JPS589071B2 - Manufacturing method of ceramic sintered body - Google Patents

Manufacturing method of ceramic sintered body

Info

Publication number
JPS589071B2
JPS589071B2 JP54021383A JP2138379A JPS589071B2 JP S589071 B2 JPS589071 B2 JP S589071B2 JP 54021383 A JP54021383 A JP 54021383A JP 2138379 A JP2138379 A JP 2138379A JP S589071 B2 JPS589071 B2 JP S589071B2
Authority
JP
Japan
Prior art keywords
sintered body
powder
silicon nitride
weight
oxide powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54021383A
Other languages
Japanese (ja)
Other versions
JPS55116670A (en
Inventor
小松通泰
西田勝利
柘植章彦
米屋勝利
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP54021383A priority Critical patent/JPS589071B2/en
Publication of JPS55116670A publication Critical patent/JPS55116670A/en
Publication of JPS589071B2 publication Critical patent/JPS589071B2/en
Expired legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明はセラミック焼結体の製造方法に係り,さらに詳
しくは,機械的強度および耐熱衝撃性が優れたセラミッ
ク焼結体の製造方法こ関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing a ceramic sintered body, and more particularly to a method for manufacturing a ceramic sintered body having excellent mechanical strength and thermal shock resistance.

窒化ケイ素を主成分として成るセラミック焼結体は,1
900℃まで高温に耐えると言うすぐれた耐熱性を示す
とともに.熱膨脹係数が低いため耐熱衝撃性もすぐれて
いる。
Ceramic sintered bodies mainly composed of silicon nitride are 1
It exhibits excellent heat resistance, being able to withstand high temperatures up to 900℃. It also has excellent thermal shock resistance due to its low coefficient of thermal expansion.

従って、この種の窒化ケイ素を主成分として成るセラミ
ック焼結体はガスタービン翼,ノズルなど高温高強度を
要求される構造部品としての応用が試みられている。
Therefore, attempts have been made to apply this type of ceramic sintered body mainly composed of silicon nitride to structural parts such as gas turbine blades and nozzles that require high strength at high temperatures.

ところで,この種のセラミックス焼結体は.例えば窒化
ケイ素一酸化イットリウム一酸化アルミニウムの混合物
を原料とし、所謂るホットプレス法や常圧焼結法によっ
て製造している。
By the way, this type of ceramic sintered body... For example, a mixture of silicon nitride, yttrium monoxide, and aluminum monoxide is used as a raw material, and it is manufactured by a so-called hot pressing method or an atmospheric pressure sintering method.

例えばホットプレス法では.本発明者らは先に結晶粒界
をガラス質(非品質)からSi3N4・Y203結晶化
合物にすることによって特性のすぐれた窒化ケイ素系焼
結体が得られることを明らかにした。
For example, in the hot press method. The present inventors have previously revealed that a silicon nitride-based sintered body with excellent properties can be obtained by changing the grain boundaries from glassy (non-quality) to Si3N4.Y203 crystalline compound.

また.特願昭52−113235号や特願昭53−99
145号などに開示したように.焼結体中のガラス質の
減少を可能にするセラミック粉末材料の製造方法.或い
は焼結体の高温強度をより向上させうるセラミック粉末
材料としてSi3N4とY203との化合物を生成せし
めた窒化ケイ素質粉末を用いることにより好結果が得ら
れることを明らかこした。
Also. Patent Application No. 113235/1984 and Patent Application No. 1983
As disclosed in No. 145, etc. A method for manufacturing ceramic powder materials that enables reduction of vitreous content in sintered bodies. Alternatively, it has been shown that good results can be obtained by using a silicon nitride powder containing a compound of Si3N4 and Y203 as a ceramic powder material that can further improve the high-temperature strength of the sintered body.

しかしながら,これらの方法では,常圧焼結の場合には
緻密な焼結体が得難いため,機械的強度および耐熱衝撃
性が優れた焼結体を得ることが困難であり.ホットプレ
ス焼結の場合には.機械的強度および耐熱衝撃性が優れ
た焼結体は得られるが,焼結体の形状が制約され.かつ
非量産的であるという欠点があった。
However, with these methods, it is difficult to obtain a dense sintered body using pressureless sintering, so it is difficult to obtain a sintered body with excellent mechanical strength and thermal shock resistance. In the case of hot press sintering. Although a sintered body with excellent mechanical strength and thermal shock resistance can be obtained, the shape of the sintered body is restricted. It also had the disadvantage of not being mass-produced.

