JPS5851910B2 - Titsukakeisokeishyouketsutainoseizouhouhou - Google Patents

Titsukakeisokeishyouketsutainoseizouhouhou

Info

Publication number
JPS5851910B2
JPS5851910B2 JP50133034A JP13303475A JPS5851910B2 JP S5851910 B2 JPS5851910 B2 JP S5851910B2 JP 50133034 A JP50133034 A JP 50133034A JP 13303475 A JP13303475 A JP 13303475A JP S5851910 B2 JPS5851910 B2 JP S5851910B2
Authority
JP
Japan
Prior art keywords
weight
silicon nitride
powder
parts
sintered body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP50133034A
Other languages
Japanese (ja)
Other versions
JPS5257100A (en
Inventor
治男 工藤
勝利 西田
章彦 柘植
勝利 米屋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP50133034A priority Critical patent/JPS5851910B2/en
Publication of JPS5257100A publication Critical patent/JPS5257100A/en
Publication of JPS5851910B2 publication Critical patent/JPS5851910B2/en
Expired legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明は窒化けい素糸焼結体およびその製造方法の改良
に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to improvements in a sintered silicon nitride yarn and a method for manufacturing the same.

813 N4を主成分とした窒化けい素糸焼結体は、高
温強度、耐熱衝撃、耐食性などがすぐれているため、耐
熱構造材料例えば高温ガスタービン用部材などとして多
くの関心を寄せられている。
Silicon nitride yarn sintered bodies containing 813N4 as a main component have excellent high-temperature strength, thermal shock resistance, corrosion resistance, etc., and are therefore attracting a lot of interest as heat-resistant structural materials, such as members for high-temperature gas turbines.

しかしてこれら窒化けい素糸焼結体はけい素(Si)の
窒化反応を利用する反応焼結法または窒化けい素糸原料
粉末を加圧下で焼結するホットプレス法によって製造さ
れている。
These silicon nitride yarn sintered bodies are manufactured by a reactive sintering method that utilizes the nitriding reaction of silicon (Si) or a hot press method in which silicon nitride yarn raw material powder is sintered under pressure.

特にホットプレス法は一般に緻密な焼結体を得易いので
高強度焼結体製造に適する方法と言える。
In particular, the hot press method can be said to be suitable for producing high-strength sintered bodies since it is generally easy to obtain a dense sintered body.

またこのホットプレス法によって窒化けい素糸焼結体を
得るに当って例えば酸化マグネシウム(MgO)、酸化
アルミニウム(Al□03)、酸化イツトリウム(Y2
os )などを原料窒化けい素粉末に添加配合して焼
結性など改善し高強度の焼結体を製造することも試みら
れている。
In addition, when obtaining a silicon nitride yarn sintered body by this hot pressing method, for example, magnesium oxide (MgO), aluminum oxide (Al□03), yttrium oxide (Y2
Attempts have also been made to improve sinterability by adding and blending materials such as os) to raw material silicon nitride powder to produce high-strength sintered bodies.

上記で酸化イツトリウム(Y2O2)など希土類元素酸
化物は酸化アルミニウム(Al□03)など併用すれば
さらに強度の高い窒化けい素糸焼結体を得易くなるが、
例えば高温ガスタービンのタービン翼などに用いる場合
にはさらに高性能、高信頼性を要望される。
In the above, if rare earth element oxides such as yttrium oxide (Y2O2) are used in combination with aluminum oxide (Al□03), it becomes easier to obtain a silicon nitride yarn sintered body with even higher strength.
For example, when used in turbine blades of high-temperature gas turbines, even higher performance and reliability are required.

本発明者らは窒化けい素糸焼結体について原料成分と高
温強度、信頼性との関係を検討した結果、特に窒化けい
素粉米原料の種類、純度乃至酸素含有量が大きく影響す
ることを見出した。
As a result of examining the relationship between raw material components, high-temperature strength, and reliability of silicon nitride yarn sintered bodies, the present inventors found that the type, purity, and oxygen content of the silicon nitride powder rice raw materials have a large influence. I found it.

