JPH0379008A - Manufacture of laminated ceramic capacitor - Google Patents

Manufacture of laminated ceramic capacitor

Info

Publication number
JPH0379008A
JPH0379008A JP21643389A JP21643389A JPH0379008A JP H0379008 A JPH0379008 A JP H0379008A JP 21643389 A JP21643389 A JP 21643389A JP 21643389 A JP21643389 A JP 21643389A JP H0379008 A JPH0379008 A JP H0379008A
Authority
JP
Japan
Prior art keywords
terminal electrode
laminated ceramic
ceramic capacitor
multilayer ceramic
glass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21643389A
Other languages
Japanese (ja)
Inventor
Gen Itakura
板倉 鉉
Yuichi Nakagaki
祐一 中垣
Hiroshi Niwa
洋 丹羽
Tomihisa Koyama
富久 小山
Yasutaka Baba
馬場 康孝
Hiroaki Matsuyama
松山 広明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP21643389A priority Critical patent/JPH0379008A/en
Publication of JPH0379008A publication Critical patent/JPH0379008A/en
Pending legal-status Critical Current

Links

Landscapes

  • Ceramic Capacitors (AREA)
  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)

Abstract

PURPOSE:To improve mechanical strength and prevent mechanical damage in mounting by a method wherein glass components attached to an entire surface of a sintered body at the same time of baking a terminal electrode are heat- diffused in the sintered body. CONSTITUTION:After glass components which is the same as that contained in terminal electrode paste are attached to the entire surface of laminated ceramic, the terminal electrode paste is applied to an end and baked to form the terminal electrode as well as to heat-diffuse the glass components in the laminated ceramic at the same time. Thus mechanical strength of a laminated ceramic capacitor can be improved only with terminal electrode baking process without providing process of glass component heat diffusion as well as mechanical damage at the time of mounting can also be prevented.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、各種電子機器に用いられる積層セラミックコ
ンデンサの製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a method for manufacturing multilayer ceramic capacitors used in various electronic devices.

従来の技術 電子機器の軽薄短小化、さらには多機能化が急激に進展
してきている。この電子機器の動向を支えている技術と
しては、大きくは2つある。1つは実装技術であり、も
う1つは電子部品に関する技術である。
BACKGROUND OF THE INVENTION Electronic devices are rapidly becoming lighter, thinner, shorter, and more multifunctional. There are two main technologies that support this trend in electronic devices. One is packaging technology, and the other is technology related to electronic components.

近年、面実装技術が著しく発展し、実装のロボット化、
省力化が進むと同時に、高速かつ高密度の実装が増々進
行してきている。このような状況下で、電子部品はかっ
てのようなリード付きのものから、リードレスのいわゆ
るチップ電子部品へと転換してきており、現在、チップ
電子部品の使用率は既に全体の電子部品のうちの50%
に達してきている。
In recent years, surface mounting technology has developed significantly, and mounting robots,
At the same time as labor savings progress, high-speed and high-density packaging is also progressing. Under these circumstances, electronic components have been changing from those with leads to leadless so-called chip electronic components, and currently the usage rate of chip electronic components is already higher than that of all electronic components. 50% of
has been reached.

特に、汎用電子部品であるコンデンサのチップ化は既に
一般常識ともなっている。その中でも、積層セラミック
コンデンサに関しては年々急激な生産販売の伸びを示し
、もはや電子機器に欠(べからざる電子部品となってい
る。
In particular, it has already become common knowledge to make capacitors, which are general-purpose electronic components, into chips. Among these, the production and sales of multilayer ceramic capacitors are rapidly increasing year by year, and they have become an indispensable electronic component for electronic devices.

周知のように、積層セラミックコンデンサはセラミック
誘電体層と金属薄膜印刷層とが交互に積層され、高温で
一体焼結した素体の端部に端子電極を設けて作られるも
ので、端子電極に接する形でセラミックの内部に薄膜電
極が多数環め込められた構成をなすものである。
As is well known, a multilayer ceramic capacitor is made by alternately laminating ceramic dielectric layers and metal thin film printed layers, and providing terminal electrodes at the ends of an element body that is integrally sintered at high temperature. It has a structure in which a large number of thin film electrodes are embedded in a ceramic ring in contact with each other.

このような積層セラミックコンデンサは、プリント配線
基板に、すでに述べたように、実装ロボットにより高速
自動実装されるのが一般的である。このとき、機械的な
応力が作用し、積層セラミックコンデンサに機械的な損
傷、例えばクラックが生じたり、あるいは端子電極がは
がれるなどの故障を生じることがあるので、機械の構成
や実装速度面で工夫はされてはきている。しかし、依然
として前記問題は完全に解決されていない。
Such a multilayer ceramic capacitor is generally mounted on a printed wiring board at high speed automatically by a mounting robot, as described above. At this time, mechanical stress acts on the multilayer ceramic capacitor, which may cause mechanical damage such as cracks or terminal electrodes to peel off, so consider the mechanical configuration and mounting speed. It's been getting used to. However, the problem is still not completely solved.