本発明は.上記従来技術の欠点を克服したセラミック焼
結体の製造方法を提供することを目的とするものであっ
て,本発明者らは上記の点についで鋭意研究した結果、
常圧焼結法によっても機械的強度および耐熱衝撃性が優
れたセラミック焼結体の製造方法の開発に成功し.本発
明を完成するに至った。
The present invention is. The purpose of the present invention is to provide a method for manufacturing a ceramic sintered body that overcomes the drawbacks of the above-mentioned prior art, and as a result of intensive research into the above-mentioned points, the present inventors have
We have successfully developed a method for producing ceramic sintered bodies with excellent mechanical strength and thermal shock resistance using pressureless sintering. The present invention has now been completed.

本発明の製造方法は,si3N4・¥2031=1化合
物の正方晶系結晶相を含有する窒化ケイ素質粉末であっ
て.前記813N4・¥2031:1化合物の結晶相の
窒化ケイ素結晶相に対するX線回折線の最高強度比が0
.03〜0.6である窒素ケイ素質粉末75重量係以上
,酸化アルミニウム粉末1〜10重量係.窒化アルミニ
ウム粉末1〜10重量係枚びに酸化チタン粉末,酸化マ
グネシウム粉末および酸化ジルコニウム粉末からなる群
より選ばれる少なくとも1種の酸化物粉末0.5〜5重
量係よりなる混合粉末を形成し,次いで非酸化性雰囲気
中,1500〜1900℃で焼結することを特徴とする
セラミック焼結体の製造方法である。
The manufacturing method of the present invention provides a silicon nitride powder containing a tetragonal crystal phase of a compound of si3N4.¥2031=1. The maximum intensity ratio of the X-ray diffraction line of the crystal phase of the 813N4 ¥2031:1 compound to the silicon nitride crystal phase is 0.
.. 03-0.6 nitrogen silicon powder 75% by weight or more, aluminum oxide powder 1-10% by weight. A mixed powder consisting of 1 to 10 parts by weight of aluminum nitride powder and 0.5 to 5 parts by weight of at least one oxide powder selected from the group consisting of titanium oxide powder, magnesium oxide powder and zirconium oxide powder is formed, and then This is a method for producing a ceramic sintered body characterized by sintering at 1500 to 1900°C in a non-oxidizing atmosphere.

Si3N4・Y2031:1化合物の正方晶系結晶相の
窒化ケイ素結晶相に対するX線回折線の最高強度比が0
.3〜0.6である窒化ケイ素質粉末は,例えばα型窒
化ケイ素粉末に0.5〜10重量係程度の酸化イットリ
ウムを添加混合し,窒素.アルゴン.一酸化炭素.窒素
一アンモニアガス等の非酸化性雰囲気下,1550〜1
750℃で30分〜2時間程度加熱処理(結晶化処理)
することにより得られる。
The maximum intensity ratio of the X-ray diffraction line of the tetragonal crystal phase of the Si3N4/Y2031:1 compound to the silicon nitride crystal phase is 0.
.. The silicon nitride powder having a nitrogen concentration of 0.3 to 0.6 is obtained by adding and mixing yttrium oxide of about 0.5 to 10 by weight to α-type silicon nitride powder, for example. Argon. Carbon monoxide. Under a non-oxidizing atmosphere such as nitrogen-ammonia gas, 1550-1
Heat treatment at 750℃ for about 30 minutes to 2 hours (crystallization treatment)
It can be obtained by

このようにして得られるSi3N4・¥2031:1化
合物は.他の添加物により焼結中に生成するガラス質(
非品質)が除去あるいは低減され.その結果焼結体の機
械的強度の低下を防止し,耐熱衝撃性を改良することが
できる。
The Si3N4・¥2031:1 compound obtained in this way is. Vitreous (
(non-quality) is removed or reduced. As a result, the mechanical strength of the sintered body can be prevented from decreasing and the thermal shock resistance can be improved.

X線回折分折におけるSi3N4・¥2031:1化合
物結晶相の窒化ケイ素結晶相に対する回折線最高強度比
が0.03より小さい場合には最高強度に対する寄与は
認められず,0.06より大きい場合には,窒化ケイ素
自体の特性が損なわれ.気孔率の高い焼結体となり高強
度耐熱材料としての特性が損なわれる。
If the maximum intensity ratio of the diffraction line of the Si3N4 ¥2031:1 compound crystal phase to the silicon nitride crystal phase in X-ray diffraction analysis is smaller than 0.03, no contribution to the maximum intensity is recognized, and if it is larger than 0.06 However, the properties of silicon nitride itself are impaired. This results in a sintered body with high porosity, which impairs its properties as a high-strength, heat-resistant material.