即ち原料窒化けい素粉末についてはα型結晶系が好まし
く、また粒度なとも重要な因子をなしているが、原料窒
化けい素粉末中に含まれる酸素量が最終的に得られた焼
結体の強度や信頼性に対して大きな要因をなしているこ
とを確認した。
In other words, the α-type crystal system is preferable for the raw material silicon nitride powder, and the particle size is also an important factor, but the amount of oxygen contained in the raw material silicon nitride powder is determined by the final sintered body. It was confirmed that this is a major factor in strength and reliability.

本発明はこのような知見に基づき、高温強度がすぐれて
おり且つ信頼性も高く高温ガスタービン翼の構成などに
適する窒化けい素糸焼結体およびその製造方法を提供し
ようとするものである。
Based on such knowledge, the present invention aims to provide a silicon nitride yarn sintered body that has excellent high-temperature strength and high reliability and is suitable for the construction of high-temperature gas turbine blades, and a method for manufacturing the same.

以下本発明の詳細な説明すると、本発明は(a) α
型窒化けい素が800重量部上を占め且つ酸素含有量2
.0〜5.5重量幅およびけい素以外の金属類の含有量
が金属として1重量多基下である窒化けい素粉法99.
8〜70重置部、(b) 周期律表1a系元素の酸化
物粉末0.1〜10重量多および (C) 酸化アルミニウム粉末O11〜20重量多を
含む窒化けい素糸焼結体および上記組成の混合物を30
0〜650に9/cIItの圧力下、1700〜183
0℃で加圧焼結する窒化けい素糸焼結体の製造方法であ
る。
The present invention will be described in detail below. The present invention includes (a) α
type silicon nitride occupies more than 800 parts by weight and the oxygen content is 2
.. 99. Silicon nitride powder method in which the weight range is 0 to 5.5 and the content of metals other than silicon is 1 weight group or less as metals.
8 to 70 overlapping parts, (b) 0.1 to 10 parts by weight of oxide powder of Ia group elements of the periodic table, and (C) 11 to 20 parts by weight of aluminum oxide powder O, and the above silicon nitride thread sintered body. Mixture of composition 30
0-650 under pressure of 9/cIIt, 1700-183
This is a method for producing a silicon nitride thread sintered body by pressure sintering at 0°C.

本発明は上記の如く窒化けい素糸原料粉末の種類、酸素
含有量について特に考慮を払った点で特徴づけられる。
As described above, the present invention is characterized in that particular consideration is given to the type and oxygen content of the silicon nitride yarn raw material powder.

この点についてさらに詳述すると、窒化けい素(Si3
N4)粉は一般に酸化カルシウム(CaO)や酸化鉄(
t’e2os)を含むことが多い。
To elaborate further on this point, silicon nitride (Si3
N4) powder is generally calcium oxide (CaO) or iron oxide (
t'e2os).

しかしこれらけい素(Si)以外の金属酸化物等の不純
物が金属として1重置部を超えて含有していると得られ
た焼結体の高温における性能劣化を招き易いので不純物
量が上記範囲内(好ましくは0.4重量多収下)にある
ものを常に選ぶ必要がある。
However, if these impurities such as metal oxides other than silicon (Si) are contained as metal in an amount exceeding a single layer, the performance of the obtained sintered body at high temperatures will likely deteriorate, so the amount of impurities should be within the above range. It is necessary to always choose one that is within (preferably 0.4 weight higher yield).

また窒化けい素原料粉末は結晶形がα型であるものを少
なくとも800重量部占めている必要がある。
Further, the silicon nitride raw material powder must contain at least 800 parts by weight of α-type crystals.

その理由はα型窒化けい素の占める比が原料窒化けい素
粉米中80重量饅未満では焼結性が劣り、最終的に高強
度の焼結体を得難いからである。
The reason for this is that if the ratio of α-type silicon nitride to the raw material silicon nitride powder rice is less than 80% by weight, the sinterability will be poor and it will be difficult to finally obtain a high-strength sintered body.