以上の背景の中で、既に特開昭59−8323号公報に
て開示される技術は積層セラミックコンデンサの機械的
強度向上に関するもので、積層セラミックコンデンサの
焼結体にガラス成分を熱拡散処理することを特徴とする
工程を有するものである。この技術は、従来からの前述
の実装時における素子の機械的損傷の軽減に役立ってき
た。
Against this background, the technology already disclosed in Japanese Patent Application Laid-Open No. 59-8323 is related to improving the mechanical strength of multilayer ceramic capacitors, and involves thermally diffusing glass components into the sintered body of multilayer ceramic capacitors. It has a process characterized by the following. This technique has been useful in reducing mechanical damage to devices during conventional packaging.

発明が解決しようとする課題 しかしながら、最近、特に電子機器の国際競争面で、電
子部品の低価格化が要求されており、その−貫として、
製造コストの低減、が是非とも必要となってきた。
Problems to be Solved by the Invention Recently, however, there has been a demand for lower prices for electronic components, especially in the face of international competition in electronic equipment, and as a core of this,
It has become imperative to reduce manufacturing costs.

本発明は、前述した特開昭59−8323号公報の技術
をさらに工夫し、製造工程の短縮を行おうとするもので
ある。すなわち、特開昭59−8323号公報に基づき
、従来は焼結体へのガラス成分の熱拡散処理を一つの工
程として設け、その後に端子電極を形成する工程を経て
積層セラミックコンデンサを製造してきた。しかし、端
子電極形成は通常、銀ペーストを焼結体端部に塗布した
後、800℃〜900℃で焼付けすることが行われるこ
とから、別々に2回の熱処理が行われており、また銀ペ
ースト中にはやはりガラス成分が含有されているので、
−回の熱処理で、焼結体へのガラス熱拡散処理と銀端子
電極の形成を同時に実現することが望まれていた。
The present invention is an attempt to shorten the manufacturing process by further improving the technique disclosed in Japanese Unexamined Patent Application Publication No. 59-8323. That is, based on Japanese Unexamined Patent Publication No. 59-8323, conventionally, a multilayer ceramic capacitor has been manufactured by providing a thermal diffusion treatment of a glass component to a sintered body as one process, and then a process of forming terminal electrodes. . However, terminal electrode formation is usually done by applying silver paste to the end of the sintered body and then baking it at 800°C to 900°C, so heat treatment is performed twice separately, and the silver As the paste still contains glass components,
It has been desired to simultaneously achieve the glass thermal diffusion treatment on the sintered body and the formation of silver terminal electrodes in - times of heat treatment.

課題を解決するための手段 この課題を解決するために本発明は、端子電極用ペース
ト中に含有されるガラス成分と同一のガラス成分を積層
セラミックの表面全体に付着させた後、前記の端子電極
用ペーストを端部に塗布し焼付けし、端子電極を形成す
ると同時にガラス成分を前記積層セラミックの内部に熱
拡散させることを特徴とする積層セラミックコンデンサ
の製造方法を提供するものである。
Means for Solving the Problems In order to solve this problem, the present invention applies a glass component that is the same as that contained in the terminal electrode paste to the entire surface of a laminated ceramic, and then The present invention provides a method for manufacturing a multilayer ceramic capacitor, characterized in that a paste is applied to the end portion and baked to form a terminal electrode, and at the same time, a glass component is thermally diffused into the multilayer ceramic.

作用 本発明の製造方法によれば、ガラス成分の熱拡散処理の
工程を設けな(でも端子電極焼付工程のみで特開昭59
−8323号公報に開示した積層セラミックコンデンサ
の機械的強度の向上が図れ、実装時の機械的損傷の防止
を図ることができる。
Effect: According to the manufacturing method of the present invention, there is no step of thermal diffusion treatment of the glass component (but only the terminal electrode baking step is required).
The mechanical strength of the multilayer ceramic capacitor disclosed in Japanese Patent No. 8323 can be improved, and mechanical damage during mounting can be prevented.

実施例 以下、一実施例に基づき本発明の内容を詳細に説明する
EXAMPLE Hereinafter, the content of the present invention will be explained in detail based on one example.