なお.本発明ではsi3N4・¥203化合物を生成せ
しめた窒化ケイ素質粉末を得る方法は.上記の方法に限
定されないが.加えたY203量から計算されるSis
N4・¥203化合物の量の少くとも50俤の量がX一
線的に検出される結晶相として生成することが他の添加
物との関連で望ましく,また更に好ましくは70係以上
がX一線的に検出される結晶相として生成することが高
温強度および耐熱衝撃性の点で好ましい。
In addition. In the present invention, the method for obtaining the silicon nitride powder in which the si3N4.¥203 compound is produced is as follows. Although not limited to the above method. Sis calculated from the amount of Y203 added
In relation to other additives, it is desirable that at least 50 yen of the N4 ¥203 compound is formed as a crystalline phase that can be detected linearly in It is preferable from the viewpoint of high-temperature strength and thermal shock resistance that it be produced as a crystalline phase detected in .

このようにして得られるSisN4・¥2031:1化
合物を含む窒化ケイ素質粉末は75重量チ以上好ましく
は85重量係以上の組成で用いられ,75重量チ未満で
はセラミック焼結体の高温強度,耐熱性衝撃性の改善は
見られない。
The silicon nitride powder containing the SisN4.¥2031:1 compound obtained in this way is used in a composition of 75% by weight or more, preferably 85% by weight or more; if it is less than 75% by weight, the high temperature strength and heat resistance of the ceramic sintered body are No improvement in sexual impact resistance was observed.

他の添加成分である酸化アルミニウム粉末および窒化ア
ルミニウム粉末はsi3N4・¥203化合物および他
の添加物と反応して焼結を促進するものであり.特に窒
化アルミニウムは窒化ケイ素の昇華や粒成長を抑制する
働きを有する。
The other additive components, aluminum oxide powder and aluminum nitride powder, react with the si3N4.¥203 compound and other additives to promote sintering. In particular, aluminum nitride has the function of suppressing sublimation and grain growth of silicon nitride.

これらの酸化アルミニウムおよび窒化アルミニウムは通
常の入手可能のものを用い,いずれも1〜10重量係、
好ましくは1.5〜7重量係用い,かつ両者の合計が1
5重量係以下であることが好ましい。
These aluminum oxide and aluminum nitride are commonly available ones, and both have a weight ratio of 1 to 10,
Preferably the weight coefficient is 1.5 to 7, and the total of both is 1.
It is preferable that the weight ratio is 5 or less.

これらはいずれも10重量係を超える量では焼結体の高
温強度および耐熱衝撃性が低下するため好ましくなく.
1重量係未満では焼結が進まない。
If the amount exceeds 10% by weight, the high-temperature strength and thermal shock resistance of the sintered body will decrease, which is undesirable.
If the weight is less than 1, sintering will not proceed.

また酸化アルミニウムは前述の結晶化処理の際に添加し
ておくこともできる。
Moreover, aluminum oxide can also be added during the above-mentioned crystallization treatment.

さらに他の添加成分である酸化チタン粉末,酸化マグネ
シウム粉末および酸化ジルコニウム粉末からなる群より
選ばれる酸化物粉末は焼結を促進し.主成分である窒化
ケイ素の濡れ性を改善して焼結体の緻密化.焼結時間の
短縮、焼結温度の低下等をもたらす。
Furthermore, another additive component, an oxide powder selected from the group consisting of titanium oxide powder, magnesium oxide powder, and zirconium oxide powder, promotes sintering. The sintered body is densified by improving the wettability of silicon nitride, the main component. This results in shorter sintering time and lower sintering temperature.

これらの酸化物は通常の入手可能なものを1種または2
種以上用い,2種以上の場合でも合計が0.5〜5重量
係.好ましくは1〜3重量係の量で用いる。
These oxides are one or two commonly available ones.
Use more than one type, and even if two or more types are used, the total weight is 0.5 to 5. Preferably, it is used in an amount of 1 to 3 parts by weight.

