JPS59141215A - Method of producing laminated ceramic condenser - Google Patents

Method of producing laminated ceramic condenser

Info

Publication number
JPS59141215A
JPS59141215A JP1560383A JP1560383A JPS59141215A JP S59141215 A JPS59141215 A JP S59141215A JP 1560383 A JP1560383 A JP 1560383A JP 1560383 A JP1560383 A JP 1560383A JP S59141215 A JPS59141215 A JP S59141215A
Authority
JP
Japan
Prior art keywords
multilayer ceramic
glass
ceramic capacitor
silver
laminated ceramic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1560383A
Other languages
Japanese (ja)
Other versions
JPH0420247B2 (en
Inventor
日下部 健治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP1560383A priority Critical patent/JPS59141215A/en
Publication of JPS59141215A publication Critical patent/JPS59141215A/en
Publication of JPH0420247B2 publication Critical patent/JPH0420247B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Ceramic Capacitors (AREA)
  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は端子電極の接着強度及び素子強度を改善した積
層セラミックコンデンサの製造方法に関するものである
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a method for manufacturing a multilayer ceramic capacitor with improved adhesive strength of terminal electrodes and element strength.

従来例の構成とその問題点 従来より小型大容量化を目的としてセラミック薄膜誘電
体の並列配線構造を有する積層セラミックコンデンサは
よく知られている。この積層セラミックコンデンサの製
造方法は一般的ては次の通2ベージ りである。まず、チタン酸バリウム、チタン酸カルシウ
ム、チタン酸マグネシウムなどの酸化物に数種の添加物
を加え、混合した後、有機バインダを加えて粘性の高い
スラリーとし、これをドクターブレード法などの一般的
なシート成形方法により、30〜100μmΩシートを
作製する。この後シート上にパラジウムまたは銀とパラ
ジウムの合金粉末を、有機バインダ中に分散させたペー
ストをスクリーン印刷法により印刷し、その上にシート
を積み重ねて印刷をする。これを繰返しながら2〜40
層の積層体を作製する。この積層体を適当な大きさに切
断し、電気炉にて12oO〜1400″Cで焼成すると
焼結体のチップが得られる。
Conventional Structure and Problems Multilayer ceramic capacitors having a parallel wiring structure of ceramic thin film dielectrics are well known for the purpose of achieving smaller size and larger capacity. The manufacturing method for this multilayer ceramic capacitor is generally the following two-page process. First, several types of additives are added to oxides such as barium titanate, calcium titanate, and magnesium titanate, and after mixing, an organic binder is added to form a highly viscous slurry. A 30 to 100 μmΩ sheet is produced by a sheet forming method. Thereafter, a paste prepared by dispersing palladium or an alloy powder of silver and palladium in an organic binder is printed on the sheet by screen printing, and the sheets are stacked on top of the paste for printing. Repeat this for 2 to 40
Create a stack of layers. This laminate is cut into a suitable size and fired in an electric furnace at 12 oO to 1400''C to obtain sintered chips.

このチップの端面に端子電極として、銀とパラジウム合
金または銀の粉末よりなるペーストを付着し、700〜
900°Cで焼付けることにより、積層セラミックコン
デンサが得られる。
A paste made of silver and palladium alloy or silver powder is attached to the end face of this chip as a terminal electrode, and
A multilayer ceramic capacitor is obtained by baking at 900°C.

このような積層セラミックコンデンサは、プリント配線
基板に直に半田付けされて用いられることがほとんどで
ある。プリント配線基板はエポキ3 父 ・・ ン樹脂からなり、使用中にたわみを生じることがどうし
ても起りがちであるだめ、半田付けされた積層セラミッ
クコンデンサの端子には10に9以上の引張り応力が作
用することがしばしばあり、この応力に耐えきれず、端
子電極がはずれたり、素体自身にクランクを生じ、特性
上に支障をきだすことがあった。このような問題に対し
、ガラスフリットを焼結後の積ノーセラミックコンデン
サの表面に付着させ、熱処理によりセラミック中にガラ
ス成分を拡散させる方法があるが、ガラス7リノトの粒
径が一般に10μ以上で粗いため積層セラミックコンデ
ンサの表面に均一に付着させることが困難で、処理後も
素子によって効果のバラツキが生じていた。
In most cases, such multilayer ceramic capacitors are used by being directly soldered to a printed wiring board. Printed wiring boards are made of epoxy resin and tend to warp during use, so a tensile stress of more than 9 in 10 acts on the soldered multilayer ceramic capacitor terminals. Often, this stress could not be withstood, causing the terminal electrodes to come off or the element itself to crank, resulting in problems with its characteristics. To solve this problem, there is a method of attaching glass frit to the surface of the sintered ceramic capacitor and diffusing the glass component into the ceramic through heat treatment, but it is generally difficult to do so when the particle size of the glass frit is 10μ or more. Because of its roughness, it was difficult to apply it uniformly to the surface of multilayer ceramic capacitors, and even after treatment, the effect varied depending on the device.