まず、チタン酸バリウム(BaTiO3)100重量部
に対して、チタン酸カルシウム (CaTi03)、酸化ニオブ(N b 20 s )
を共に3重量部、さらに二酸化マンガン(MnO2)を
0.2重量部添加して十分に混合する。この後、有機バ
インダーにてスラリー化し、ブレード工法により80μ
mの厚みのシートを作製する。このシートにパラジウム
ペーストをスクリーン印刷し、その上にシートを重ねて
印刷をくり返し、積層する。この積層体を切断し、13
00〜1350℃にて焼成した。この焼結体チップの形
状は、1.5m(幅)X3.O+w+(長さ)Xo、5
5nm(厚さ)である。
First, calcium titanate (CaTi03) and niobium oxide (N b 20 s ) were added to 100 parts by weight of barium titanate (BaTiO3).
and 0.2 parts by weight of manganese dioxide (MnO2) and thoroughly mixed. After that, it was made into a slurry with an organic binder and 80 μm was made using the blade method.
A sheet with a thickness of m is prepared. Palladium paste is screen-printed on this sheet, and the sheet is stacked on top of it and the printing is repeated to create a stack. Cut this laminate and
It was fired at a temperature of 00 to 1350°C. The shape of this sintered chip is 1.5m (width) x 3. O+w+(length)Xo, 5
It is 5 nm (thickness).

このような焼結体チップの表面に酸化ホウ素2重量部、
酸化ケイ素5重量部、酸化鉛1重量部よりなるガラスフ
リットを有機バインダーに分散させ、焼結体チップの重
量の0.1〜1重量%となるように付着させた。この後
、焼結体チップの両端面部に前記ガラスフリットを2〜
3%混合した銀端子電極用ペーストを塗布した。このも
のを白金線で作製した網の上にのせ、800〜850℃
で焼付けした。
2 parts by weight of boron oxide on the surface of such a sintered chip,
A glass frit consisting of 5 parts by weight of silicon oxide and 1 part by weight of lead oxide was dispersed in an organic binder and attached to the sintered chip in an amount of 0.1 to 1% by weight based on the weight of the sintered chip. After that, two or more of the glass frits are applied to both end surfaces of the sintered chip.
A 3% mixed silver terminal electrode paste was applied. Place this on a net made of platinum wire and heat to 800 to 850℃.
It was baked with.

第1図は本発明の製造方法により得られた積層セラミッ
クコンデンサを示す図であり、1はセラミック誘電体層
、2はパラジウム電極等からなる金属電極層、3はガラ
ス拡散層、4は銀電極からなる端子電極である。また、
下記の第1表は従来及び本発明の製造方法に基づく積層
セラミックコンデンサの端子引張り強度、抗折強度及び
電気的特性の比較を示したものである。
FIG. 1 is a diagram showing a multilayer ceramic capacitor obtained by the manufacturing method of the present invention, in which 1 is a ceramic dielectric layer, 2 is a metal electrode layer consisting of a palladium electrode, etc., 3 is a glass diffusion layer, and 4 is a silver electrode. It is a terminal electrode consisting of. Also,
Table 1 below shows a comparison of the terminal tensile strength, bending strength, and electrical properties of multilayer ceramic capacitors based on the conventional manufacturing method and the manufacturing method of the present invention.

(以  下  余  白  ) この表中、従来例(Dは焼結体チップ表面に前記ガラス
成分を付着し、800〜850℃で熱処理した後、前記
端子電極用ペーストを両端に塗布し、800〜850℃
で焼付けする方法であり、従来例(2)は焼結体チップ
に単に端子電極を形成する方法である。この表から明ら
かなごとく、本発明の方法は従来例(1)と同等の機械
的強度を保持し、また電気的特性も何ら異常は認められ
なかった。
(Margins below) In this table, the conventional example (D is the case where the glass component is attached to the surface of the sintered chip, heat treated at 800 to 850°C, and then the terminal electrode paste is applied to both ends. 850℃
Conventional example (2) is a method in which terminal electrodes are simply formed on a sintered chip. As is clear from this table, the method of the present invention maintained the same mechanical strength as the conventional example (1), and no abnormality was observed in the electrical properties.

