JPS5879719A - Method for doping impurity into semiconductor crystal - Google Patents

Method for doping impurity into semiconductor crystal

Info

Publication number
JPS5879719A
JPS5879719A JP17819281A JP17819281A JPS5879719A JP S5879719 A JPS5879719 A JP S5879719A JP 17819281 A JP17819281 A JP 17819281A JP 17819281 A JP17819281 A JP 17819281A JP S5879719 A JPS5879719 A JP S5879719A
Authority
JP
Japan
Prior art keywords
mask
mask material
mask member
layer
photoresist
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17819281A
Other languages
Japanese (ja)
Inventor
Kenichi Kikuchi
健一 菊地
Hideki Hayashi
秀樹 林
Toshiki Ehata
敏樹 江畑
Michitomo Iiyama
飯山 道朝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP17819281A priority Critical patent/JPS5879719A/en
Publication of JPS5879719A publication Critical patent/JPS5879719A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/26Bombardment with radiation
    • H01L21/263Bombardment with radiation with high-energy radiation
    • H01L21/265Bombardment with radiation with high-energy radiation producing ion implantation

Landscapes

  • Physics & Mathematics (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Abstract

PURPOSE:To permit doping of impurities with high accurate alignment by a method wherein two kinds of mask members are formed one above another and the lower mask member is made smaller than the upper mask member through etching. CONSTITUTION:A Ti layer 3 and a photoresist 4 are formed on a conductive- type region 2 formed on a semiconductor crystal 1, and the photoresist 4 is exposed and developed to form an upper mask member 6. Then, the Ti layer 3 is etched with the upper mask member 6 being as a mask, so as to attain a lower mask member 5. A this time, the lower mask member 5 is made to have the reduced size at a certain ratio through side etching. When doping desired impurities 7, 8 into the semiconductor crystals 1, 2, an impurity doped region 7 is first formed with the upper mask member 6 being as a mask. Then, after removing the mask member 6, an impurity doped region 8 is formed with the lower mask member 5 being as a mask. By so doing, it becomes possible to control the gap between the regions 7 and 2 with high accuracy.

Description

【発明の詳細な説明】 本発明は半導体素子を作るため結晶への不純物をドーピ
ングする技術の改良に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to improvements in techniques for doping crystals with impurities to make semiconductor devices.

ダイオード、トランジスタおよび集積回路の製造におい
て、半導体結晶の所定の領域に選択的に所定の不純物を
拡散またはイオン注入によってドーピングする技術は最
も基礎的で重要なものである。所定の領域にのみ不純物
をドープする技術に関し、イオン注入においてはフォト
レジストをウェットに塗布後、フォトレジストの窓を所
定領域に設け、この窓を通してイオン注入を行うのが最
も普通である。拡散においては、マスク材に5in2゜
5iBN4等が通常用いられている。いずれにせよドー
ピングのマスクは、正確に所定の位置に窓が開けられて
いなければならない。近年、半導体素子の高周波特性の
向上、集積度の向上への要求はますます強くなっている
が、この要求を満すには、素子の大蒼さを小さくする必
要があり、そのため不純物のドーピングにおいてもより
微小な領域に高精度の位置合わせで行うことが強く求め
られている。
In the manufacture of diodes, transistors, and integrated circuits, the most basic and important technique is to selectively dope a predetermined region of a semiconductor crystal with a predetermined impurity by diffusion or ion implantation. Regarding the technique of doping impurities only in a predetermined region, the most common method for ion implantation is to wetly apply a photoresist, provide a photoresist window in a predetermined region, and perform ion implantation through this window. For diffusion, 5in2°5iBN4 or the like is usually used as a mask material. In any case, the doping mask must have windows opened at precisely predetermined locations. In recent years, there has been an increasingly strong demand for improved high-frequency characteristics and increased integration of semiconductor devices, but to meet these demands, it is necessary to reduce the brightness of the devices, and for this reason, impurity doping is required. There is a strong demand for highly accurate positioning in even smaller areas.