これらの酸化物は5重量係を超える量では,焼結体の高
温強度が損なわれるため好ましくなく、0.5重量係未
満では焼結が進まない。
If the amount of these oxides exceeds 5 weight ratio, the high-temperature strength of the sintered body will be impaired, which is not preferable, and if it is less than 0.5 weight ratio, sintering will not proceed.

これらの各成分の混合は.通常のボールミル等の粉砕混
合機により,n−ブチルアルコール等の溶媒を用いて行
なうことができる。
The mixture of these components is. This can be carried out using a conventional grinding mixer such as a ball mill using a solvent such as n-butyl alcohol.

このように調製された混合粉末tこステアリン酸等の粘
結剤を添加して500〜1000kg/cm2程度で成
形する。
A binder such as stearic acid is added to the mixed powder thus prepared, and the mixture is molded at about 500 to 1000 kg/cm2.

このようにして得られた成形体を非酸化性雰囲気中,1
500〜1900℃好ましくは1600〜1800℃で
1〜2時間焼結することによりセラミック焼結体が得ら
れる。
The molded body thus obtained was placed in a non-oxidizing atmosphere for 1
A ceramic sintered body is obtained by sintering at 500-1900°C, preferably 1600-1800°C for 1-2 hours.

非酸化性雰囲気としては,アルゴン.窒素,一酸化炭素
,窒素−アンモニアガス等が挙げられ,酸化性雰囲気で
は高温時に窒化ケイ素が酸化されて特性が損なわれる。
Argon is used as a non-oxidizing atmosphere. Examples include nitrogen, carbon monoxide, nitrogen-ammonia gas, etc. In an oxidizing atmosphere, silicon nitride is oxidized at high temperatures and its properties are impaired.

焼結温度は1500℃未満ではセラミック焼結体の生成
が困難であり、1900℃を超える温度では焼結体が分
解してしまうため好ましくない。
If the sintering temperature is less than 1,500°C, it is difficult to produce a ceramic sintered body, and if it exceeds 1,900°C, the sintered body will decompose, which is not preferable.

また50〜500kg/cI2の圧力を加え同様の雰囲
気および温度条件でホットプレス焼結しても同等の特性
を有するセラミック焼結体が得られることは明らかであ
る。
It is also clear that a ceramic sintered body having the same properties can be obtained by hot press sintering under the same atmosphere and temperature conditions by applying a pressure of 50 to 500 kg/cI2.

以下,実施例および参考例を掲げて本発明をさらに詳細
に説明する。
Hereinafter, the present invention will be explained in more detail with reference to Examples and Reference Examples.

実施例および参考例 α型相窒化ケイ素(SlsN4)85%を含む平均粒度
1.2μの窒化ケイ素粉末に平均粒度1μの酸化イット
リウム(Y203)粉末を表に示した如<0.2〜15
重量係の範囲(参考例を含む)で添加混合した調合粉末
を窒化雰囲気下で1650℃1時間加熱処理を施して,
Si3N4・¥203化合物を生成せしめた窒化ケイ素
質粉末を調製した。
Examples and Reference Examples Yttrium oxide (Y203) powder with an average particle size of 1 μm was added to silicon nitride powder with an average particle size of 1.2 μm containing 85% α-type phase silicon nitride (SlsN4) as shown in the table <0.2 to 15
The blended powder, which was added and mixed in the weight range (including reference examples), was heat-treated at 1650°C for 1 hour in a nitriding atmosphere.
A silicon nitride powder containing a Si3N4.¥203 compound was prepared.

この粉末はX一線的には813N4・¥203化合物結
晶相のSi3N4結晶相に対する割合が最高強度比で0
.01〜0.80の範囲(参考例を含む)のものであり
,且つ、加えた¥203量から計算されるSi3N4・
Y203化合物生成の理論量に対し何れも70係以上の
結晶相が検出された。
In this powder, the ratio of the 813N4 ¥203 compound crystal phase to the Si3N4 crystal phase is 0 at the highest strength ratio in terms of the X-line.
.. Si3N4 is in the range of 0.01 to 0.80 (including reference examples) and calculated from the added amount of ¥203.
In all cases, a crystalline phase with a coefficient of 70 or higher was detected relative to the theoretical amount of Y203 compound formation.

