JPS5885527A - Doping method of impurities to semiconductor crystal - Google Patents

Doping method of impurities to semiconductor crystal

Info

Publication number
JPS5885527A
JPS5885527A JP18496281A JP18496281A JPS5885527A JP S5885527 A JPS5885527 A JP S5885527A JP 18496281 A JP18496281 A JP 18496281A JP 18496281 A JP18496281 A JP 18496281A JP S5885527 A JPS5885527 A JP S5885527A
Authority
JP
Japan
Prior art keywords
doping
mask
pattern
impurities
semiconductor crystal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18496281A
Other languages
Japanese (ja)
Inventor
Kenichi Kikuchi
健一 菊地
Toshiki Ehata
敏樹 江畑
Hideki Hayashi
秀樹 林
Michitomo Iiyama
飯山 道朝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP18496281A priority Critical patent/JPS5885527A/en
Publication of JPS5885527A publication Critical patent/JPS5885527A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/26Bombardment with radiation
    • H01L21/263Bombardment with radiation with high-energy radiation
    • H01L21/265Bombardment with radiation with high-energy radiation producing ion implantation

Landscapes

  • Physics & Mathematics (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Drying Of Semiconductors (AREA)

Abstract

PURPOSE:To make doping of impurities possible with accurate positioning of less than + or -1mum accuracy, by a method wherein the first doping is performed on the basis of the first pattern, and then the second doping is performed on the basis of the pattern which is made smaller than the first pattern by the fixed quantiy. CONSTITUTION:A Ti layer 3 is formed on the crystal surface by vapor deposition, and a resist pattern 4 is further formed thereon. The Ti layer is then processed by the method such as etching, and the resist 4 is removed to form a Ti mask 3'. After that, the first desired doping of impurities is performed to form an n<+> region 7 within the semiconductor crystal by implanting ion utilizing Se etc. Then the Ti mask 3' is etched isotropically to make smaller by the fixed quantity e.g. 0.3mum. For the above etching, the plasma etching with high accuracy is suitable. The desired second doping is performed utilizing the Ti mask 3'' as a mask.

Description

【発明の詳細な説明】 本発明は半導体素子での不純物ドーピング技術の改良に
関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to improvements in impurity doping techniques in semiconductor devices.

ダイオード、トランジスタふ・よび集積回路の製造に山
・いて、半導体結晶の所定の領域に選択的に所定の不純
物を拡散またはイオン注入によってドーピングする技術
は最も基礎的で重要なものである。所定の領域にのみ不
純物をドープするには、イオン注入法と拡散法とがある
。例えばイオン注1− 人においては、フォトレジストをウェーバに塗布後、フ
ォトレジストの窓を所定領域に設け、この窓を通してイ
オン注入を行うのが最も普通である。
In the manufacture of diodes, transistors, and integrated circuits, the most basic and important technique is to selectively dope a predetermined region of a semiconductor crystal with a predetermined impurity by diffusion or ion implantation. There are ion implantation methods and diffusion methods for doping only a predetermined region with impurities. For example, ion implantation 1 - In humans, it is most common to apply photoresist to a wafer, then provide a photoresist window in a predetermined area, and perform ion implantation through this window.

拡散においてはマスク材に810.、 S I3N、等
が通常用いられていて、このマスク材の窓からの拡散を
利用している。
In diffusion, mask material has 810. , SI3N, etc. are commonly used, and the diffusion through the window of this mask material is utilized.

いずれにせよドーピングのマスクは、正確に所定の位置
に窓が開けられていなければならないが、従来の方法に
ふ・いては、どれだけ正確に所定領域の位置に窓開けが
可能かは、フォトマスクのパターンをフォトレジストに
露光転写する際の位置合わせ精度によって決まるが、従
来の霧光装置では±1μm が1仮界であり、これ以」
二の精度を得るのは困難であった。近年半導体素子の高
周波特性の向上、集積度の向上への要求は、ますます強
くなっているが、この要求を満すには、素子の大きさを
小さくする必要があり、そのため、不純物のドーピング
においてもより微小な領域に高精度の位置合わせで行う
ことが、ますます強く求められている。
In any case, the doping mask must have windows formed at precisely predetermined positions, but with conventional methods, it is difficult to determine how accurately the windows can be opened at the positions of predetermined areas. It is determined by the alignment accuracy when exposing and transferring the mask pattern to the photoresist, but with conventional fog light equipment, ±1 μm is one virtual limit, and from this point onwards.
It was difficult to obtain an accuracy of 2. In recent years, demands for improved high-frequency characteristics and increased integration of semiconductor devices have become stronger and stronger, but in order to meet these demands, it is necessary to reduce the size of the devices, which requires doping with impurities. There is an increasing demand for highly accurate positioning in even smaller areas.