しかるに、従来の方法としては、第1図に例示するよう
に、半導体結晶lに所定の不純物を含む領域2および2
′が形成されているとき、さらに領域7′、および7#
に所望の不純物をドープするにはフォトレジスト6を形
成して、これをマスクに用いてイオン注入を行うという
製造方法が採用されている。この為、どれだけ正確に所
定領域の位置にドーピングが可能かは、フォトマスクの
パターンをフォトレジストパターン6に転写する際の位
置合わせ精度によって決まるが、従来の露光装置を用い
る限り±1μmが限界であゆ、これ以上の精度を得るの
は困難であった。
However, in the conventional method, as illustrated in FIG.
′ is formed, further regions 7′ and 7#
In order to dope desired impurities into the semiconductor device, a manufacturing method is adopted in which a photoresist 6 is formed and ions are implanted using this as a mask. For this reason, how accurately doping can be done in a predetermined area is determined by the alignment accuracy when transferring the photomask pattern to the photoresist pattern 6, but as long as conventional exposure equipment is used, the limit is ±1 μm. Unfortunately, it was difficult to obtain greater precision.

本発明は、このような従来の方法の欠点で改善するもの
であり、±1 tzm以下の高精度の位置合わせて不純
物のドーピングを行うことを目的とするものである。
The present invention aims to improve upon these drawbacks of the conventional method, and aims to perform impurity doping with highly accurate positioning of ±1 tzm or less.

以下本発明について説明する。The present invention will be explained below.

本発明は、所定の導電型領域を有する半導体結晶上に2
種の以上のマスク材を重ねて形成し上側のマスク・パタ
ーンをマスクとしてその下側のマスク材をエツチングし
てするとき、下側のマスク材が該上側のマスク・パター
ンの大きさよりも所定の縮少率で小さめになるようにエ
ツチングされることを利用するものである。即ち上側の
マスクパターンを設けたままイオン注入を行った後、さ
らに下側のマスク・パターンを用いてイオン注入を行う
ことによって、最初のイオン注入の位置と後のイオン注
入の位置を所定の位置関係にしておくものである。
The present invention provides two
When more than one mask material is layered and the upper mask pattern is used as a mask and the lower mask material is etched, the lower mask material has a predetermined size larger than the upper mask pattern. This method takes advantage of the fact that it is etched to become smaller at a reduction rate. That is, by performing ion implantation with the upper mask pattern in place and then performing ion implantation using the lower mask pattern, the initial ion implantation position and subsequent ion implantation position can be adjusted to predetermined positions. It is something to keep in mind.

以下図を用いて詳細に本発明の説明を行う。The present invention will be explained in detail below using the figures.

第2図において、lは半導体結晶例えば半絶縁性GaA
s結晶基板、2は結晶基板lの一主面上にあらかじめ形
成された一導電型領域、例えばn型GaAsエピタキシ
ャル層である。かかる結晶表面上にまずTi層3を蒸着
により形成する。その上部にフォトレジスト4を塗布す
る。この後、第8図のように、通常の方法により露光現
像を行い所定の領域にのみフォトレジスト6を残存させ
、このフォトレジストをマスクとして用いてTi層8を
エツチングし、レジスト6の下部のみに5の如(Ti 
を残存させる。このときサイドエッチによりTi  5
は上層のレジスト6よりも縮少した大きさが得られる。
In FIG. 2, l is a semiconductor crystal such as semi-insulating GaA
The s-crystal substrate 2 is a region of one conductivity type, for example, an n-type GaAs epitaxial layer, formed in advance on one main surface of the crystal substrate l. First, a Ti layer 3 is formed on the crystal surface by vapor deposition. A photoresist 4 is applied on top of the photoresist. After that, as shown in FIG. 8, the photoresist 6 is exposed and developed using a conventional method to leave the photoresist 6 only in a predetermined area. Using this photoresist as a mask, the Ti layer 8 is etched, and only the lower part of the resist 6 is etched. ni 5 no like (Ti
remain. At this time, Ti 5 is removed by side etching.
A smaller size than that of the upper layer resist 6 can be obtained.

第4図に示すように、所望の不純物、例えばSiをレジ
スト6をマスクとしてイオン注入により選択的に半導体
結晶中にドープし、n+領域7を形成する。
As shown in FIG. 4, a desired impurity such as Si is selectively doped into the semiconductor crystal by ion implantation using the resist 6 as a mask to form an n+ region 7.

次に第5図に示すようにレジスト6を除去し、Ti  
層5をマスクとして所望の不純物例えばSiを、選択的
にイオン注入する。
Next, as shown in FIG. 5, the resist 6 is removed and the Ti
Using layer 5 as a mask, desired impurities such as Si are selectively ion-implanted.