この窒化ケイ素質粉末.平均粒度0.5μの酸化アルミ
ニウム粉末(Al2e3).平均粒度1.5μの窒化ア
ルミニウム粉末(AAN),平均粒度1μの酸化チタン
粉末(TiO2),酸化マグネシウム粉末(MgO).
酸化ジルコニウム粉末(Zr02)を表に示す組成比(
重量係)に選び,溶媒としてn−ブチルアルコールを用
いゴムライニングボールミルにてそれぞれ24時間粉砕
混合を行ない参考例を含め64種の原料粉末を調製した
This silicon nitride powder. Aluminum oxide powder (Al2e3) with an average particle size of 0.5μ. Aluminum nitride powder (AAN) with an average particle size of 1.5μ, titanium oxide powder (TiO2) with an average particle size of 1μ, magnesium oxide powder (MgO).
The composition ratio of zirconium oxide powder (Zr02) shown in the table (
Using n-butyl alcohol as a solvent, each material was ground and mixed for 24 hours in a rubber-lined ball mill to prepare 64 types of raw material powders, including reference examples.

上記調製した原料粉末にステアリン酸(粘結剤)を重量
比で7係それぞれ添加配合して700kg/cr2/t
の成形圧で長さ60un.幅40rn.厚さ10mwの
棒状成形体(抗折強度試験用)と.直径30mm.厚さ
10mLの円板(耐熱衝撃試験用)とをそれぞれ形成し
た。
Add and blend stearic acid (binder) to the raw material powder prepared above at a weight ratio of 7 to 700 kg/cr2/t.
Length 60un. under molding pressure. Width 40rn. A rod-shaped molded body with a thickness of 10 mw (for bending strength test). Diameter 30mm. A disk (for thermal shock resistance test) with a thickness of 10 mL was formed, respectively.

かくして得た成形体につき,先ず700℃で加熱処理を
施し.粘結剤を揮散除去後,窒化ガス雰囲気下1700
℃でそれぞれ焼結を行ない窒化ケイ素系セラミック焼結
体を得た。
The molded product thus obtained was first subjected to heat treatment at 700°C. After volatilizing and removing the binder, 1700 min under nitriding gas atmosphere
Sintering was performed at ℃ to obtain a silicon nitride ceramic sintered body.

上記によって得たセラミック焼結体につき密度,抗折強
度(機械的強度).および耐熱衝撃性をそれぞれ測定し
た結果を表に併せて示した。
Density and bending strength (mechanical strength) of the ceramic sintered body obtained above. The results of measuring and thermal shock resistance are also shown in the table.

尚.表中の密度は理論密度を基礎とする相対密度(%)
であり.抗折強度値は3点曲げ強度試験によるものであ
り.試料サイズは3X3X30(mi)試験条件はクロ
スヘッドスピード0.5mm/mm.スパン20mn,
温度は常温,1200℃とし,各温度での測定はすべて
4回行ない,その平均値で示した。
still. The densities in the table are relative densities (%) based on the theoretical density.
Yes. The bending strength values are based on a three-point bending strength test. The sample size was 3X3X30 (mi) and the test conditions were a crosshead speed of 0.5mm/mm. Span 20mn,
The temperature was room temperature, 1200° C., and all measurements at each temperature were performed four times, and the average value is shown.

また.耐熱衝撃値ΔTcは焼結体を或る温度から水中へ
投入して気冷し.クラツク発生の有無を螢光探傷法によ
り確認し,まさにクラツクの入り始める温度と水温との
差をΔTcとして表示した。
Also. Thermal shock resistance value ΔTc is determined by putting the sintered body into water from a certain temperature and cooling it in air. The presence or absence of cracks was confirmed by fluorescence flaw detection, and the difference between the temperature at which cracks just started and the water temperature was expressed as ΔTc.

表から明らかなように本発明方法によって得られた焼結
体は常圧焼結にもかかわらず加圧焼結体に匹適する特性
を有し,密度は理論密度の95係以上.強度は常温で8
5kg/mm一以上,1200℃で70kg/mm2以
上.耐熱衝撃値ΔTcについてはほぼ500℃以上であ
る。
As is clear from the table, the sintered body obtained by the method of the present invention has properties comparable to pressure sintered bodies despite being sintered under pressure, and its density is 95 times higher than the theoretical density. Strength is 8 at room temperature
5kg/mm2 or more, 70kg/mm2 or more at 1200℃. The thermal shock resistance value ΔTc is approximately 500° C. or higher.