一方窒化けい素粉末の主体をなすα型窒化けい素は同じ
α型でも酸素の含有量に差があり、この酸素量によって
焼結性がかなり影響を受ける。
On the other hand, the α-type silicon nitride, which is the main component of silicon nitride powder, has a different oxygen content even though it is the same α-type, and the sinterability is considerably affected by this oxygen content.

しかして上記酸素量は不純物として含まれる他の金属酸
化物量によって支配されるが、2.0〜5.5重量多の
範囲に常に選ばれる。
The above amount of oxygen is controlled by the amount of other metal oxides contained as impurities, but is always selected within the range of 2.0 to 5.5% by weight.

その理由は窒化けい素原料粉末中に含有される酸素量が
上記範囲外の場合はいずれも、得られた焼結体の強度低
下がみられるからであり、酸素量2,5〜4.5重置部
の場合には、さらに高性能な焼結体を得るには適する。
The reason for this is that if the amount of oxygen contained in the silicon nitride raw material powder is outside the above range, the strength of the obtained sintered body will decrease. In the case of an overlapping part, it is suitable for obtaining a sintered body with even higher performance.

本発明において上記α型窒化けい素を主成分とした窒化
けい素粉末とともに出発原料をなし、且つ焼結性、強度
向上に寄与する周期律表1a系列元素の酸化物(第2成
分)、例えば酸化イツトリウム(Y2O2)、酸化ラン
タン(La2os)、酸化セリウム(CeO2)酸化デ
ィスプロシウム(DY203)酸化ガドリウム(・Gd
203)、酸化サマリウム(Sm203)などは1種も
しくは2種以上の混合系で用いてもよく、また酸化アル
ミニウム(Al2O2)・・・第3成分・・・などの組
成比はそれぞれ0.1〜10重量饅、置部1〜20重量
饅の置部内で選ばれる。
In the present invention, an oxide (second component) of an element in group 1a of the periodic table, which serves as a starting material together with the silicon nitride powder containing α-type silicon nitride as a main component and contributes to improving sinterability and strength, such as Yttrium oxide (Y2O2), lanthanum oxide (La2os), cerium oxide (CeO2) dysprosium oxide (DY203), gadolinium oxide (・Gd
203), samarium oxide (Sm203), etc. may be used alone or in a mixed system of two or more types, and the composition ratio of aluminum oxide (Al2O2)...third component...etc. is 0.1 to 0.1, respectively. 10 weight rice cakes, and 1 to 20 weight rice cakes are selected within the rice cake section.

即ち第2成分としての酸化イツトリウム(Y2O2)な
どの組成比が0.1重量φ未満では焼結性に効果がなく
、100重量部超えると高温での耐熱性、耐食性などが
低下するからである。
That is, if the composition ratio of yttrium oxide (Y2O2) etc. as the second component is less than 0.1 parts by weight, it has no effect on sintering properties, and if it exceeds 100 parts by weight, heat resistance at high temperatures, corrosion resistance, etc. decrease. .

また第3成分としての酸化アルミニウム(A1203)
の組成比が0.1重量多未満では酸化イツトリウム(Y
2O2)の緻密化に有効に作用せず200重量部超える
と酸化イツトリウム(Y2 os )と同様、高温特性
を低下するからである。
Also, aluminum oxide (A1203) as a third component
If the composition ratio is less than 0.1% by weight, yttrium oxide (Y
This is because, like yttrium oxide (Y2 os ), if it exceeds 200 parts by weight, it does not effectively affect the densification of yttrium oxide (Y2 os ), and the high-temperature properties deteriorate.

しかしてこれら各原料粉末はいずれも平均粒径3μ以下
、好ましくは0.1〜2μのものがよく、また、焼結方
法としては常圧焼結もしくはホットプレス法を用いる事
ができ、とくに高強度を目的とする場合はホットプレス
法が好ましい。
Therefore, each of these raw material powders preferably has an average particle size of 3μ or less, preferably 0.1 to 2μ, and as a sintering method, pressureless sintering or hot press method can be used, and especially high When the objective is strength, hot pressing is preferred.