図示の例では2回目のイオン注入が1回目のイオン注入
よりも深く、すなわち高エネルギで、かつ1回目よりも
低いドー令′量で行われた場合のものであり、2のn型
領域と7のn+領領域の間に8の深いn型領域を介在さ
せた構造を得る例である。ここで7と2との間隔はレジ
スト6トTi5とのパターンサイズ差すなわちサイドエ
ッチによるパターン縮少量によって決定されるが、Ti
  は例えばプラズマエツチングにより高精度のエツチ
ング加工が可能であるため、サイドエッチ量を±1μm
以下で制御することができ、従って、7と2との間隔は
高精度で制御できる。
In the illustrated example, the second ion implantation is performed deeper than the first ion implantation, that is, with high energy and with a lower doping amount than the first ion implantation. This is an example of obtaining a structure in which eight deep n-type regions are interposed between seven n+ regions. Here, the interval between 7 and 2 is determined by the pattern size difference between resist 6 and Ti5, that is, the amount of pattern reduction due to side etching.
For example, since high-precision etching is possible using plasma etching, the amount of side etching can be reduced to ±1 μm.
Therefore, the spacing between 7 and 2 can be controlled with high precision.

本発明は上記例以外にも、各種の変形、応用が可能であ
る。例えば、3,5のTiはMo、Ta等の高精度エツ
チングが可能な他の金属、あるいは5in2  等の絶
縁物を用いることもできる。また、ドープする不純物は
Siに限定されず、n型、p型任意のものを採用できる
。また、5と6のパターンサイズ差を用いることが本発
明の本質であるから、第2回目の注入の際に、6を除去
せずに、ななめよりイオン注入を行い実質的に5のみに
注人のマスクの役割を担わせても本発明の目的は達せら
れる。また結晶はG a A sに限定されずにSi。
The present invention can be modified and applied in various ways other than the above examples. For example, for Ti in 3 and 5, other metals that can be etched with high precision such as Mo and Ta, or insulators such as 5 in 2 can also be used. Further, the impurity to be doped is not limited to Si, and any n-type or p-type impurity can be used. Furthermore, since the essence of the present invention is to use the difference in pattern size between 5 and 6, during the second implantation, ions are implanted diagonally without removing 6, and substantially only 5 is implanted. The object of the present invention can also be achieved by having the mask serve as a human mask. Moreover, the crystal is not limited to GaAs, but can also be Si.

Ge、InP等任意のものを用いることができる。Any material such as Ge or InP can be used.

まにドーピングは2回に限らず、2回以上も可能である
Doping is not limited to twice, but can be done twice or more.

以上述べた如く、本発明によれば、2重のマスクにおい
て、上側のマスクパターンを用いてエツチングすると下
側にはそれより一定の比率で縮小したマスクパターンが
出来るため、極めて高精度の位置合せて不純物のドーピ
ングが可能となる。
As described above, according to the present invention, in a double mask, when etching is performed using the upper mask pattern, a mask pattern smaller in a certain ratio than the lower mask pattern is created on the lower side, so that extremely high precision alignment can be achieved. Doping with impurities becomes possible.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の方法を示す図であり、第2図乃至第5図
は本発明の一実施例を示す為の工程図である。 l ・・・・・・・・・・・・半導体結晶基板2.2′
・・・・・・・・・・・・−導電型領域8#5・・・・
・・・・・・・・第2のマスク材料4.6・・・・・・
・・・・・・第1のマスク材料?、 q−q”、8・・
・・・・・・・・・・不純物ドープ領域τ1121
FIG. 1 is a diagram showing a conventional method, and FIGS. 2 to 5 are process diagrams showing an embodiment of the present invention. l ...... Semiconductor crystal substrate 2.2'
......-Conductivity type region 8#5...
・・・・・・Second mask material 4.6・・・・・・
...The first mask material? , q−q”, 8...
......Impurity doped region τ1121

Claims (1)

