts using the paste
JP7292579B2 (en) Organic vehicle manufacturing method, conductive paste manufacturing method, and multilayer ceramic capacitor manufacturing method
JP3082154B2 (en) Baking type conductive paste for ceramic electronic components and ceramic electronic components
JP3981270B2 (en) Conductor pattern incorporated in multilayer substrate, multilayer substrate incorporating conductor pattern, and method of manufacturing multilayer substrate
JPH1092226A (en) Conductive composition
JP4968309B2 (en) Paste composition, electronic component and method for producing multilayer ceramic capacitor
JP3203492B2 (en) Paint and multilayer inductor using the same
JP7292580B2 (en) Organic vehicle manufacturing method, conductive paste manufacturing method, and multilayer ceramic capacitor manufacturing method
JP2873724B2 (en) Manufacturing method of magnetic paint, conductive paint, green laminate and laminated inductor
JP2000058375A (en) Laminated ceramic electronic component and manufacture thereof
JPH0135490B2 (en)
JP3236783B2 (en) Manufacturing method of ceramic laminate
JP3153410B2 (en) Manufacturing method of dielectric ceramics
JP2002231561A (en) Multilayer ceramic electronic component and its manufacturing method
JPH05124857A (en) Production of nonreducible dielectric porcelain
JPS5917294A (en) Composite laminated ceramic part and method of producing same