以上説明したように本発明のセラミックス焼結体の製造
方法は加圧を要しないので多量生産に適し工業上大変有
利な焼結法で特性の優れた焼結体が得られることが理解
されよう。
As explained above, it will be understood that the method for manufacturing a ceramic sintered body of the present invention does not require pressurization, and is therefore suitable for mass production, and a sintered body with excellent properties can be obtained using a sintering method that is very advantageous industrially. .

Claims (1)

【特許請求の範囲】[Claims] I S13N4・¥2031:1化合物の正方晶系結晶
相を含有する窒化ケイ素質粉末であって,前記si3N
4・Y2031=1化合物の結晶相の窒化ケイ素結晶相
に対するX線回折線の最高強度比が0.03〜0.6で
ある窒化ケイ素質粉末75重量係以上.酸化アルミニウ
ム粉末1〜10重量係、窒化アルミニウム粉末1〜10
重量係並びに酸化チタン粉末,酸化マグネシウム粉末お
よび酸化ジルコニウム粉末からなる群より選ばれる少な
くとも1種の酸化物粉末0.5〜5重量係よりなる混合
粉末を成形し.次いで非酸化性雰囲気中,1500〜1
900℃で焼結することを特徴とするセラミック焼結体
の製造方法。
A silicon nitride powder containing a tetragonal crystal phase of an I S13N4 ¥2031:1 compound, wherein the si3N
4.Y2031=1 A silicon nitride powder having a maximum intensity ratio of the X-ray diffraction line of the crystal phase of the compound to the silicon nitride crystal phase of 0.03 to 0.6 by weight of 75 or more. Aluminum oxide powder 1-10 by weight, aluminum nitride powder 1-10
A mixed powder consisting of a weight factor and 0.5 to 5 weight factor of at least one oxide powder selected from the group consisting of titanium oxide powder, magnesium oxide powder, and zirconium oxide powder is molded. Then in a non-oxidizing atmosphere, 1500-1
A method for producing a ceramic sintered body, characterized by sintering at 900°C.
JP54021383A 1979-02-27 1979-02-27 Manufacturing method of ceramic sintered body Expired JPS589071B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP54021383A JPS589071B2 (en) 1979-02-27 1979-02-27 Manufacturing method of ceramic sintered body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP54021383A JPS589071B2 (en) 1979-02-27 1979-02-27 Manufacturing method of ceramic sintered body

Publications (2)

Publication Number Publication Date
JPS55116670A JPS55116670A (en) 1980-09-08
JPS589071B2 true JPS589071B2 (en) 1983-02-18

Family

ID=12053559

Family Applications (1)

Application Number Title Priority Date Filing Date
JP54021383A Expired JPS589071B2 (en) 1979-02-27 1979-02-27 Manufacturing method of ceramic sintered body

Country Status (1)

Country Link
JP (1) JPS589071B2 (en)

Also Published As

Publication number Publication date
JPS55116670A (en) 1980-09-08

Similar Documents

Publication Publication Date Title
JPS5823345B2 (en) Method for manufacturing ceramic sintered bodies
JPH0244786B2 (en)
JPS5851910B2 (en) Titsukakeisokeishyouketsutainoseizouhouhou
JPH0449509B2 (en)
JPS6236991B2 (en)
JPS6050750B2 (en) Silicon nitride composite sintered body
JPS589071B2 (en) Manufacturing method of ceramic sintered body
JP2766445B2 (en) Sialon composite sintered body and method for producing the same
JPS63319263A (en) Silicon nitride-based ceramic
JP2687632B2 (en) Method for producing silicon nitride sintered body
JP2526598B2 (en) Method for manufacturing silicon nitride ceramics
JP2960591B2 (en) Silicon carbide-silicon nitride-mixed oxide-based sintered body and method for producing the same
JP3007732B2 (en) Silicon nitride-mixed oxide sintered body and method for producing the same
JPS61158866A (en) Ceramic sintered body and manufacture
JPH078746B2 (en) Silicon nitride ceramics and method for producing the same
JP2892186B2 (en) Method for producing silicon nitride-silicon carbide composite sintered body
JPH06116045A (en) Silicon nitride sintered compact and its production
JPH0712980B2 (en) Silicon carbide sintered body and method for producing the same
JP3216973B2 (en) Silicon nitride sintered body and method for producing the same
JPS6346029B2 (en)
JP2687633B2 (en) Method for producing silicon nitride sintered body
JPH0559073B2 (en)
JPH03153574A (en) High strength sialon-based sintered body
JPS6121976A (en) Manufacture of silicon nitride base sintered body
JPS6319473B2 (en)