このホットプレスにおける圧力は300〜650kg/
cIlに選ばれ、また焼結温度は1700〜1830℃
に選択する必要がある。
The pressure in this hot press is 300 to 650 kg/
cIl, and the sintering temperature is 1700-1830℃
need to be selected.

その理由は圧力および焼結温度を上記の如く選択するの
は最終的に所要の性能を備えた窒化けい素糸焼結体が得
られないからである。
The reason for this is that selecting the pressure and sintering temperature as described above does not ultimately result in a silicon nitride yarn sintered body having the required performance.

次に本発明の実施例を記載する。Next, examples of the present invention will be described.

実施例 1 α型窒化けい素が888重量部占め、酸素含有量3.5
重置部(中性子放射化分析による測定以下同じ)、不純
物としてカルシウムや鉄の含有量0.6重量部の平均粒
径1.0μの窒化けい素粉末92重量部、平均粒径1.
5μの酸化イツトリウム粉末4.5重量部および平均粒
径0.8μの酸化アルミニウム粉末2,5重量部からな
る混合粉末にステアリン酸(粘結剤)5重量部を添加配
合し、直径40mm、厚さ20tttmの円柱状体を冷
開成形(圧力200 kg/cyrt ) した。
Example 1 α-type silicon nitride accounts for 888 parts by weight, oxygen content is 3.5
Overlapping part (as measured by neutron activation analysis, the same applies hereinafter), 92 parts by weight of silicon nitride powder with an average particle size of 1.0μ, containing 0.6 parts by weight of calcium and iron as impurities, and 92 parts by weight of silicon nitride powder with an average particle size of 1.0μ.
5 parts by weight of stearic acid (binder) was added to a mixed powder consisting of 4.5 parts by weight of 5μ yttrium oxide powder and 2.5 parts by weight of aluminum oxide powder with an average particle size of 0.8μ. A cylindrical body with a diameter of 20 tttm was cold-open molded (pressure: 200 kg/cyrt).

次いでこの成形体を400℃に予熱し粘結剤を除去した
後ホットプレス用カーボンモールド内に収納して徐々に
温度を上昇させ最終的には1770℃、500kg/c
I!、 2.5時間ホットプレスして焼結体を得た。
Next, this molded body was preheated to 400°C, the binder was removed, and then placed in a hot press carbon mold, the temperature was gradually raised until the final temperature was 1770°C and 500kg/c.
I! A sintered body was obtained by hot pressing for 2.5 hours.

かくして得た焼結体から幅3ill!fi、厚さ3 y
x*1長本本さ301mの棒状体を切り出し表面研磨後
、スパン20鶴荷重印加速度0.5ii/m inの条
件で曲げ強度(kg/c/L)を常温〜1200℃の温
度範囲で測定した結果は表−1に示す如くであった。
The width of the sintered body thus obtained is 3ill! fi, thickness 3y
x*1 After cutting out a rod-shaped body with a length of 301 m and polishing the surface, the bending strength (kg/c/L) was measured at a temperature range of room temperature to 1200°C under the conditions of span 20 and load application acceleration of 0.5 ii/min. The results were as shown in Table 1.

同表−1には比較のため上記窒化けい素粉米原料として
酸素含有量が0.855重量部ある他は同一条件で得た
窒化けい素糸焼結体についての場合を併せて示した。
For comparison, Table 1 also shows the case of a silicon nitride yarn sintered body obtained under the same conditions except that the silicon nitride powder rice raw material had an oxygen content of 0.855 parts by weight.

表−1から明らかなように本発明に係る焼結体は比較例
の場合に較べ曲げ強度が著しくすぐれている。
As is clear from Table 1, the sintered body according to the present invention has significantly better bending strength than the comparative example.