発明の効果 以上のように本発明によれば、端子電極の焼付けと同時
に焼結体表面全体に付着させたガラス成分を焼結体内部
に熱拡散させる製造方法であり、機械的強度に極めて優
れ、実装上の機械的損傷を防止する上で有効な積層セラ
ミックコンデンサを提供でき、かつ従来はガラス成分の
熱拡散工程を別に設けていたのが、この工程を端子電極
焼付は工程で端子電極形成と同時にガラス成分の熱拡散
が可能となるため、工程の短縮により、製造コストが低
減できるので、その意義は甚大である。
Effects of the Invention As described above, the present invention is a manufacturing method in which the glass component attached to the entire surface of the sintered body is thermally diffused into the inside of the sintered body at the same time as the terminal electrode is baked, and the product has extremely excellent mechanical strength. , we can provide multilayer ceramic capacitors that are effective in preventing mechanical damage during mounting, and conventionally the thermal diffusion process of the glass component was provided separately, but this process has been changed to the terminal electrode baking process. At the same time, it is possible to thermally diffuse the glass components, which shortens the process and reduces manufacturing costs, which is of great significance.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の製造方法に基づく積層セラミックコン
デンサを示す図である。 1・・・・・・セラミック誘電体層、2・・・・・・金
属電極層、3・・・・・・ガラス拡散層、4・・・・・
・端子電極。
FIG. 1 is a diagram showing a multilayer ceramic capacitor based on the manufacturing method of the present invention. 1...Ceramic dielectric layer, 2...Metal electrode layer, 3...Glass diffusion layer, 4...
・Terminal electrode.

Claims (1)

【特許請求の範囲】[Claims]  積層セラミックの表面全体に、端子電極用ペースト中
に含有されるガラス成分と同一のガラス成分を付着させ
た後、前記端子電極用ペーストを端部に塗布し、焼付け
し、端子電極を形成すると同時にガラス成分を前記積層
セラミックの内部に熱拡散させることを特徴とした積層
セラミックコンデンサの製造方法。
After attaching the same glass component as the glass component contained in the terminal electrode paste to the entire surface of the laminated ceramic, the terminal electrode paste is applied to the end portion and baked to form the terminal electrode. A method for manufacturing a multilayer ceramic capacitor, comprising thermally diffusing a glass component into the multilayer ceramic.
JP21643389A 1989-08-22 1989-08-22 Manufacture of laminated ceramic capacitor Pending JPH0379008A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21643389A JPH0379008A (en) 1989-08-22 1989-08-22 Manufacture of laminated ceramic capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21643389A JPH0379008A (en) 1989-08-22 1989-08-22 Manufacture of laminated ceramic capacitor

Publications (1)

Publication Number Publication Date
JPH0379008A true JPH0379008A (en) 1991-04-04

Family

ID=16688474

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21643389A Pending JPH0379008A (en) 1989-08-22 1989-08-22 Manufacture of laminated ceramic capacitor

Country Status (1)

Country Link
JP (1) JPH0379008A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0831682A (en) * 1994-07-12 1996-02-02 Tdk Corp Electronic parts marked by laser and manufacture thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59111319A (en) * 1982-12-16 1984-06-27 松下電器産業株式会社 Method of producing laminated ceramic condenser
JPS59141215A (en) * 1983-02-01 1984-08-13 松下電器産業株式会社 Method of producing laminated ceramic condenser

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59111319A (en) * 1982-12-16 1984-06-27 松下電器産業株式会社 Method of producing laminated ceramic condenser
JPS59141215A (en) * 1983-02-01 1984-08-13 松下電器産業株式会社 Method of producing laminated ceramic condenser

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0831682A (en) * 1994-07-12 1996-02-02 Tdk Corp Electronic parts marked by laser and manufacture thereof

Similar Documents

Publication Publication Date Title
JPH03276613A (en) Manufacture of ceramic electronic parts
JP7562249B2 (en) Ceramic electronic components and their manufacturing method
JP2943380B2 (en) Multilayer ceramic capacitor and manufacturing method thereof
JPS6112016A (en) Method of producing base metal electrode laminated layer capacitor having strength increased terminal
JP2970030B2 (en) Multilayer ceramic capacitor, method of manufacturing the same, and external electrode paste used therein
JP2007214549A (en) Thick film capacitor on ceramic interconnect substrate
JPH0379008A (en) Manufacture of laminated ceramic capacitor
JPH0348415A (en) Paste composition and manufacture of laminated ceramic capacitor
JPS636121B2 (en)
JPS62244631A (en) Manufacture of composite laminated ceramic part
JPS62122103A (en) Manufacture of laminated chip varistor
JPS63169798A (en) Multilayer ceramic board with built-in electronic parts
JPS6092697A (en) Composite laminated ceramic part
JPS62242324A (en) Chip capacitor
JPH07201637A (en) Multilayer ceramic electronic device
JPH0135490B2 (en)
JPS59141215A (en) Method of producing laminated ceramic condenser
JPS59111319A (en) Method of producing laminated ceramic condenser
JP2002231561A (en) Multilayer ceramic electronic component and its manufacturing method
JPH04206613A (en) Manufacture of multilayer ceramic capacitor
JPH1126279A (en) Manufacture of laminated ceramic electronic parts
JPS6088420A (en) Composite laminated ceramic part
JPH0115125B2 (en)
JPH0113406Y2 (en)
JPH01201906A (en) Semiconductor ceramic capacitor