発明の目的 本発明の目的は上記のような事実にかんがみ、端子電極
の接着強度、及び素子強度の改善をはかり均質な積層セ
ラミックコンデンサを提供することにある。
OBJECTS OF THE INVENTION In view of the above facts, an object of the present invention is to provide a homogeneous multilayer ceramic capacitor that improves the adhesive strength of terminal electrodes and the element strength.

発明の構成 本発明は焼結済みの積層セラミックコンデンサをガラス
形成化合物(たとえばB、Pb、St、AN。
Structure of the Invention The present invention provides a sintered multilayer ceramic capacitor made of a glass-forming compound (eg, B, Pb, St, AN, etc.).

B1等の有機、無機化合!10)の混合溶液に浸漬後、
乾燥し、積層セラミックコンデンサ焼結体表面に上記化
合物の薄層を形成し、しかる後これを熱処理することに
よってガラス形成とセラミック中への拡散を同時に行う
ことを特徴とする。
Organic and inorganic compounds such as B1! After immersing in the mixed solution of 10),
It is characterized in that a thin layer of the above compound is formed on the surface of the multilayer ceramic capacitor sintered body by drying, and then heat-treated to form glass and diffuse into the ceramic at the same time.

実施例の説明 チタン酸バリウム(B a T l03) 100重量
部に対し、チタン酸カルシウム(Ca T l03) 
、Ill 化ニオブ(Nb2Q5)を共に3重量部、さ
らに二酸化マンガン(MnO2)を0.2重量部添加し
て十分に混合する。この後、有機バインダーにてスラリ
ー化し、ブレード工法により8oμmの厚みのシートを
作製する。このシートにパラジウムペーストをスクリー
ン印刷し、その上にシートを重ねて印刷をくり返し、積
層する。この積層体を切断し、1300〜1360°C
にて焼成した。この焼結体チップの形状は、1.5mm
(幅)x3.omm(長さ)Xo、55B(厚さ)であ
る。
Description of Examples Calcium titanate (Ca T 103) to 100 parts by weight of barium titanate (B a T 103)
, 3 parts by weight of niobium oxide (Nb2Q5) and 0.2 part by weight of manganese dioxide (MnO2) are added and thoroughly mixed. Thereafter, it is made into a slurry with an organic binder, and a sheet with a thickness of 8 μm is produced by a blade construction method. Palladium paste is screen-printed on this sheet, and the sheet is stacked on top of it and the printing is repeated to create a stack. This laminate was cut and heated at 1300 to 1360°C.
Fired at. The shape of this sintered chip is 1.5 mm.
(Width) x3. omm (length) Xo, 55B (thickness).

5べ〕゛ このような焼結体を4チホウ酸(H2BO3)水溶液に
浸漬後100°C,2時間乾燥する。次に6%シリコン
オイル及び4%ステアリン酸鉛を含むアセトン溶液に浸
漬し、空気中で自然乾燥する。このもののガラス成分の
付着量は焼結体チップの0.7%であった。この量は溶
液濃度を変えることによって調整することができる。こ
のものをアルミナルツボ中に密閉しta o o ’C
で熱処理した。化合物は分解し、B2O3−8102−
PbO系のガラスになりセラミック中に拡散する。アル
ミナルツボ中に密閉するのはPbO等の蒸発しやすい成
分の揮散を抑えるだめである。
5) Such a sintered body was immersed in an aqueous solution of tetraboric acid (H2BO3) and then dried at 100°C for 2 hours. Next, it is immersed in an acetone solution containing 6% silicone oil and 4% lead stearate, and air-dried in the air. The amount of glass component attached to this product was 0.7% of the sintered chip. This amount can be adjusted by changing the solution concentration. Seal this in an aluminum crucible and ta o o'C
heat treated with The compound decomposes into B2O3-8102-
It becomes PbO-based glass and diffuses into ceramic. The purpose of sealing the aluminum crucible is to prevent volatile components such as PbO from evaporating.

このようにして得られたチップの端子に銀電極を設けた
。ただし、銀電極用銀ペースト中に上記と同組成のガラ
スフリットを2〜3%混合したものを用いた。
Silver electrodes were provided on the terminals of the chip thus obtained. However, 2 to 3% of glass frit having the same composition as above was mixed into the silver paste for silver electrodes.