実施例 2 不純物としてカルシウムや鉄の含有量が0.5重量係で
、酸素含有量1.4〜6.5重量部の平均粒径米米0.
8〜1.5μのα型窒化けい素粉末90重量部、平均粒
径1.2μの酸化イツトリウム粉末5重量部および平均
粒径0.3μの酸化アルミニウム粉末5重量部からなる
混合粉末を原料として実施例1の場合と同様の条件でホ
ットプレスを行い比較例を含め6種の窒化けい素糸焼結
体をそれぞれ得た。
Example 2 Rice grains with an average grain size of 0.5 parts by weight contain calcium and iron as impurities, and have an oxygen content of 1.4 to 6.5 parts by weight.
A mixed powder consisting of 90 parts by weight of α-type silicon nitride powder of 8 to 1.5μ, 5 parts by weight of yttrium oxide powder with an average particle size of 1.2μ, and 5 parts by weight of aluminum oxide powder with an average particle size of 0.3μ is used as a raw material. Hot pressing was performed under the same conditions as in Example 1 to obtain six types of silicon nitride yarn sintered bodies, including a comparative example.

かくして得た焼結体の密度(g/cc)、1200℃に
おける曲げ強さくkg/cIIL)の測定結果を焼結条
件とともに表−2に併せて示した。
The measurement results of the density (g/cc) and bending strength at 1200°C (kg/cIIL) of the sintered body thus obtained are shown in Table 2 together with the sintering conditions.

向上記試料Cの場合と同一組成の混合粉末を原料とした
圧粉体をパウダーベヒクルホットプレス法(窒化はう素
粉末を媒体とする)により、1780℃、圧力500k
g/cr/l、 2時間の条件で焼結体を得た。
A green compact made from a mixed powder having the same composition as the sample C mentioned above was heated at 1780°C and under a pressure of 500k using a powder vehicle hot press method (using boron nitride powder as the medium).
A sintered body was obtained under the conditions of g/cr/l and 2 hours.

かくして得た焼結体は常温での曲げ強さ113kg/f
fl 1200℃での曲げ強さ104kg/dですぐ
れた特性を示した。
The sintered body thus obtained has a bending strength of 113 kg/f at room temperature.
fl It showed excellent properties with a bending strength of 104 kg/d at 1200°C.

比較例として上記実施例2の試料Aと同一で金属不純物
1.2重量部を含有(鉄が主不純物で0.7重量部、他
はCa等)する窒化けい素を用いた場合のWを表−3に
示す。
As a comparative example, silicon nitride, which is the same as Sample A of Example 2 and contains 1.2 parts by weight of metal impurities (iron is the main impurity, 0.7 parts by weight, others include Ca, etc.), was used. It is shown in Table-3.

(但し、他の条件は同じ) 実施例 3 α型窒化けい素が888重量部占め酸素含有量3.5重
量多、不純物としてカルシウムの含有量0.6重量多の
平均粒径1μの窒化けい素粉末91重量部、平均粒径1
.2μの酸化イツトリウム粉末5重量部、平均粒径0.
8μの酸化アルミニウム粉末2.5重量部および平均粒
径0.9μの酸化マグネシウム1.5重量部からなる混
合粉末を原料として実施例1と同じ手法、条件のホット
プレス法によって窒化けい素糸焼結体を得た。
(However, other conditions are the same) Example 3 Silicon nitride with an average particle size of 1μ, containing 888 parts by weight of α-type silicon nitride, 3.5 parts by weight of oxygen, and 0.6 parts by weight of calcium as impurities. Base powder 91 parts by weight, average particle size 1
.. 5 parts by weight of 2μ yttrium oxide powder, average particle size 0.
Silicon nitride fibers were sintered by the hot press method using the same method and conditions as in Example 1, using a mixed powder of 2.5 parts by weight of aluminum oxide powder of 8 μm and 1.5 parts by weight of magnesium oxide with an average particle size of 0.9 μm as raw materials. Obtained a body.