【特許請求の範囲】[Claims] (1)半導体結晶中に選択的に不純物をトンピングする
方法において、半導体結晶の表面に第2のマスク材と、
該第2のマスク材の上部に第1のマスク材とを形成し、
第1のマスク材を所定の大きさに形成した後に第1のマ
スク材をエツチングのマスクとして第2のマスク材の形
成を行うことにより、第1のマスク材よりも縮少した第
2のマスク材を得、かかる後に第1のマスク材をマスク
として第1回目のイオン注入を行い、第1のマスク材を
除去した後に第2回目のイオン注入を行うことを特徴と
する半導体結晶への不純物ドーピング方法 (21Ga A sの半絶縁性基板上に一導電型領域を
形成し、この表面上にTi層を形成し、該Ti 層上に
7オトレジストのマスク材からなるパターンを形成し、
該フォトレジストのマスク材をエツチングのマスクとし
てプラズマエツチングにより該Ti層をエツチングして
、Ti  層のマスク材を得、かかる後にフォトレジス
トマスクとして、第1回目のS−等のイオン注入を行い
、前記フォトレジストマスク材を除去した後に、Ti 
 層をマスクとして第2回目のSi+等のイオン注入を
行うことを特徴とする特許請求の範囲第1項記載の半導
体結晶への不純物ドーピング方法
(1) In a method of selectively topping impurities into a semiconductor crystal, a second mask material is provided on the surface of the semiconductor crystal;
forming a first mask material on top of the second mask material;
By forming the first mask material to a predetermined size and then forming the second mask material using the first mask material as an etching mask, the second mask is made smaller than the first mask material. impurities into a semiconductor crystal, characterized in that a first ion implantation is performed using a first mask material as a mask, and a second ion implantation is performed after removing the first mask material. Doping method (forming a region of one conductivity type on a semi-insulating substrate of 21GaAs, forming a Ti layer on this surface, forming a pattern consisting of a mask material of 7 otresist on the Ti layer,
Using the photoresist mask material as an etching mask, the Ti layer is etched by plasma etching to obtain a Ti layer mask material, and after this, the first ion implantation such as S- is performed using the photoresist mask as a mask. After removing the photoresist mask material, Ti
A method for doping impurities into a semiconductor crystal according to claim 1, characterized in that a second ion implantation of Si + or the like is performed using the layer as a mask.
JP17819281A 1981-11-05 1981-11-05 Method for doping impurity into semiconductor crystal Pending JPS5879719A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17819281A JPS5879719A (en) 1981-11-05 1981-11-05 Method for doping impurity into semiconductor crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17819281A JPS5879719A (en) 1981-11-05 1981-11-05 Method for doping impurity into semiconductor crystal

Publications (1)

Publication Number Publication Date
JPS5879719A true JPS5879719A (en) 1983-05-13

Family

ID=16044196

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17819281A Pending JPS5879719A (en) 1981-11-05 1981-11-05 Method for doping impurity into semiconductor crystal

Country Status (1)

Country Link
JP (1) JPS5879719A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5227321A (en) * 1990-07-05 1993-07-13 Micron Technology, Inc. Method for forming MOS transistors

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5425171A (en) * 1977-07-27 1979-02-24 Fujitsu Ltd Manufacture of field effect semiconductor device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5425171A (en) * 1977-07-27 1979-02-24 Fujitsu Ltd Manufacture of field effect semiconductor device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5227321A (en) * 1990-07-05 1993-07-13 Micron Technology, Inc. Method for forming MOS transistors

Similar Documents

Publication Publication Date Title
DE1764056C2 (en) Method for manufacturing a semiconductor device
DE2819698C2 (en) A method of manufacturing a solid state micro-device and apparatus for use in the method
DE69126463T2 (en) Process for producing a conductive element
JPS58100441A (en) Manufacture of semiconductor device
DE4229628A1 (en) Stacked semiconductor device with high bonding precision - includes semiconductor substrates bonded together by moderate temp. heat treatment
JPS60211877A (en) Method of producing semiconductor device
EP0429697B1 (en) Semiconductor wafer with doped kerf-regions
JPS5879719A (en) Method for doping impurity into semiconductor crystal
JPS59119870A (en) Manufacture of semiconductor device
US5250453A (en) Production method of a semiconductor device
JPS58123721A (en) Impurity doping method onto semiconductor crystal
JP3146636B2 (en) Method for manufacturing thin film transistor having low concentration impurity introduction region
JPH0434822B2 (en)
JPS5885527A (en) Doping method of impurities to semiconductor crystal
JPS58124227A (en) Doping method for impurity to semiconductor crystal
JPH0414863A (en) Forming method for resistance element of semiconductor device
JPH03286569A (en) Mes-type field-effect transistor
JPS5885526A (en) Doping method of impurities to semiconductor crystal
JPS5815934B2 (en) How to use hand tools
JPS58123722A (en) Impurity doping method onto semiconductor crystal
JPS588590B2 (en) Method for manufacturing Schottky barrier gate field effect transistor
JPH03181136A (en) Manufacture of semiconductor device
JPS58123723A (en) Impurity doping method onto semiconductor crystal
JP3298066B2 (en) Method for manufacturing compound semiconductor device
JPS6037176A (en) Manufacture of field effect transistor