2− 本発明は、このような状況を鑑みなされたものであり士
l/−Lm  以下の高精度の位置合わせて不純物のド
ーピングを行うことを目的とするものである。
2- The present invention was developed in view of the above situation, and its object is to perform impurity doping with highly accurate positioning of less than 1/-Lm.

以下に図を用いて詳細に本発明の説明を行う。The present invention will be explained in detail below using figures.

第1図において1は半導体結晶、例えば半絶縁性Q a
 A s結晶基板、2は結晶基板1の一主面上にあらか
じめ形成された一導電型領域、例えばn型GaAsエピ
タキシャル層である。かかる結晶表面上にまず3のTi
 層を蒸着により形成する。
In FIG. 1, 1 is a semiconductor crystal, for example, a semi-insulating Q a
The As crystal substrate 2 is a region of one conductivity type formed in advance on one principal surface of the crystal substrate 1, for example, an n-type GaAs epitaxial layer. First, 3 Ti is deposited on the surface of such a crystal.
The layer is formed by vapor deposition.

その上部に通常のフォトリソグラフィでレジストパター
ン4を形成し、エツチング等の方法で、T1層を加工し
、レジストを除去することにより第2図のTIマスク8
′を形成する。かかる後に所望の第1回めの不純物ドー
ピングを行なう。例えばSeをイオン注入により半導体
結晶中にドープし7のn 領域を第2図の如く形成する
。次いでTI マスク3′ を等方的にエツチングし所
定の量例えば03μm 縮少させる。エツチング法とし
ては高精度なプラズマエツチングが適している。第一3
= 3図に示すように縮少されたTi マスク3// をマ
スクとして所望の第2回めの不純物ドーピングを行なう
A resist pattern 4 is formed on top of the resist pattern 4 by ordinary photolithography, and the T1 layer is processed by a method such as etching and the resist is removed to form the TI mask 8 shown in FIG.
′ is formed. After this, a desired first impurity doping is performed. For example, Se is doped into the semiconductor crystal by ion implantation to form an n region 7 as shown in FIG. The TI mask 3' is then isotropically etched to reduce it by a predetermined amount, for example 0.3 μm. High-precision plasma etching is suitable as the etching method. Daiichi 3
= 3 As shown in Figure 3, the desired second impurity doping is performed using the reduced Ti mask 3// as a mask.

図示の例は2回目のSeのイオン注入が1回目のイオン
注入よりも深く、すなわち高エネルギで1回目よりも低
いドーズ量で行われた場合のものであり、2のn型領域
と7のn 領域との間に8の深いn型領域を介在させた
構造を得る例である。
The example shown is a case where the second Se ion implantation was performed deeper than the first ion implantation, that is, with a higher energy and a lower dose than the first. This is an example of obtaining a structure in which 8 deep n-type regions are interposed between the n-type region and the n-type region.

ここで7と8との間隔はTi マスク3′ と縮少され
たTi マスク8″  とのパターンサイズ差、すなわ
ちエツチングによるパターン縮少量によって決定される
が Ill iは例えばプラズマエツチングにより高精
度のエツチング加工が可能であるため、サイドエッチ量
を±1μm 以下で制御することができ、従って7と8
との間隔は高精度で制御できる。
Here, the interval between 7 and 8 is determined by the pattern size difference between the Ti mask 3' and the reduced Ti mask 8'', that is, the amount of pattern reduction by etching. Since processing is possible, the side etching amount can be controlled to ±1 μm or less, and therefore 7 and 8
The spacing can be controlled with high precision.

明らかに本発明は上記例以外にも各種の変形、1□ 応用が可能である。”例えば3(3’、3″)のTiは
Mo、Ta 等の高精度エツチングが可能な他の金属、
アルいは5i02等の絶縁物を用いることも−4、− できる。さらに4のレジストパターン自身も適用可能で
ある。また、トープでする不純物はSeに限定されず、
N型、P型任意のものを採用でき、かつマスク材との組
合せにより熱拡散等地の不純物ドーピング法も可能であ
る。また結晶はGaAsに限定されずにS i、 Ge
、 InP  等任意のものを用いることができる。
Obviously, the present invention can be modified and applied in various ways other than the above examples. ``For example, 3 (3', 3'') Ti may be other metals that can be etched with high precision, such as Mo or Ta.
It is also possible to use an insulator such as aluminum or 5i02. Furthermore, the resist pattern 4 itself is also applicable. In addition, the impurities in the tope are not limited to Se,
Any N-type or P-type can be used, and in combination with a mask material, impurity doping methods such as thermal diffusion are also possible. Moreover, the crystal is not limited to GaAs, but also Si, Ge
, InP, etc. can be used.