かくして得た焼結体について曲げ強度を測定したところ
常温で115kg/crI、1200℃で92kg/−
とすぐれた値を示した。
When the bending strength of the sintered body thus obtained was measured, it was 115 kg/crI at room temperature and 92 kg/- at 1200°C.
It showed an excellent value.

上記実施例および比較例から明らかなように本発明に係
る窒化けい素糸焼結体は曲げ強度など機械的特性が著し
くすぐれている。
As is clear from the above Examples and Comparative Examples, the silicon nitride yarn sintered body according to the present invention has extremely excellent mechanical properties such as bending strength.

従って例えば高温ガスタービン翼としても高い信頼性を
もって使用しうると言える。
Therefore, it can be said that it can be used with high reliability, for example, as a high-temperature gas turbine blade.

Claims (1)

【特許請求の範囲】 1(a)α型窒化けい素が80重量多以上を占め、且つ
酸素含有量2.0〜5.5重量多およびけい素以外の金
属類の含有量が金属として1重量饅以下である窒化けい
素糸粉末99.8〜70重量咎、(b) 周期律表H
a系列元素の酸化物粉末0.1〜10重量俤および、 (c)酸化アルミニウム粉末0.1〜20重量饅を含む
ことを特徴とする窒化けい素糸焼結体。 2(a)α型窒化けい素が80重量多以上を占め、且つ
酸素含有量2.0〜5.5重量幅およびけい素以外の金
属類の含有量が金属として1重量多以下である窒化けい
素糸粉末99.8〜70重量饅、(b)周期律表1a系
列元素の酸化物粉末0.1〜10重量饅および、 (C) 酸化アルミニウム粉末0.1〜他重量悌を含
む混合物を300〜650に9/瀝の圧力下1700〜
1830℃で加圧焼結することを特徴とする窒化けい素
糸焼結体の製造方法。
[Scope of Claims] 1(a) α-type silicon nitride accounts for 80% by weight or more, and the oxygen content is 2.0 to 5.5% by weight and the content of metals other than silicon is 1% by weight as metals. Silicon nitride thread powder having a weight of less than 99.8 to 70 weight, (b) Periodic Table H
A silicon nitride yarn sintered body comprising: (c) 0.1-10% by weight of an oxide powder of an a-series element; and (c) 0.1-20% by weight of an aluminum oxide powder. 2(a) Nitriding in which α-type silicon nitride accounts for 80% by weight or more, oxygen content ranges from 2.0 to 5.5% by weight, and the content of metals other than silicon is 1% by weight or less as metals. A mixture containing silicon thread powder 99.8 to 70% by weight, (b) oxide powder of 1a group elements of the periodic table 0.1 to 10% by weight, and (C) aluminum oxide powder 0.1 to 10% by weight. 9/1700~ under pressure of 300~650
A method for producing a silicon nitride yarn sintered body, characterized by pressure sintering at 1830°C.
JP50133034A 1975-11-07 1975-11-07 Titsukakeisokeishyouketsutainoseizouhouhou Expired JPS5851910B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP50133034A JPS5851910B2 (en) 1975-11-07 1975-11-07 Titsukakeisokeishyouketsutainoseizouhouhou

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP50133034A JPS5851910B2 (en) 1975-11-07 1975-11-07 Titsukakeisokeishyouketsutainoseizouhouhou

Publications (2)

Publication Number Publication Date
JPS5257100A JPS5257100A (en) 1977-05-11
JPS5851910B2 true JPS5851910B2 (en) 1983-11-18

Family

ID=15095251

Family Applications (1)

Application Number Title Priority Date Filing Date
JP50133034A Expired JPS5851910B2 (en) 1975-11-07 1975-11-07 Titsukakeisokeishyouketsutainoseizouhouhou

Country Status (1)