発明の効果 図は本発明の製造方法により得られた積層セラミックコ
ンデンサを示す図であり、1はセラミック誘電体、2は
パラジウム電極、3はガラス層、6ベージ 4は銀端子電極である。また、第1表は従来の製造方法
、すなわちガラスフリットを焼結体チップの表面に付着
、拡散させない方法で作製した場合とガラスフリットを
焼結体チップ表面に付着、拡散させる方法、及び本発明
の製造方法に基づく場合の積層セラミックコンデンサの
端子電極引張り強度及び抗折強度及び電気特性の比較を
示したものである。なお、抗折強度はスパン2mの3点
曲げ試験による結果である。
The effect diagram of the invention is a diagram showing a multilayer ceramic capacitor obtained by the manufacturing method of the invention, in which 1 is a ceramic dielectric, 2 is a palladium electrode, 3 is a glass layer, and 6 pages 4 is a silver terminal electrode. Furthermore, Table 1 shows the conventional manufacturing method, that is, the method in which glass frit is not attached and diffused on the surface of the sintered chip, the method in which glass frit is attached and diffused on the surface of the sintered chip, and the method according to the present invention. This figure shows a comparison of the terminal electrode tensile strength, bending strength, and electrical properties of multilayer ceramic capacitors based on the manufacturing method. Note that the bending strength is the result of a three-point bending test with a span of 2 m.

以下余白 7ベーSグ この表から明らかなように本発明の製造方法により得ら
れる積層セラミンクコンデンサの強度が著しく向上し、
かつ強度のばらつきが小さいことが認められる。これは
ガラス形成化合物の付着が素子表面にわたって均一なだ
め、処理なしの場合及び今までのガラスフリット処理に
くらべてバラツキが小さく良好な結果が得られるもので
ある。
As is clear from this table, the strength of the multilayer ceramic capacitor obtained by the manufacturing method of the present invention is significantly improved,
Moreover, it is recognized that the variation in strength is small. This allows the adhesion of the glass-forming compound to be uniformly spread over the element surface, and provides better results with less variation than in the case of no treatment or in comparison with conventional glass frit treatments.

尚、コンデンサの電気的特性については静電容量が若干
小さいこと以外は何ら異常は認められなかった。そして
、このような効果が得られるのはセラミック特有の気孔
をガラスで満たすからであると考えられる。
Regarding the electrical characteristics of the capacitor, no abnormality was observed except for the capacitance being slightly small. It is thought that this effect is achieved because glass fills the pores unique to ceramics.

以上述べたように、本発明の製造方法にかかる積層セラ
ミックコンデンサの機械的強度は極めて優れており、プ
リント基板に訛に半田付けされても基板のたわみに対し
て端子電極がはずれたり、素子にクラックが入ることを
防止する上で極結で有効であり、その意義は大きい。
As mentioned above, the mechanical strength of the multilayer ceramic capacitor according to the manufacturing method of the present invention is extremely excellent, and even when soldered to a printed circuit board, the terminal electrodes will not come off due to the deflection of the board, and the elements will not be damaged. It is extremely effective in preventing cracks from forming, and its significance is great.

尚、実施例ではガラス形成元素としてホウ素。In the examples, boron is used as a glass-forming element.

ケイ素、鉛の化合物を用いたが、これにさらに亜9 ペ
ージ 鉛やアルミニウムの化合物を含むものでもよく、またホ
ウ素、ケイ素及びビスマスを主体とする化合物の組合せ
も可能である。その場合化合物の形も元素に応じて変え
る必要があり、溶剤もできるだけ成分が相溶しあうよう
に選択すべきである。
Although a compound of silicon and lead is used, a compound of zinc or aluminum may also be included, or a combination of compounds mainly consisting of boron, silicon, and bismuth is also possible. In this case, the form of the compound must be changed depending on the element, and the solvent should be selected so that the components are compatible with each other as much as possible.

どうしても同時に溶解が困碓な時には、実施例のごとく
、お互いに溶解しないような溶剤の組合せを選択し、複
数回に分けて付着させることもできる。さらに、実施例
ではチタン酸バリウム、チタン酸カルシウム、酸化ニオ
ブ、二酸化マンガンよりなるセラミック誘電体を用いた
が、セラミック誘電体であるならばいかなる組成にも適
用しうろことは言うまでもない。
If it is difficult to dissolve them at the same time, it is possible to select a combination of solvents that do not dissolve each other and apply them in multiple batches, as in the example. Furthermore, although ceramic dielectrics made of barium titanate, calcium titanate, niobium oxide, and manganese dioxide were used in the examples, it goes without saying that any composition of ceramic dielectrics may be used.

まだ、実施例では端子電極として銀を用いたが、銀とパ
ラジウムの合金でもよい。
Although silver was used as the terminal electrode in the embodiment, an alloy of silver and palladium may also be used.