以上述べた如く本発明によれば、最初のパターンに対し
て第1回目のドーピングを行った後、前記パターンを所
定の量だけ小さくして第2回目のドーピングを行ってい
るため、第1回目を第2回目のドーピングの相対位置を
極めて精密に設定することが出来る。
As described above, according to the present invention, after the first doping is performed on the first pattern, the pattern is made smaller by a predetermined amount and the second doping is performed. The relative positions of the second doping can be set extremely precisely.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図乃至第3図は本発明の一実施例を示すための断面
図である。 1・・・・・・・・半導体結晶基板 2・・・・・・・・・−導電型領域 3・・・・・・・・・マスク材料 37 、3″、、、エツチング等した後のマスク材料5
− 4、・・・・・・・・・フォトレジストバクーン7・・
・・・・・・第1不純物ドープ領域8・・・・・・・・
・第2不純物ドープ領域−〇−
1 to 3 are cross-sectional views showing one embodiment of the present invention. 1...Semiconductor crystal substrate 2...Conductivity type region 3...Mask material 37, 3''...After etching etc. Mask material 5
- 4...Photoresist Bakun 7...
......First impurity doped region 8...
・Second impurity doped region -〇-

Claims (1)

【特許請求の範囲】[Claims] 半導体結晶中に選択的に不純物をドーピングする方法に
ふ・いて、半導体結晶の表面にマスク拐を形成し、これ
をマスクとして第1回目の不純物ドーピングを行ないか
かる後に、マスク材を所定量縮少させた後に第2回目の
不純物ドーピングを行なうことを特徴とする半導体結晶
への不純物のドーピング法。
According to the method of selectively doping impurities into a semiconductor crystal, a mask cut is formed on the surface of the semiconductor crystal, and after the first impurity doping is performed using this as a mask, the mask material is reduced by a predetermined amount. 1. A method for doping impurities into a semiconductor crystal, which comprises performing a second impurity doping after doping.
JP18496281A 1981-11-17 1981-11-17 Doping method of impurities to semiconductor crystal Pending JPS5885527A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18496281A JPS5885527A (en) 1981-11-17 1981-11-17 Doping method of impurities to semiconductor crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18496281A JPS5885527A (en) 1981-11-17 1981-11-17 Doping method of impurities to semiconductor crystal

Publications (1)

Publication Number Publication Date
JPS5885527A true JPS5885527A (en) 1983-05-21

Family

ID=16162389

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18496281A Pending JPS5885527A (en) 1981-11-17 1981-11-17 Doping method of impurities to semiconductor crystal

Country Status (1)

Country Link
JP (1) JPS5885527A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5076992A (en) * 1973-11-07 1975-06-24
JPS5223263A (en) * 1975-08-18 1977-02-22 Nec Corp Method of manufacturing semiconductor device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5076992A (en) * 1973-11-07 1975-06-24
JPS5223263A (en) * 1975-08-18 1977-02-22 Nec Corp Method of manufacturing semiconductor device

Similar Documents

Publication Publication Date Title
EP0252179B1 (en) Process for producing undercut mask profiles
JPS58100441A (en) Manufacture of semiconductor device
US3798080A (en) Method of producing a semiconductor component
JPS5885527A (en) Doping method of impurities to semiconductor crystal
JPH0325931B2 (en)
EP0429697A1 (en) Semiconductor wafer with doped kerf-regions
US4380481A (en) Method for fabricating semiconductor devices
JPS5879719A (en) Method for doping impurity into semiconductor crystal
JP3378561B2 (en) Method for manufacturing semiconductor device
JPS5885526A (en) Doping method of impurities to semiconductor crystal
KR0166824B1 (en) Semiconductor device manufacturing method
JPS622709B2 (en)
JPS58123722A (en) Impurity doping method onto semiconductor crystal
JPS58124227A (en) Doping method for impurity to semiconductor crystal
JPS58123721A (en) Impurity doping method onto semiconductor crystal
JP2868771B2 (en) Method of forming alignment mark for electron beam exposure
JPS5852351B2 (en) Manufacturing method of semiconductor device
JPS5815934B2 (en) How to use hand tools
JPH03190140A (en) Mos transistor and manufacture thereof
KR100540332B1 (en) Method for fabricating pattern of semiconductor device
JPS58102564A (en) Manufacture of fet
JPS61168225A (en) Photomask with alignment marker having four-fold symmetry
JPS6250973B2 (en)
JPH01225177A (en) Field effect transistor
JPS58123723A (en) Impurity doping method onto semiconductor crystal