Country Link
JP (1) JPS5851910B2 (en)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6035315B2 (en) * 1977-01-13 1985-08-14 株式会社東芝 Manufacturing method of ceramic powder material
JPS53144911A (en) * 1977-05-24 1978-12-16 Denki Kagaku Kogyo Kk Heat resistance high strength complex material of silicon nitride
JPS5415916A (en) * 1977-07-06 1979-02-06 Denki Kagaku Kogyo Kk Siliconnnitride base highhtemperaturee resistant highhstrength composite material
JPS5433511A (en) * 1977-08-19 1979-03-12 Denki Kagaku Kogyo Kk Method of making sintered body
JPS5499114A (en) * 1978-01-20 1979-08-04 Denki Kagaku Kogyo Kk Crucible for melting metal
JPS5499115A (en) * 1978-01-20 1979-08-04 Denki Kagaku Kogyo Kk Heat resistant hearth roil
JPS54103085A (en) * 1978-01-30 1979-08-14 Denki Kagaku Kogyo Kk Thermocople protecting tube
JPS54102314A (en) * 1978-01-30 1979-08-11 Denki Kagaku Kogyo Kk Nozzle for use in casting
JPS55109277A (en) * 1979-02-15 1980-08-22 Kagaku Gijutsucho Mukizai Manufacture of silicon nitride sintered body
JPS5891079A (en) * 1981-11-26 1983-05-30 京セラ株式会社 Sintered body for cutting tool and manufacture
JPS5895659A (en) * 1981-11-30 1983-06-07 日本特殊陶業株式会社 Highly anticorrosive silicon nitride sintered body and manufacture
JPS5895660A (en) * 1981-11-30 1983-06-07 日本特殊陶業株式会社 Silicon nitride sintered body and manufacture
US4749539A (en) * 1984-05-29 1988-06-07 Gte Products Corporation Process for producing corrosion resistant silicon nitride bodies containing La2 O3
US4795724A (en) * 1986-06-12 1989-01-03 Ngk Insulators, Ltd. Silicon nitride sintered bodies and process for manufacturing the same
JPS6389465A (en) * 1986-09-30 1988-04-20 日立金属株式会社 Heater protection pipe
JP2577899B2 (en) * 1987-01-28 1997-02-05 本田技研工業株式会社 Silicon nitride sintered body and method for producing the same

Also Published As

Publication number Publication date
JPS5257100A (en) 1977-05-11

Similar Documents

Publication Publication Date Title
JPS5823345B2 (en) Method for manufacturing ceramic sintered bodies
JPS5851910B2 (en) Titsukakeisokeishyouketsutainoseizouhouhou
JPH07277814A (en) Alumina-based ceramic sintered compact
US2752258A (en) Silicon nitride-bonded silicon carbide refractories
US2636828A (en) Silicon nitride-bonded refractory oxide bodies and method of making
US4806510A (en) Silicon nitride sintered body and method for producing same
JP3091085B2 (en) Rare earth silicate based sintered body and method for producing the same
US5098623A (en) Method for producing ceramic composite materials containing silicon oxynitride and zirconium oxide
JP3273099B2 (en) Rare earth composite oxide-based sintered body and method for producing the same
US5545362A (en) Production method of sintered silicon nitride
JPS61158866A (en) Ceramic sintered body and manufacture
JP2650049B2 (en) Ceramic cutting tool and its manufacturing method
JPS62875B2 (en)
JPS5940788B2 (en) composite material
JPS63112471A (en) Silicon nitride base ceramics and manufacture
JPH05117030A (en) Complex ceramic and its production
JP3148559B2 (en) Ceramic fiber reinforced turbine blade and method of manufacturing the same
JPS60255672A (en) Manufacture of silicon carbide sintered body
JPS62275067A (en) Manufacture of silicon nitride sintered body
JPH0575716B2 (en)
JPS5874571A (en) Manufacture of silicon nitride sintered body
JPS6125676B2 (en)
JPS5812224B2 (en) Method for manufacturing silicon nitride sintered body
JPS63151682A (en) Silicon nitride sintered body and manufacture
JPH06287007A (en) Partially crystallized multicomponent powder and its production