【図面の簡単な説明】[Brief explanation of the drawing]

図は本発明の製造方法に基づく積層セラミックコンデン
サを示す図である。 1 ・−・・セラミック誘電体、2・−・・パラジウム
電極、3・−・・・ガラス層、4−・・・銀端子電極。
The figure shows a multilayer ceramic capacitor based on the manufacturing method of the present invention. 1...Ceramic dielectric, 2...Palladium electrode, 3...Glass layer, 4-...Silver terminal electrode.

Claims (1)

【特許請求の範囲】[Claims] セラミック誘電体層及び金属電極層が交互に積層されて
なる積層体をガラス形成化合物混合溶液に浸漬した後乾
燥し、しかる後熱処理することによって上記化合物を分
解、ガラス化し、上記積層体表面に拡散させることを特
徴とする積層セラミックコンデンサの製造方法。
A laminate in which ceramic dielectric layers and metal electrode layers are alternately laminated is immersed in a glass-forming compound mixed solution, dried, and then heat-treated to decompose and vitrify the compound, which is then diffused onto the surface of the laminate. A method of manufacturing a multilayer ceramic capacitor characterized by:
JP1560383A 1983-02-01 1983-02-01 Method of producing laminated ceramic condenser Granted JPS59141215A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1560383A JPS59141215A (en) 1983-02-01 1983-02-01 Method of producing laminated ceramic condenser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1560383A JPS59141215A (en) 1983-02-01 1983-02-01 Method of producing laminated ceramic condenser

Publications (2)

Publication Number Publication Date
JPS59141215A true JPS59141215A (en) 1984-08-13
JPH0420247B2 JPH0420247B2 (en) 1992-04-02

Family

ID=11893292

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1560383A Granted JPS59141215A (en) 1983-02-01 1983-02-01 Method of producing laminated ceramic condenser

Country Status (1)

Country Link
JP (1) JPS59141215A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0379008A (en) * 1989-08-22 1991-04-04 Matsushita Electric Ind Co Ltd Manufacture of laminated ceramic capacitor
JPH1167574A (en) * 1997-08-26 1999-03-09 Taiyo Yuden Co Ltd Ceramic electronic component and its manufacturing
CN108382727A (en) * 2017-02-02 2018-08-10 太阳诱电株式会社 The accommodation method of electronic component packing body and electronic unit

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0379008A (en) * 1989-08-22 1991-04-04 Matsushita Electric Ind Co Ltd Manufacture of laminated ceramic capacitor
JPH1167574A (en) * 1997-08-26 1999-03-09 Taiyo Yuden Co Ltd Ceramic electronic component and its manufacturing
CN108382727A (en) * 2017-02-02 2018-08-10 太阳诱电株式会社 The accommodation method of electronic component packing body and electronic unit
CN108382727B (en) * 2017-02-02 2022-04-29 太阳诱电株式会社 Electronic component package and method for housing electronic component

Also Published As

Publication number Publication date
JPH0420247B2 (en) 1992-04-02

Similar Documents

Publication Publication Date Title
US4766027A (en) Method for making a ceramic multilayer structure having internal copper conductors
US4061584A (en) High dielectric constant ink for thick film capacitors
DE102020100154A1 (en) CERAMIC ELECTRONIC DEVICE AND MANUFACTURING METHOD FOR THE SAME
JP2021082685A (en) Ceramic electronic component and manufacturing method thereof
JP2943380B2 (en) Multilayer ceramic capacitor and manufacturing method thereof
JP2970030B2 (en) Multilayer ceramic capacitor, method of manufacturing the same, and external electrode paste used therein
JPS61288498A (en) Electronic component-built-in multilayer ceramic substrate
US3968412A (en) Thick film capacitor
JPS59141215A (en) Method of producing laminated ceramic condenser
JP2005303282A (en) Thick-film dielectric composition and thick-film conductive composition
DE102022134924A1 (en) ELECTRONIC MULTILAYER CERAMIC DEVICE AND METHOD OF PRODUCTION THEREOF
JP3082154B2 (en) Baking type conductive paste for ceramic electronic components and ceramic electronic components
JPS593909A (en) Electrode paste for ceramic condenser
JP2945529B2 (en) Multilayer ceramic capacitor and method of manufacturing the same
JPH03296205A (en) Ceramic capacitor
JPS598323A (en) Method of producing laminated ceramic condenser
JPS59111319A (en) Method of producing laminated ceramic condenser
JPS62122103A (en) Manufacture of laminated chip varistor
JPH03129810A (en) Laminated type ceramic chip capacitor and manufacture thereof
JPH0115125B2 (en)
JPS6094717A (en) Method of producing laminated ceramic condenser
JPH03152914A (en) Manufacture of laminated ceramic capacitor
JPS59202618A (en) Method of producing laminated ceramic condenser
CN1848320A (en) Oxygen doped firing of barium titanate on copper foil
JPH04267320A (en) Layered ceramic capacitor production method